Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Engineering a waste management enzyme to overcome cancer resistance to apoptosis: adding DNase1 to the anti-cancer toolbox

A Corrigendum to this article was published on 17 June 2011

Abstract

Cancer treatment is often complicated by resistance to conventional anti-cancer treatment and to more recently developed immunotherapy and gene therapy. These therapeutic modalities aim at activating death pathways within cancer cells. Attempts to activate the apoptotic death pathway, by overexpressing proapoptotic signals, are compromised by cancer defense mechanisms, which disrupt the apoptotic-signaling cascade downstream of the overexpressed component. Here, we describe a therapeutic option of triggering apoptosis without activating the apoptotic-signaling cascade or using the native apoptosis executioner nuclease. We have engineered Deoxyribonuclease-1 (DNase1), a waste-management enzyme, by deleting its signal peptide, adding a nuclear localization signal, and mutating its actin-binding site. Apoptosis studies and colony-forming assay for assessing cell viability were conducted in apoptosis-resistant Mel-Juso human melanoma cells. The modified DNase1 reduced cell viability by 77% relative to controls. It also induced typical microscopic features of cellular apoptosis, such as Terminal Transferase dUTP Nick-End Labeling-positive cells and DNA fragmentation. Quantification of apoptosis by Laser scanning cytometry demonstrated high-killing efficiency of 70–100%. The results suggest that this modified DNase1 can efficiently eliminate apoptosis-resistant cancer cells through apoptosis. Coupled to different tissue-specific gene expression elements, this recombinant DNase1 may serve as a platform for eliminating a variety of cancer types.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bullani RR, Wehrli P, Viard-Leveugle I, Rimoldi D, Cerottini JC, Saurat JH et al. Frequent downregulation of Fas (CD95) expression and function in melanoma. Melanoma Res 2002; 12: 263–270.

    Article  CAS  Google Scholar 

  2. Owen-Schaub LB, van Golen KL, Hill LL, Price JE . Fas and Fas ligand interactions suppress melanoma lung metastasis. J Exp Med 1998; 188: 1717–1723.

    Article  CAS  Google Scholar 

  3. Shin MS, Kim HS, Lee SH, Lee JW, Song YH, Kim YS et al. Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 2002; 21: 4129–4136.

    Article  CAS  Google Scholar 

  4. Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N . Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 2000; 60: 4315–4319.

    CAS  PubMed  Google Scholar 

  5. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998; 58: 5315–5320.

    CAS  Google Scholar 

  6. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353.

    Article  CAS  Google Scholar 

  7. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998; 17: 2215–2223.

    Article  CAS  Google Scholar 

  8. Samejima K, Earnshaw WC . Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 2005; 6: 677–688.

    Article  CAS  Google Scholar 

  9. Kishi K, Yasuda T, Takeshita H . DNase I: structure, function, and use in medicine and forensic science. Leg Med (Tokyo) 2001; 3: 69–83.

    Article  CAS  Google Scholar 

  10. Peitsch MC, Muller C, Tschopp J . DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res 1993; 21: 4206–4209.

    Article  CAS  Google Scholar 

  11. Jones SA, Martin GP, Brown MB . Stabilisation of deoxyribonuclease in hydrofluoroalkanes using miscible vinyl polymers. J Control Release 2006; 115: 1–8.

    Article  CAS  Google Scholar 

  12. Baranovskii AG, Buneva VN, Nevinsky GA . Human deoxyribonucleases. Biochemistry (Mosc) 2004; 69: 587–601.

    Article  CAS  Google Scholar 

  13. Doherty AJ, Connolly BA, Worrall AF . Overproduction of the toxic protein, bovine pancreatic DNaseI, in Escherichia coli using a tightly controlled T7-promoter-based vector. Gene 1993; 136: 337–340.

    Article  CAS  Google Scholar 

  14. Schroter M, Peitsch MC, Tschopp J . Increased p34cdc2-dependent kinase activity during apoptosis: a possible activation mechanism of DNase I leading to DNA breakdown. Eur J Cell Biol 1996; 69: 143–150.

    CAS  PubMed  Google Scholar 

  15. Bettinger BT, Gilbert DM, Amberg DC . Actin up in the nucleus. Nat Rev Mol Cell Biol 2004; 5: 410–415.

    Article  CAS  Google Scholar 

  16. Eulitz D, Mannherz HG . Inhibition of deoxyribonuclease I by actin is to protect cells from premature cell death. Apoptosis 2007; 12: 1511–1521.

    Article  CAS  Google Scholar 

  17. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T . Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 2000; 25: 177–181.

    Article  CAS  Google Scholar 

  18. Shiokawa D, Tanuma S . Characterization of human DNase I family endonucleases and activation of DNase gamma during apoptosis. Biochemistry 2001; 40: 143–152.

    Article  CAS  Google Scholar 

  19. Nadano D, Yasuda T, Kishi K . Measurement of deoxyribonuclease I activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin Chem 1993; 39: 448–452.

    CAS  PubMed  Google Scholar 

  20. Takeshita H, Mogi K, Yasuda T, Nakajima T, Nakashima Y, Mori S et al. Mammalian deoxyribonucleases I are classified into three types: pancreas, parotid, and pancreas-parotid (mixed), based on differences in their tissue concentrations. Biochem Biophys Res Commun 2000; 269: 481–484.

    Article  CAS  Google Scholar 

  21. Pan CQ, Lazarus RA . Hyperactivity of human DNase I variants. Dependence on the number of positively charged residues and concentration, length, and environment of DNA. J Biol Chem 1998; 273: 11701–11708.

    Article  CAS  Google Scholar 

  22. Yang W, Gelles J, Musser SM . Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci USA 2004; 101: 12887–12892.

    Article  CAS  Google Scholar 

  23. Wu Q, Chen Y, Kulshreshtha V, Tikoo SK . Characterization and nuclear localization of the fiber protein encoded by the late region 7 of bovine adenovirus type 3. Arch Virol 2004; 149: 1783–1799.

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  25. Sallai K, Nagy E, Derfalvy B, Muzes G, Gergely P . Antinucleosome antibodies and decreased deoxyribonuclease activity in sera of patients with systemic lupus erythematosus. Clin Diagn Lab Immunol 2005; 12: 56–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayashida K, Omagari K, Masuda J, Kohno S . An integrase of endogenous retrovirus is involved in maternal mitochondrial DNA inheritance of the mouse. Biochem Biophys Res Commun 2008; 366: 206–211.

    Article  CAS  Google Scholar 

  27. Gorczyca W, Bedner E, Burfeind P, Darzynkiewicz Z, Melamed MR . Analysis of apoptosis in solid tumors by laser-scanning cytometry. Mod Pathol 1998; 11: 1052–1058.

    CAS  PubMed  Google Scholar 

  28. Napirei M, Wulf S, Eulitz D, Mannherz HG, Kloeckl T . Comparative characterization of rat deoxyribonuclease 1 (Dnase1) and murine deoxyribonuclease 1-like 3 (Dnase1l3). Biochem J 2005; 389: 355–364.

    Article  CAS  Google Scholar 

  29. Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL . Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci USA 1990; 87: 9188–9192.

    Article  CAS  Google Scholar 

  30. Nishikawa A, Mizuno S . The efficiency of N-linked glycosylation of bovine DNase I depends on the Asn-Xaa-Ser/Thr sequence and the tissue of origin. Biochem J 2001; 355: 245–248.

    Article  CAS  Google Scholar 

  31. Napirei M, Ricken A, Eulitz D, Knoop H, Mannherz HG . Expression pattern of the deoxyribonuclease 1 gene: lessons from the Dnase1 knockout mouse. Biochem J 2004; 380: 929–937.

    Article  CAS  Google Scholar 

  32. Shiokawa D, Kobayashi T, Tanuma S . Involvement of DNase gamma in apoptosis associated with myogenic differentiation of C2C12 cells. J Biol Chem 2002; 277: 31031–31037.

    Article  CAS  Google Scholar 

  33. Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H . Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull 2007; 30: 751–757.

    Article  CAS  Google Scholar 

  34. Napirei M, Wulf S, Mannherz HG . Chromatin breakdown during necrosis by serum Dnase1 and the plasminogen system. Arthritis Rheum 2004; 50: 1873–1883.

    Article  CAS  Google Scholar 

  35. Heere-Ress E, Thallinger C, Lucas T, Schlagbauer-Wadl H, Wacheck V, Monia BP et al. Bcl-X(L) is a chemoresistance factor in human melanoma cells that can be inhibited by antisense therapy. Int J Cancer 2002; 99: 29–34.

    Article  CAS  Google Scholar 

  36. Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V . Genetic alterations in signaling pathways in melanoma. Clin Cancer Res 2006; 12: 2301s–2307s.

    Article  CAS  Google Scholar 

  37. Tsao H, Zhang X, Fowlkes K, Haluska FG . Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res 2000; 60: 1800–1804.

    CAS  PubMed  Google Scholar 

  38. Rosner K, Ropke C, Pless V, Skovgaard GL . Late type apoptosis and apoptosis free lethal effect of quercetin in human melanoma. Biosci Biotechnol Biochem 2006; 70: 2169–2177.

    Article  CAS  Google Scholar 

  39. Martinez-Lorenzo MJ, Anel A, Alava MA, Pineiro A, Naval J, Lasierra P et al. The human melanoma cell line MelJuSo secretes bioactive FasL and APO2 L/TRAIL on the surface of microvesicles. Possible contribution to tumor counterattack. Exp Cell Res 2004; 295: 315–329.

    Article  CAS  Google Scholar 

  40. Polzar B, Peitsch MC, Loos R, Tschopp J, Mannherz HG . Overexpression of deoxyribonuclease I (DNase I) transfected into COS-cells: its distribution during apoptotic cell death. Eur J Cell Biol 1993; 62: 397–405.

    CAS  PubMed  Google Scholar 

  41. Valdez BC, Perlaky L, Henning D, Saijo Y, Chan PK, Busch H . Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem 1994; 269: 23776–23783.

    CAS  PubMed  Google Scholar 

  42. Liu QY, Ribecco M, Pandey S, Walker PR, Sikorska M . Apoptosis-related functional features of the DNaseI-like family of nucleases. Ann NY Acad Sci 1999; 887: 60–76.

    Article  CAS  Google Scholar 

  43. Fujihara J, Hieda Y, Xue Y, Nakagami N, Takayama K, Kataoka K et al. One-step purification of mammalian deoxyribonucleases I and differences among pancreas, parotid, and pancreas-parotid (mixed) types based on species- and organ-specific N-linked glycosylation. Biochemistry (Mosc) 2006; 71 (Suppl 1): S65–S70.

    Article  CAS  Google Scholar 

  44. Pan CQ, Dodge TH, Baker DL, Prince WS, Sinicropi DV, Lazarus RA . Improved potency of hyperactive and actin-resistant human DNase I variants for treatment of cystic fibrosis and systemic lupus erythematosus. J Biol Chem 1998; 273: 18374–18381.

    Article  CAS  Google Scholar 

  45. Kaina B . DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 2003; 66: 1547–1554.

    Article  CAS  Google Scholar 

  46. Robles AI, Bemmels NA, Foraker AB, Harris CC . APAF-1 Is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res 2001; 61: 6660–6664.

    CAS  PubMed  Google Scholar 

  47. Pan CQ, Ulmer JS, Herzka A, Lazarus RA . Mutational analysis of human DNase I at the DNA binding interface: implications for DNA recognition, catalysis, and metal ion dependence. Protein Sci 1998; 7: 628–636.

    Article  CAS  Google Scholar 

  48. Al-Hendy A, Auersperg N . Applying the herpes simplex virus thymidine kinase/ganciclovir approach to ovarian cancer: an effective in vitro drug-sensitization system. Gynecol Obstet Invest 1997; 43: 268–275.

    Article  CAS  Google Scholar 

  49. Yang J, Liu TJ, Lu Y . Effects of bicistronic lentiviral vector-mediated herpes simplex virus thymidine kinase/ganciclovir system on human lens epithelial cells. Curr Eye Res 2007; 32: 33–42.

    Article  Google Scholar 

  50. Qian C, Idoate M, Bilbao R, Sangro B, Bruna O, Vazquez J et al. Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma. Hum Gene Ther 1997; 8: 349–358.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by startup research funds from the Department of Dermatology and Wayne State University School of Medicine. Dr David O’Hagan is acknowledged for technical assistance. Dr Nissim Ohana and Dr Michael Tainsky are thanked for enlightening scientific discussions and reviewing the manuscript. Ms Evangelia Kirou and Dr Gen Sheng Wu are thanked for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Rosner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosner, K., Kasprzak, M., Horenstein, A. et al. Engineering a waste management enzyme to overcome cancer resistance to apoptosis: adding DNase1 to the anti-cancer toolbox. Cancer Gene Ther 18, 346–357 (2011). https://doi.org/10.1038/cgt.2010.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.84

Keywords

This article is cited by

Search

Quick links