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Oncolytic virotherapy is an emerging experimental treatment platform for cancer therapy. Oncolytic viruses are replicative-

competent viruses that are engineered to replicate selectively in cancer cells with specified oncogenic phenotypes. Multiple DNA

and RNA viruses have been clinically tested in a variety of tumors. This review will provide a brief description of these novel

anticancer biologics and will summarize the results of clinical investigation. To date oncolytic virotherapy has shown to be

safe, and has generated clinical responses in tumors that are resistant to chemotherapy or radiotherapy. The major challenge for

researchers is to maximize the efficacy of these viral therapeutics, and to establish stable systemic delivery mechanisms.
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Introduction

Oncolytic viruses involved in initial cancer therapeutics
are non-pathogenic, naturally occurring viruses that are
either wild-type or naturally occurring mutants. Specificity
to cancer is determined by tumor-specific genetic muta-
tions that result in aberrant protein expression. Adeno-
viruses are the most widely studied engineered oncolytic
viruses clinically. Adenoviral constructs include Onyx
015,1,2 CG7060,3 CG7870,4 dl922-947,5 Ad5-CD/tk-rep,6

Ad-delta24,7 Ad DF3-E1,8 Onyx 411,9 OAV001,10 KD3,11

01/PEME12 and Telomelysin.13,14

Historically, evidence of viral oncolytic activity was
published in case reports as early as 1912. These reports
described rare but dramatic responses in cancer patients
recovering from viral syndromes.15–29 On the basis
of these observations, viruses with low pathogenicity to
normal tissue and high oncolytic capacity have been
selected for clinical investigation.29–35

This review will focus on the anticancer activity of
oncolytic viruses demonstrated in clinical investigation.

Onyx 015

Onyx 015 is a replication-conditional adenovirus geneti-
cally modified by deletion of two DNA elements. It was

theorized that deletion of the first element, the E1B
55 kDa fragment, would facilitate replication of ONYX
015 in cells with a defective p53 pathway, which
commonly occurs in cancer cells, although it has become
clear that this virus is not specific for p53-null cells.1,36,37

Clinical trials of several hundred patients have shown no
evidence of nonspecific viral replication or damage to
normal cells at the border of intratumoral injection
sites.38–51 When administered intravenously (i.v.), dose
escalation was limited by transient liver enzyme elevation
at a dose of 2� 1013 particles.43,46,52

Initial phase one investigation of ONYX 015 involved
intra-tumor injection in refractory cancer patients. The
virus was well tolerated and evidence of activity was
suggested.53 A phase II study involving 40 squamous
cell carcinoma of the head and neck patients injected
intratumorally with 2� 1011 viral particles for 5 con-
secutive days revealed cancer-specific viral replication
in 7 of 11 patients who underwent biopsy.40 No viral
replication or toxic effects were identified in normal
tissue. No particular toxic effects were observed following
533 viral injections, and nearly 20% of patients demon-
strated significant, partial, or complete response (CR) of
the injected lesion. In a subsequent phase II study,
patients received ONYX 015 (2� 1011 particles for 5
consecutive days/21 day cycle) in combination with
cisplatin (80mgm–2 once every 21 days) and 5 fluorour-
acil (800–1000mgm–2 continuos infusion 5 days/21
days).41 No added toxicity attributable to ONYX 015
was demonstrated in addition to the expected toxicity of
cisplatin and 5 fluorouracil. Furthermore, a 63% response
rate was observed, which was greater than the expected
response rate of 35% from previous publications in the
same patient population using similar chemotherapy
regimes.41
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Other clinical investigations of ONYX 015 have
involved advanced ovarian cancer,42 hepatocellular carci-
noma,44 pancreatic cancer47,49 and colorectal cancer.48,54

In a meta-analysis54 summarizing two intrahepatic
arterial infusion trials involving colorectal cancer, survival
was compared between patients receiving o6� 1011 virus
particles per infusion (7 patients) to those receiving
46� 1011 virus particles per infusion (28 patients).
A significant survival advantage was demonstrated in
the high-dose group (359 days) compared with the
low-dose group (155 days).45

ONYX 015 has been administered safely to 440
patients intravenously. Results show a slightly higher
frequency of febrile response with systemic administration
than intratumoral administration of ONYX 015,
although the frequency was similar to what was observed
with intra-arterial infusion. At doses of o1� 1013

particles per infusion, no significant safety concerns were
identified, including situations in which virus was
administered in combination with low-dose IL-2 or
chemotherapy (paclitaxel, CPT11 and 5 fluorouracil).
The presence of ONYX 015 within metastatic malignant
disease sites following i.v. infusion was demonstrated;
however, evidence of significant tumor regression was not
identified.43,46,53

Shanghai Sunway Biotech presently owns the rights to
ONYX 015. They also have the rights to a nearly identical
virus called H101 (trade name Oncorine), the first
oncolytic virus to be commercialized, which is currently
on the market in China following demonstration
of improved response and time to disease progression of
nasopharyngeal carcinoma in combination with cisplatin-
based chemotherapy compared with chemotherapy
alone.55 Two follow-up products have been introduced,
H102, currently in pre-clinical testing, and H103, an
oncolytic type 2 adenovirus overexpressing the heat shock
protein HSP70, recently tested as a intratumoral vaccina-
tion in a completed phase I clinical trial in patients with
advanced solid tumors.56 Transient and partial regression
of distant, un-injected tumors was observed in three
patients during this study, and because of promising
clinical antitumor activity and positive safety outcome
further studies are being pursued.

Telomelysin

Telomelysin is a novel, replication-competent Ad5-based
adenoviral construct that incorporates a human telomer-
ase reverse transcriptase gene (hTERT) promoter. hTERT
encodes for the catalytic protein subunit of telomerase, a
polymerase that acts to stabilize telomere lengths and is
highly expressed in tumors but not in normal, differ-
entiated adult cells.57 Earlier studies have shown that
hTERT promoter can control the expression of exogen-
ous genes in telomerase-positive cancer cells, and can
serve as an excellent candidate for cancer-specific control
of oncolytic adenoviral replication.58

Additional modifications of Telomelysin include the
replacement of the normal transcriptional element of viral

E1B gene by an IRES (Internal Ribosomal Entry Site)
sequence. Furthermore, Telomelysin is the first replica-
tion-competent adenovirus that retains a fully functional
viral E3 region. E3 proteins prevent Ad-infected cells
from being cleared by cytotoxoic T lymphocyte, tumor
necrosis factor, Fas ligand and tumor necrosis factor-
related apoptosis-inducing ligand and act to decrease
systemic viral clearance.59 Other adenoviral therapeutics
have dysfunctional or deleted E3 regions for safety
considerations. However, removal of the E3 region and
rapid clearance of viral therapeutics may also cripple the
antitumor effect. Thus, retention of a functional E3
region has the theoretical advantage of optimizing
antitumor activity within the constraints of clinical safety
by enhanced viral pharmacokinetics and biodistribution.
In vitro studies have validated the selective infectivity

and direct cytolysis of Telomelysin in cancer cells but not
nonmalignant cells.58 In animal experiments, intratumor-
al injection of Telomelysin demonstrated antitumor
activity without significant toxicity to normal organs.
Further, distant viral uptake was observed following
intratumoral injection when the presence of adenoviral
protein was identified in the noninjected tumor following
intratumoral treatment of the contralateral tumor.58

A phase I study evaluating the tolerability of a single
intratumoral injection of Telomelysin was recently com-
pleted.60 Sixteen patients were entered into three dose
escalation cohorts without defining a maximum tolerated
dose. There were no clinically significant grade 3 or 4
treatment-related adverse events (AEs). However, multiple
grade 1 and 2 AEs were reported, with the most common
being fever, chills, fatigue and injection site pain. Nine
evaluable patients (one neuroendocrine, three squamous
cell carcinomas, three melanomas, one leiomyosarcoma and
one salivary cancer) satisfied RECIST criteria for stable
disease (SD) at day 28, and seven of these patients had SD
at day 56. Six patients had progressive disease at day 28
assessment. Post injection biopsies performed at day 28 on
four of the patients with SD revealed intratumoral necrosis.
Three of these patients had melanoma.
Viral pharmacokinetic analysis demonstrated the tran-

sient presence of systemic Telomelysin dissemination
following intratumoral injection early after injection.
Evidence of viral replication was demonstrated with
detection of late (Xday 7) viral DNA in three patients;
one with elevated malignant tissue hTERT expression
demonstrated significant clinical response. Immunohisto-
chemical analysis of viral E1A and hexon was negative 28
days after injection suggesting rapid viral clearance. It is
of interest that two patients demonstrated response
distant from the injected lesion, which was consistent
with animal experience and not previously demonstrated
in other oncolytic adenoviral studies.
As a result of the unique modifications built into this

adenoviral construct both activity and safety of a single
injection approach has been demonstrated. However, despite
significant activity in a subset of patients limited clinical
relevant responses were observed. As only single-dose
intratumoral injection was attempted in this trial it remains
unclear what the therapeutic potential is for this agent.
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Newcastle virus

Newcastle virus is a paramyxovirus with infectivity
normally restricted to fowl. It is an enveloped negative-
stranded RNA virus, which selectively replicates in human
cancer cells that have developed defects in the interferon
signaling pathway.61 Most early studies used Newcastle
virus as an oncolysate tumor vaccine. These vaccines were
injected into patients to generate an immune response.62 In
addition, the virus has been given intravenously, intraper-
itoneally and intratumorally in athymic mice implanted
with human cancers, including lung cancer. These pre-
clinical trials have shown few systemic side effects, and have
demonstrated evidence of oncolytic activity.63–66

The first report of antitumor activity of the Newcastle
virus involved one patient with cervical cancer. Cassel and
Garrett injected virus (2.4� 1012 virus particles) directly
into the tumor and demonstrated intratumoral regression
of the cancer both at the injection site and at a distant
malignant lymph node.67 In the mid-1970s, viral-induced
oncolysates were studied as vaccines in melanoma, breast,
ovarian and colon cancer. Safety and modest evidence of
activity were observed.68–75

I.v. infusion of Newcastle virus has been well tolerated.
In one placebo-controlled phase II study, 33 patients with
advanced cancer received virus and 26 control patients
were given placebo treatment. Of the patients treated with
virus, seven patients achieved a complete or partial
response and one patient had a minor response:
these eight patients survived 41 year after treatment. In
comparison, none of the control patients had responses.
In all, 22 patients receiving virus survived longer than
1 year, whereas only 4 patients in the control group
survived 1 year. Eight viral-treated patients survived for
42 years versus none of the control patients.76

In another trial of an attenuated Newcastle virus
strain, PV701 virus was administered intravenously
(5.9� 109 p.f.u.m–2 to 24� 109 p.f.u.m–2 every 28 days)
to 79 patients with solid tumors. Side effects were mild
and were limited to fever, flu-like symptoms and
hypotension. Seven grade 3 AEs were observed, but
toxicity decreased with subsequent doses. A maximum
tolerated dose following a single infusion was established
at 12� 109 p.f.u.m–2, and subsequent infusions were
tolerated up to 120� 109 p.f.u.m–2. Further dose escala-
tion was limited by hypotension. In all, 14 of 62 patients
eligible for response assessment maintained SD from
4 months to 430 months. One patient with squamous cell
cancer of the tonsil achieved a CR. Another patient with
metastatic colon cancer achieved a partial response. Seven
patients achieved minor responses of o50% reduction in
tumor size. The presence of viral particles in malignant
tissue was confirmed following treatment.

Herpes simplex virus (HSV)

HSV is a double-stranded DNA virus. Genetic modifica-
tion enabled the construction of oncolytic virus selectively

activity within malignant tissue. One modification in-
volved inactivation of viral gene ICP6, which encodes the
large subunit of ribonucleotide reductase, an enzyme
required for viral DNA replication.77–80 This enzyme is
expressed abundantly in rapidly dividing tumor cells but
is sparse in normal cells. As a consequence, the ICP6 gene
modified HSV-1 replicates selectively in tumor cells. The
second gene modification approach consists of deleting
another viral gene, the g-34.5 gene, which functions as the
virulence factor during HSV infection.81 Mutations in
this gene also limit replication in non-dividing cells.82,83

The oncolytic HSV-1 virus, G207, has been extensively
tested in animal models and is currently in clinical
trials.84–87 Replication-sensitive HSV1 g-34.5 viral mu-
tants have been shown to be effective in the treatment of
both central nervous system88–90 and non-central
nervous system91–99 tumors in animal models. Clinical
trials involving patients with high-grade glioma,
colorectal cancer, non-small cell lung carcinoma and
melanoma100–103 have demonstrated safety. Four differ-
ent herpes simplex oncolytic viruses have been tested in
clinical trial. Toxicity includes fever, chills and transient
liver enzyme elevation and is greater in patients who have
low HSV-1 antibody titers at baseline. However, all
patients developed an immune antibody response against
HSV antigens within weeks following treatment; thus,
significantly less toxicity occurs with continued treatment
to patients with high initial HSV antibody titers. PCR
analysis of tissue demonstrated the presence of HSV
DNA at injection sights.104 Preclinical results in immune
competent models have also suggested immune-mediated
distant responses.93,94,105–107 Given significant lack of
systemic activity of viral-induced oncolysis following
local–regional treatment in clinical study, several new
vectors carrying immune-stimulating transgenes have
been developed (granulocyte-macrophage colony-stimu-
lating factor (GM-CSF), interleukin-2, interleukin-12,
B7.1).107–112 Additionally, combination of HSV mutants
with chemotherapy or radiotherapy has demonstrated
enhanced antitumor activity.80,101,113–118 Radiation in-
creased the anticancer activity of HSV when used in
pancreatic, glioblastoma and cervical cancer models119

but did not alter the antitumor effect of HSV in prostate
cancer. However, high-dose radiation combined with
oncolytic HSV virus did improve efficacy in other
prostate cancer models.102,115,116 Low-dose irradiation
also improved efficacy of HSV viral therapy in a cervical
cancer model.118 In chemotherapy combination studies,
interestingly, both chemotherapy-resistant and -sensitive
tumors were equally responsive.120 A variety of che-
motherapy agents (mitomycin C, cisplatin, methotrexate,
taxanes) have demonstrated enhanced antitumor effect
when combined with HSV.101

Other studies have evaluated the use of HSV to deliver
other genes, such as those that convert benign pro-drugs
into cytotoxic agents. In one study, the cytochrome p450
gene and HSV-1 thymidine kinase (TK) gene were
delivered using a HSV-1 replication-competent virus via
intratumoral injection in a hepatocellular carcinoma
model.121 Cancer regression significantly improved with
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the cytochrome p450 conversion of cyclophosphamide to
the active metabolite phosphoramide mustard.78 Similar
results have been produced with the cytosine deaminase
transgene.122 Interestingly, HSV TK activation of acyclo-
vir or ganciclovir in HSV-infected cells inhibits viral
replication without affecting tumor growth.95,123–125 This
suggests that the TK gene and ganciclovir may be useful
as a safety valve if persistent virus and related toxicity
developed.121

OncoVEXGM-CSF (BioVax, Worcester, MA) is a
replication-competent HSV (HSV-1) that has been
modified with several novel genetic enhancements
that make it a potent oncolytic and immunogenic
vector.126–130 The vector contains the coding sequence
for human GM-CSF under the control of the human
cytomegalovirus immediate early promoter, which has
been shown to enhance the immune response.131 As a
safety factor, the gene for TK remains intact preserving
sensitivity to clinically effective antiviral agents. This
genetic arsenal aims to promote an in situ tumor-specific
vaccine that is potentiated by viral replication.
A phase I study demonstrated OncoVEXGM-CSF to be

well tolerated with local inflammation, erythema and
fever being the main AEs. Biological activity was evident
by viral replication, local reactions, GM-CSF expression
and HSV antigen-associated tumor necrosis was ob-
served.132 Tumor flattening, shrinkage and necrosis were
noted in tumor types including melanoma, breast, and
head and neck in both injected and on-injected tumors.
A phase II study of OncoVEXGM-CSF in metastatic mela-

noma demonstrated a 26% objective response rate
including un-injected regional and distant metastatic sites.
One-year overall survival rates of 61, 58 and 48% for all
patients, all stage IV patients and stage IV M1c patients,
respectively.133 A recently published meta-analysis of
2100 patients with stage IV metastatic melanoma reported
a 1-year overall survival rate was 25.5%. The median
survival time is 16þ months for all patients treated with
OncoVEXGM-CSF as well as for the stage IV subset; the
median survival time in the meta-analysis was 6.2 months
(95% confidence interval, 5.9 months to 6.5 months).
Although these data are not directly comparable the
results with OncoVEXGM-CSF, they are provocative.
There were 13 objective systemic responses (8 CR,

5 partial response; 26% overall: 6 CR, 3 partial response;
22.5% stage IV), 10 of which continue for 46 months.
Response onset was from 2 to 10 months following the first
dose. Although local responses often occurred rapidly (after
as few as two injections), maximum objective response has
been observed as long as 12 months post first dose when
biopsy confirmed one patient as disease free. In six patients,
distant responses at un-injected sites were documented in
the lung, liver, pancreas, regional and distant lymph nodes,
and at other soft tissue sites. In most cases, considerably
o50% of the overall disease burden was injected. Two
patients achieved surgical CRs, one following excision of a
newly identified brain metastasis, and one following
additional treatment with interleukin-2.
Eighty-five percent of patients had AEs related to

OncoVEXGM-CSF all of which were grade 1–2. The most

common AEs were consistent with a mild influenza-like
syndrome (fever (54%), chills (40%), nausea (42.5%),
fatigue (32%), vomiting (20%) and headache (24%)).
There were 21 serious AEs all of which were considered
unrelated to OncoVEXGM-CSF. Autoimmune vitiligo was
noted in three patients; two of whom achieved CR and
one in whom lesions were responding before leaving the
study because of non-compliance issues. Considering the
relatively benign safety profile in both the phase I and II
studies, further evaluation is underway. There is currently
a multi-national phase III study in metastatic melanoma
in progress and also a phase III clinical study in squamous
cell carcinoma of the head and neck is scheduled for the
second half of 2010.

Reovirus

Research into the therapeutic potential of reovirus holds
particular interest as this double-stranded RNA-contain-
ing virus is able to replicate and produce lysis in
specifically transformed cells possessing an activated
Ras pathway while sparing normal cells.134 Although
reovirus belongs to the Reoviridae family, which includes
rotovirus, infection in humans is usually subclinical and
limited to the upper respiratory and gastrointestinal
tract.135 Three viral serotypes have been isolated and all
are commonly found in the environment as this virus
possesses a highly stable unenveloped icosahedral capsid,
thus it is estimated that nearly half of the population has
been exposed and carries antibodies to the virus.136–138

Importantly, reovirus type 3 Dearing strain exhibits
replication in cells with an activated Ras signaling
pathway, a significant finding because of the link between
oncogenesis and mutations in the ras gene and pathway,
and it has been demonstrated that this is due to inhibition
of double-stranded RNA-activated protein kinase result-
ing in cell lysis.139,140 Although normal mouse fibroblast
cells (NIH3T3) do not normally support reovirus replica-
tion, NIH3T3 cells transformed with activated ras,
epidermal growth factor receptor or V-erb B oncogene
(for example, activated ras pathway elements) are lysed by
uninhibited reovirus replication. It is now understood that
an activated ras pathway, which is present in many
ovarian, breast, colon and lung cancers, prevents viral-
induced PKR activation and subsequent EIF-2 a-phos-
phorylation, potentiating cellular protein production and
viral replication. In normal cells without ras activation,
early viral replication induces EIF-2 a-phosphorylation,
which inhibits cell protein synthesis. Thus, reoviruses
exhibit preferential oncolytic effects in ras-activated
cancer cells.
Reoviruses have demonstrated pre-clinical activity in

mouse flank tumor models with cell lines that overexpress
certain ras pathway elements. Examples include V-erb-
transformed NIH3T3 cells, human V87 glioblastoma cells
overexpressing platelet-derived growth factor receptor
and ras-transformed C3H-10T1/2 cells.140 Reoviruses
have also demonstrated activity against Lewis lung cancer
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metastasis in mice following i.v. administration.141 In this
study, 65–80% of the mice tested showed tumor regres-
sion.141,142 Investigators have recently demonstrated
oncolytic activity of reovirus against human cancer cell
lines carrying a high percentage of k-ras mutations
implanted in mice.61 The k-ras mutation is observed in
30% of non-small cell lung carcinoma tumors. In addition
to demonstrating the susceptibility of human k-ras-
positive cancer cells to reovirus infection in vitro, this
study assessed the ability of reovirus to cause tumor
regression and promote survival in immunocompromised
mice implanted with human k-ras-positive cancers.
Intratumoral injection of virus consistently resulted in
major reductions of tumor volume. Of particular sig-
nificance, i.v. administration of virus to immunocompro-
mised mice consistently resulted in the regression of
tumors at remote sites.
Clinically, 18 patients with refractory solid tumors have

been treated in a phase I investigation, and a dose of
up to 1� 1010 p.f.u. was well tolerated. Preliminary
results identified one patient achieving a CR and one a
partial response. Eight maintained SD for a prolonged
period.62,143

Phase I clinical studies have been initiated in a range of
cancer models, including a dose escalation study per-
formed using intratumoral administration of reovirus in
patients with recurrent malignant gliomas in which a
maximum tolerated dose was not reached and treatment
was well tolerated,144 as was the i.v. administration of
wild-type reovirus in patients with bone and soft tissue
sarcomas metastatic to the lung in a phase II open label
study.145 A recent phase I open-label dose escalation
study using i.v. administration of reovirus type 3 Dearing
(Reolysin, Oncolytics Biotech, Calgary, Alberta, Canada)
in patients with advanced cancer was well tolerated and
exhibited successful intratumoral localization of reovirus
after systemic delivery and confirmed the feasibility of i.v.
delivery of high doses of reovirus.146

Several studies have recently been completed involving
the combination of reovirus and radiotherapy or che-
motherapy, using taxanes in particular, to achieve
synergistic tumor kill. In a phase I clinical study a wild-
type reovirus serotype 3 Dearing strain (Reolysin,
Oncolytics Biotech) was administered intravenously in
combination with a chemotherapeutic agent, gemcitabine,
exhibiting disease control for the majority of patients
at a well-tolerated dose.147 Wild-type reovirus serotype
3 Dearing strain was administered in combination with
docetaxel in a phase I study in patients with a range of
advanced malignancies resulting in objective radiological
evidence of anticancer activity and toxicity consistent with
that expected from the chemotherapeutic agent alone.148

Reovirus dose escalation has also been recently evaluated
in patients with advanced solid tumors in combination
with carboplatin–paclitaxel and because of the promising
results in patients with head and neck cancer a phase II
study has been initiated for this indication.149 Marked
responses or stabilization in the treated legions for the
majority of the patients was achieved in a recently
completed phase II clinical study that evaluated the

biological effects of intratumoral administration of
Reolysin in combination with low-dose radiotherapy in
patients with advanced cancer.150

The early clinical results and wide scope of potential
application, as well as the relatively low inherent
morbidity and mortality risk because of reovirus’s limited
pathogenecity in humans, are promising for this oncolytic
agent; however, a greater understanding of the circum-
vention of humoral and cellular immune responses is
needed in order to improve the efficacy of this treatment.

Seneca valley virus

A small non-pathogenic picornavirus with potential
antineoplastic activity, Seneca Valley Virus-001 (also
known by the trade name NTX-010, Neotropix) specifi-
cally targets and infects tumor cells with neuroendocrine
characteristics, including small cell cancers and carcinoid,
and replicates intracellularly resulting in cell lysis.151 It is
the representative member of a new genus, Senecavirus.
The cytolytic potential of this virus was first examined in
neuroendocrine and pediatric tumor cell lines.152 After
promising preclinical results, Seneca Valley Virus-001
(SVV-001) was first tested intravenously in a five-log
increment dose escalation phase I study in patients with
nueroendocrine cancers, 6 small cell and 24 carcinoid-
type, and was found to be well tolerated and showed
evidence of intratumoral viral replication in delayed
kinetics in the serum viral titer, post-infusion serum titers
greater than the dose administered, and positive immu-
nohistochemistry and/or reverse transcriptase-PCR signal
for viral antigens in the tumor mass although antibody
production was detected.153 A phase I single infusion
multi-center study is also currently active in pediatric
patients with relapsed or refractory neuroblastoma,
rhabdomyosarcoma and rare tumors with neuroendocrine
features (COG-ADVL0911), and finally, there is an active
single infusion phase II randomized Seneca Valley Virus-
001 after platinum-based chemotherapy study in patients
with extensive-stage small cell lung cancer in which the
primary objective is progression-free survival of treated
patients compared with placebo (NCCTG-N0923).
In addition to the ability of SVV-001, the first non-
pathogenic picornavirus to be tested as an oncolytic viral
therapy, to specifically target cancer cells, no pre-existing
antibodies to the virus are found in humans. Via systemic
delivery this agent could potentially be used either as a
single agent or in combination with standard cytotoxic
therapies.

Vaccinia

Vaccinia is a double-stranded DNA virus and a member
of the poxvirus family. Vaccinia virus has tropism for
human cells and is highly immunogenic. The immuno-
genic properties were exploited in the production of
smallpox vaccine, leading to the eradication of smallpox.
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Three techniques have been exploited for the develop-
ment of oncolytic vaccinia viruses. These include the
following: (1) Vaccinia virus has a high efficiency of
infection, replicates in the cytoplasm without chromoso-
mal integration, and its 200 kb genome allows the
insertion of a large amount of recombinant DNA without
loss of infectivity. (2) The immunostimulatory properties
of the virus are being harnessed to incite an immune
response against cancer cells. (3) Replication-conditional
viral mutants are being constructed to target specific
cancer types.
In one study,154 recombinant vaccinia virus was

constructed in an effort to enhance the immunogenicity
of transfected melanoma cells. The virus expressed a
minigene encoding a fusion product that combined an
endoplasmic reticulum-targeting signal and the HLA-
A201 binding 27–35 peptide. Infection of melanoma cells
with this recombinant virus resulted in high levels of
cytotoxicity from specific cytotoxoic T lymphocyte clones
in vitro. In another study,155 a recombinant vaccinia virus
vector was created containing the tumor-suppressor
p53 gene. This virus demonstrated a high level of p53
expression in transfected glioma cells, resulting in
high levels of apoptosis. A phase 1 study of intravesical
vaccinia virus infection156 demonstrated that vaccinia
virus can be safely administrated into the bladder and
found that the treatment was associated with an intense
immune response with few clinical side effects.157 Of the
four patients studied, three survived and were free of
disease at 4-year follow-up.
Many studies use vaccinia virus as an immunother-

apeutic agent. Vaccinia oncolysate has been studied as a
vaccine in early stage melanoma.156–165 Results suggested
a good tolerability and survival advantage compared with
historical controls. However, an unpublished prospective
controlled trial failed to validate the use of vaccinia
oncolysate. The control group did not receive standard
care, but instead received live vaccinia virus without
tumor oncolysate, which potentially could have affected
patient response.
Wild-type vaccinia virus does not selectively infect

cancer cells. The virus requires modification to be made
replication-conditional. One strategy is to delete the viral
TK gene. Although the viral TK gene is necessary for
infectivity in normal cells that possess small concentra-
tions of intracellular nucleotide pools, it is not necessary
in cancer cells,158 which possess relatively high concentra-
tions of intracellular nucleotides. Another novel vector
involved replacing the viral TK gene with the gene for
GM-CSF, creating a mutant vaccinia virus capable
of selectively infecting melanoma cells and inducing an
antitumor immune response.158 This virus has been
administered intralesionally in a phase one clinical trial
involving patients with refractory and/or recurrent
melanoma. Injected lesions contained an active inflam-
matory response and demonstrable viral replication. Two
out of seven patients studied had a CR, and three patients
had a partial response.158 Other studies have investigated
a vaccinia virus carrying a prostate-specific antigen
transgene in the treatment of prostate cancer patients

with both minimal disease and metastatic disease.
Evidence of cancer-specific immune activation was
demonstrated, and tolerability was reasonable. In
minimal disease patients with rising prostate-specific
antigen following surgery or radiation therapy, 14 of 33
maintained SD for at least 6 months and 6 remained
disease free for 42 years. Another mutant vaccinia virus,
which deleted the viral SPI-1 and SPI-2 genes, resulted
in conditional viral replication in cancer cells but not in
normal cells.166 The efficacy of this virus has not yet been
tested. Other gene combinations, such as B7-1, ICAM-1
and LFA3, have also been added to the vaccinia
core construct. Results from animal studies are
encouraging.167–169

Conclusion

Encouraging safety profiles and local–regional activity
have been demonstrated with a variety of oncolytic viral
therapeutics. Unfortunately, the inability to demonstrate
systemic response with currently available viral constructs
limits future clinical development opportunities. The next
generation of oncolytic viral products incorporates
numerous modifications and strategies in an attempt to
enhance activity. Specific strategies to improve viral
immunogenicity and enhance potency include methods
to reduce viral clearance, reduce immune inhibition of
viral activity, increase intracellular viral release and
replication, improve tumor cell specificity, uptake and
expression, improve viral replication capacity, combina-
tion with other anticancer drugs, and addition of antic-
ancer genes to second-generation vector design. Vector
modification to ‘arm’ oncolytic viruses enables delivery of
cancer-toxic genes. Other design modifications increase
tumor delivery by the addition of cancer receptor/antigen
components and enhance cancer cell expression through
cancer promoter modification; these modifications have
demonstrated encouraging early results.
Physical shielding to enhance delivery and reduce viral

clearance is being tested170–175 (plus Rehman 2001).
Currently, liposome encapsulated, polymer coated, and
cell carrier modes of oncolytic virus delivery are being
developed for preclinical testing. The liposome and
polymer coated methods can be coated with tumor-
specific antibodies, peptides or small molecules to further
enhance tumor-specific uptake and delivery.176–184 Plas-
mapheresis rotation of viral serotype170–175 and B-cell
suppression have had limited testing as methods to reduce
normal immune reactivity against administered viral
particles. Restoration of the E3 region of the viral genome
or E3 protein activity, in an effort to limit effects of tumor
necrosis factor-a through combination with soluble
tumor necrosis factor-a receptors, demonstrates positive
effect.13,14,46,52,185 However, enhancement in viral access
and uptake by malignant cells is not the only obstacle in
the creation of oncolytic viruses. Clusters of viral particles
have been demonstrated to accumulate in malignant
tissue following i.v. administration without further
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replication or spread. Consequently, new approaches
which enhance viral replication and cell to cell spread
are under investigation,174,186,187 while at the same time
attempts are underway to identify more highly replicative
viruses. Improving development of tumor-specific pro-
moters to limit viral replication in malignant tissue may
enable greater confidence in the utilization of replication
aggressive viruses.14,188–197 Ultimately these modifications
will likely need to be built into viral constructs that deliver
molecular targeted therapeutics198–202 and can be utilized
in combination with traditional therapeutics,203–208 there-
by creating a ‘super’ virus.
Overall, it is likely that a combination of these

approaches will be required to optimally maximize
oncolytic viral activity, thereby expanding potential
systemic therapeutic opportunities.
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