Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate

Abstract

Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague–Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 11
Figure 10

Similar content being viewed by others

References

  1. Reardon DA, Wen PY . Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 2006; 11: 152–164.

    Article  CAS  Google Scholar 

  2. Kawazoe T, Park HK, Iwana S, Tsuge H, Fukui K . Human D-amino acid oxidase: an update and review. Chem Rec 2007; 7: 305–315.

    Article  CAS  Google Scholar 

  3. Dale DC, Boxer L, Liles WC . The phagocytes: neutrophils and monocytes. Blood 2008; 112: 935–945.

    Article  CAS  Google Scholar 

  4. Stegman LD, Zheng H, Neal ER, Ben-Yoseph O, Pollegioni L, Pilone MS et al. Induction of cytotoxic oxidative stress by D-alanine in brain tumor cells expressing Rhodotorula gracilis D-amino acid oxidase: a cancer gene therapy strategy. Hum Gene Ther 1998; 9: 185–193.

    Article  CAS  Google Scholar 

  5. Wilson JE . Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 2003; 206: 2049–2057.

    Article  CAS  Google Scholar 

  6. Paggi MG, Fanciulli M, Del Carlo C, Citro G, Carapella CM, Floridi A . The membrane-bound hexokinase as a potential marker for malignancy in human gliomas. J Neurosurg Sci 1990; 34: 209–213.

    CAS  PubMed  Google Scholar 

  7. Nakashima RA, Paggi MG, Pedersen PL . Contributions of glycolysis and oxidative phosphorylation to adenosine 5′-triphosphate production in AS-30D hepatoma cells. Cancer Res 1984; 44: 5702–5706.

    CAS  PubMed  Google Scholar 

  8. Pedersen PL . The cancer cell's ‘power plants’ as promising therapeutic targets: an overview. J Bioenerg Biomembr 2007; 39: 1–12.

    Article  CAS  Google Scholar 

  9. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  Google Scholar 

  10. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2010; 2: 31–34.

    Article  Google Scholar 

  11. Shaw RJ . Glucose metabolism and cancer. Curr Opin Cell Biol 2006; 18: 598–608.

    Article  CAS  Google Scholar 

  12. Mazurek S, Boschek CB, Eigenbrodt E . The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J Bioenerg Biomembr 1997; 29: 315–330.

    Article  CAS  Google Scholar 

  13. Gambhir SS . Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002; 2: 683–693.

    Article  CAS  Google Scholar 

  14. Mineura K, Yasuda T, Kowada M, Sakamoto T, Ogawa T, Shishido F et al. Positron emission tomographic evaluations in the diagnosis and therapy of multifocal glioblastoma. Report of a pediatric case. Pediatr Neurosci 1986; 12: 208–212.

    Article  CAS  Google Scholar 

  15. Spence AM, Muzi M, Graham MM, O’Sullivan F, Krohn KA, Link JM et al. Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11] glucose and FDG: analysis of the FDG lumped constant. J Nucl Med 1998; 39: 440–448.

    CAS  PubMed  Google Scholar 

  16. Geschwind JH, Ko YH, Torbenson MS, Magee C, Pedersen PL . Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 2002; 62: 3909–3913.

    CAS  PubMed  Google Scholar 

  17. Park HK, Shishido Y, Ichise-Shishido S, Kawazoe T, Ono K, Iwana S et al. Potential role for astroglial D-amino acid oxidase in extracellular D-serine metabolism and cytotoxicity. J Biochem 2006; 139: 295–304.

    Article  CAS  Google Scholar 

  18. Urai Y, Jinnouchi O, Kwak KT, Suzue A, Nagahiro S, Fukui K . Gene expression of D-amino acid oxidase in cultured rat astrocytes: regional and cell type specific expression. Neurosci Lett 2002; 324: 101–104.

    Article  CAS  Google Scholar 

  19. Ihrlund LS, Hernlund E, Khan O, Shoshan MC . 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2008; 2: 94–101.

    Article  Google Scholar 

  20. Altinoz MA, Bilir A, Ozar E, Onar FD, Sav A . Medroxyprogesterone acetate alone or synergistic with chemotherapy suppresses colony formation and DNA synthesis in C6 glioma in vitro. Int J Dev Neurosci 2001; 19: 541–547.

    Article  CAS  Google Scholar 

  21. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA . Spheroid-based drug screen: considerations and practical approach. Nat Protoc 2009; 4: 309–324.

    Article  CAS  Google Scholar 

  22. Abou El-Magd RM, Park HK, Kawazoe T, Iwana S, Ono K, Chung SP et al. The effect of resperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psychopharmacol 2010; 24: 1055–1067.

    Article  CAS  Google Scholar 

  23. Ko YH, Pedersen PL, Geschwind JF . Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 2001; 173: 83–91.

    Article  CAS  Google Scholar 

  24. Pytel P . Spectrum of pediatric gliomas: implications for the development of future therapies. Expert Rev Anticancer Ther 2007; 7: 51–60.

    Article  Google Scholar 

  25. Fang J, Seki T, Maeda H . Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev 2009; 61: 290–302.

    Article  CAS  Google Scholar 

  26. Grobben B, De Deyn PP, Slegers H . Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 2002; 310: 257–270.

    Article  CAS  Google Scholar 

  27. Nagamatsu S, Nakamichi Y, Inoue N, Inoue M, Nishino H, Sawa H . Rat C6 glioma cell growth is related to glucose transport and metabolism. Biochem J 1996; 319: 477–482.

    Article  CAS  Google Scholar 

  28. Ikezaki K, Black KL, Conklin SG, Becker DP . Histochemical evaluation of energy metabolism in rat glioma. Neurol Res 1992; 14: 289–293.

    Article  CAS  Google Scholar 

  29. Machida K, Ohta Y, Osada H . Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. J Biol Chem 2006; 281: 14314–14320.

    Article  CAS  Google Scholar 

  30. Pedersen PL . Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the ‘Warburg effect’ in cancer. J Bioenerg Biomembr 2008; 40: 123–126.

    Article  CAS  Google Scholar 

  31. da-Silva WS, Gomez-Puyou A, de Gomez-Puyou MT, Moreno-Sanchez R, De Felice FG, de Meis L et al. Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 2004; 279: 39846–39855.

    Article  CAS  Google Scholar 

  32. Yang MS, Yu LC, Gupta RC . Analysis of changes in energy and redox states in HepG2 hepatoma and C6 glioma cells upon exposure to cadmium. Toxicology 2004; 201: 105–113.

    Article  CAS  Google Scholar 

  33. Makino N, Mise T, Sagara J . Kinetics of hydrogen peroxide elimination by astrocytes and C6 glioma cells: analysis based on a mathematical model. Biochim Biophys Acta 2008; 1780: 927–936.

    Article  CAS  Google Scholar 

  34. Smith TA . Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 2000; 57: 170–178.

    CAS  PubMed  Google Scholar 

  35. Pelicano H, Martin DS, Xu RH, Huang P . Glycolysis inhibition for anticancer treatment. Oncogene 2006; 25: 254633–254646.

    Article  Google Scholar 

  36. Lee KH, Park JH, Won R, Lee H, Nam TS, Lee BH . Inhibition of hexokinase leads to neuroprotection against excitotoxicity in organotypic hippocampal slice culture. J Neurosci Res 2011; 89: 96–107.

    Article  CAS  Google Scholar 

  37. Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF et al. High dose D-serine in the treatment of schizophrenia. Schizophr Res 2010; 121: 125–130.

    Article  Google Scholar 

  38. Starkov AA, Fiskum G . Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 2003; 86: 1101–1107.

    Article  CAS  Google Scholar 

  39. McEligot AJ, Yang S, Meyskens FLJR . Redox regulation by intrinsic species and extrinsic nutrients in normal and cancer cells. Annu Rev Nutr 2005; 25: 261–295.

    Article  CAS  Google Scholar 

  40. Korshunov SS, Skulachev VP, Starkov AA . High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416: 15–18.

    Article  CAS  Google Scholar 

  41. Kim JS, Ahn KJ, Kim JA, Kim HM, Lee JD, Lee JM et al. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-bromopyruvate. J Bioenerg Biomembr 2008; 40: 607–618.

    Article  CAS  Google Scholar 

  42. Simons AL, Mattson DM, Dornfeld K, Spitz DR . Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther 2009; 5: 2–6.

    Article  Google Scholar 

  43. Qin JZ, Xin H, Nickoloff BJ . 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines. Biochem Biophys Res Commun 2010; 396: 495–500.

    Article  CAS  Google Scholar 

  44. Tsai KL, Wang SM, Chen CC, Fong TH, Wu ML . Mechanism of oxidative stress-induced intracellular acidosis in rat cerebellar astrocytes and C6 glioma cells. J Physiol 1997; 502: 161–174.

    Article  CAS  Google Scholar 

  45. Hyslop PA, Hinshaw DB, Halsey Jr WA, Schraufstätter IU, Sauerheber RD, Spragg RG et al. Mechanisms of oxidant-mediated cell injury: the glycolytic and mitochondrial pathways of phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 1988; 263: 1665–1675.

    CAS  PubMed  Google Scholar 

  46. Appelskog IB, Ammerpohl O, Svechnikova IG, Lui WO, Almqvist PM, Ekström TJ . Histone deacetylase inhibitor 4-phenylbutyrate suppresses GAPDH mRNA expression in glioma cells. Int J Oncol 2004; 24: 1419–1425.

    CAS  PubMed  Google Scholar 

  47. Mazurek S, Boschek CB, Eigenbrodt E . The role of phosphometabolites in cell proliferation, energy metabolism and tumor therapy. J Bioenerg Biomembr 1997; 29: 315–330.

    Article  CAS  Google Scholar 

  48. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB . Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004; 18: 1272–1282.

    Article  CAS  Google Scholar 

  49. Proskuryakov SY, Konoplyannikov AG, Gabai VL . Necrosis: a specific form of programmed cell death? Exp Cell Res 2003; 283: 1–16.

    Article  CAS  Google Scholar 

  50. Segel IH . Enzyme activation. In: Segel IH (ed). Enzyme kinetics: Behaviour and analysis of rapid equilibrium and steady-state enzyme systems, 1st edn. John Wiley & Sons: Inc. New York, 1993, pp 227–272.

    Google Scholar 

  51. Chung SP, Sogabe K, Park HK, Song Y, Ono K, Abou El-Magd RM et al. Potential cytotoxic effect of hydroxypyruvate produced from D-serine by astroglial D-amino acid oxidase. J Biochem 2010; 148: 743–753.

    Article  CAS  Google Scholar 

  52. Robey RB, Hay N . Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 2006; 25: 4683–4696.

    Article  CAS  Google Scholar 

  53. Kim W, Yoon JH, Jeong JM, Cheon GJ, Lee TS, Yang JI et al. Apoptosis-inducing antitumor efficacy of hexokinase II inhibitor in hepatocellular carcinoma. Mol Cancer Ther 2007; 6: 2554–2262.

    Article  CAS  Google Scholar 

  54. Kowaltowski AJ, Castilho RF, Vercesi AE . Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett 1996; 378: 150–152.

    Article  CAS  Google Scholar 

  55. Watanabe K, Sakamoto M, Somiya M, Amin MR, Kamitani H, Watanabe T . Feasibility and limitations of the rat model by C6 gliomas implanted at the subcutaneous region. Neurol Res 2002; 24: 485–490.

    Article  Google Scholar 

  56. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 2004; 324: 269–275.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan. Cell lines used for this study were provided by BioResource room, The Institute for Enzyme Research, The University of Tokushima, Japan. We thank Y Okamura in Support Center for Advanced Medical Sciences, Institute of Health Biosciences, The University of Tokushima for assistance in flow cytometric analysis. We also appreciate Dr Young H Ko for her kind advice on 3BP dosage for in vivo study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Fukui.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Sayed, S., Abou El-Magd, R., Shishido, Y. et al. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate. Cancer Gene Ther 19, 1–18 (2012). https://doi.org/10.1038/cgt.2011.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.59

Keywords

This article is cited by

Search

Quick links