Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of cervical cancer cell growth in vitro and in vivo with dual shRNAs

Abstract

RNA interference (RNAi)-based gene silencing is widely used in laboratories for gene function studies and also holds a great promise for developing treatments for diseases. However, in vivo delivery of RNAi therapy remains a key issue. Lentiviral vectors have been employed for stable gene transfer and gene therapy and therefore are expected to deliver a stable and durable RNAi therapy. But this does not seem to be true in some disease models. Here, we showed that lentivirus delivered short-hairpin RNA (shRNA) against human papillomavirus (HPV) E6/E7 oncogenes were effective for only 2 weeks in a cervical cancer model. However, using this vector to carry two copies of the same shRNA or two shRNAs targeting at two different but closely related genes (HPV E6 and vascular endothelial growth factor) was more effective at silencing the gene targets and inhibiting cell or even tumor growth than their single shRNA counterparts. The cancer cells treated with dual shRNA were also more sensitive to chemotherapeutic drugs than single shRNA-treated cells. These results suggest that a multi-shRNA strategy may be a more attractive approach for developing an RNAi therapy for this cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

RNAi:

RNA interference

shRNA:

short hairpin RNA

HPV:

human papillomavirus

siRNA:

short interfering RNA

VEGF:

vascular endothelial growth factor

LV:

lentiviral vector

References

  1. Bitko V, Musiyenko A, Shulyayeva O, Barik S . Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005; 11: 50–55.

    Article  CAS  PubMed  Google Scholar 

  2. Dasgupta R, Perrimon N . Using RNAi to catch Drosophila genes in a web of interactions: insights into cancer research. Oncogene 2004; 23: 8359–8365.

    Article  CAS  PubMed  Google Scholar 

  3. Hannon GJ, Rossi JJ . Unlocking the potential of the human genome with RNA interference. Nature 2004; 431: 371–378.

    Article  CAS  PubMed  Google Scholar 

  4. Capodici J, Kariko K, Weissman D . Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002; 169: 5196–5201.

    Article  PubMed  Google Scholar 

  5. Jacque JM, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature 2002; 418: 435–438.

    Article  CAS  PubMed  Google Scholar 

  6. Novobrantseva TI, Akinc A, Borodovsky A, de Fougerolles A . Delivering silence: advancements in developing siRNA therapeutics. Curr Opin Drug Discov Devel 2008; 11: 217–224.

    CAS  PubMed  Google Scholar 

  7. de Fougerolles AR . Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 2008; 19: 125–132.

    Article  CAS  PubMed  Google Scholar 

  8. Goodwin EC, DiMaio D . Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 2000; 97: 12513–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM . Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J 1989; 8: 4099–4105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. von Knebel Doeberitz M, Oltersdorf T, Schwarz E, Gissmann L . Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res 1988; 48: 3780–3786.

    CAS  PubMed  Google Scholar 

  11. Jiang M, Milner J . Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 2002; 21: 6041–6048.

    Article  CAS  PubMed  Google Scholar 

  12. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 2003; 22: 5938–5945.

    Article  CAS  PubMed  Google Scholar 

  13. Putral LN, Bywater MJ, Gu W, Saunders NA, Gabrielli BG, Leggatt GR et al. RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Mol Pharmacol 2005; 68: 1311–1319.

    Article  CAS  PubMed  Google Scholar 

  14. Gu W, Putral L, Hengst K, Minto K, Saunders NA, Leggatt G et al. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther 2006; 13: 1023–1032.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 2003; 8: 762–768.

    Article  CAS  PubMed  Google Scholar 

  16. Fujii T, Saito M, Iwasaki E, Ochiya T, Takei Y, Hayashi S et al. Intratumor injection of small interfering RNA-targeting human papillomavirus 18 E6 and E7 successfully inhibits the growth of cervical cancer. Int J Oncol 2006; 29: 541–548.

    CAS  PubMed  Google Scholar 

  17. Jonson AL, Rogers LM, Ramakrishnan S, Downs Jr LS . Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer. Gynecol Oncol 2008; 111: 356–364.

    Article  CAS  PubMed  Google Scholar 

  18. Fish RJ, Kruithof EK . Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol Biol 2004; 5: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. An DS, Qin FX, Auyeung VC, Mao SH, Kung SK, Baltimore D et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 2006; 14: 494–504.

    Article  CAS  PubMed  Google Scholar 

  20. Tang S, Tao M, McCoy Jr JP, Zheng ZM . Short-term induction and long-term suppression of HPV16 oncogene silencing by RNA interference in cervical cancer cells. Oncogene 2006; 25: 2094–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng ZM, Tang S, Tao M . Development of resistance to RNAi in mammalian cells. Ann N Y Acad Sci 2005; 1058: 105–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu W, Putral LN, Irving A, McMillan NA . The development and future of oligonucleotide-based therapies for cervical cancer. Curr Opin Mol Ther 2007; 9: 126–131.

    CAS  PubMed  Google Scholar 

  23. Chen J, Irving A, McMillan N, Gu W . Future of RNAi-based therapies for human papillomavirus-associated cervical cancer. Future Virology 2007; 2: 9.

    Article  Google Scholar 

  24. ter Brake O, Konstantinova P, Ceylan M, Berkhout B . Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 2006; 14: 883–892.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson J, Akkina R . CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2005; 2: 53.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brake OT, Hooft K, Liu YP, Centlivre M, Jasmijn von Eije K, Berkhout B . Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 2008; 16: 557–564.

    Article  PubMed  Google Scholar 

  27. Henry SD, van der Wegen P, Metselaar HJ, Tilanus HW, Scholte BJ, van der Laan LJ . Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. Mol Ther 2006; 14: 485–493.

    Article  CAS  PubMed  Google Scholar 

  28. Wu KL, Zhang X, Zhang J, Yang Y, Mu YX, Liu M et al. Inhibition of Hepatitis B virus gene expression by single and dual small interfering RNA treatment. Virus Res 2005; 112: 100–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoo JY, Kim JH, Kwon YG, Kim EC, Kim NK, Choi HJ et al. VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Ther 2007; 15: 295–302.

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook R . Molecular Cloning. 3rd edn., vol. 2. Cold Spring Harbor Laboratory Press: Cold Spring Harbor New York, 1989.

    Google Scholar 

  31. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao KN, Gu W, Fang NX, Saunders NA, Frazer IH . Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo. Mol Cell Biol 2005; 25: 8643–8655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klein D, Bugl B, Gunzburg WH, Salmons B . Accurate estimation of transduction efficiency necessitates a multiplex real-time PCR. Gene Therapy 2000; 7: 458–463.

    Article  CAS  PubMed  Google Scholar 

  35. Gu W, Cochrane M, Leggatt GR, Payne E, Choyce A, Zhou F et al. Both treated and untreated tumors are eliminated by short hairpin RNA-based induction of target-specific immune responses. Proc Natl Acad Sci USA 2009; 106: 8314–8319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang X, Zhang Q, Nishitani J, Brown J, Shi S, Le AD . Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin Cancer Res 2007; 13: 2568–2576.

    Article  CAS  PubMed  Google Scholar 

  37. Le Buanec H, D'Anna R, Lachgar A, Zagury JF, Bernard J, Ittele D et al. HPV-16 E7 but not E6 oncogenic protein triggers both cellular immunosuppression and angiogenic processes. Biomed Pharmacother 1999; 53: 424–431.

    Article  CAS  PubMed  Google Scholar 

  38. Toussaint-Smith E, Donner DB, Roman A . Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene 2004; 23: 2988–2995.

    Article  CAS  PubMed  Google Scholar 

  39. Emanuele S, Lauricella M, Tesoriere G . Histone deacetylase inhibitors: apoptotic effects and clinical implications (Review). Int J Oncol 2008; 33: 637–646.

    CAS  PubMed  Google Scholar 

  40. Kuo PH, Carlson KR, Christensen I, Girardi M, Heald PW . FDG-PET/CT for the evaluation of response to therapy of cutaneous T-cell lymphoma to vorinostat (suberoylanilide hydroxamic acid, SAHA) in a phase II trial. Mol Imaging Biol 2008; 10: 306–314.

    Article  PubMed  Google Scholar 

  41. Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006; 103: 17372–17377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Manilla P, Rebello T, Afable C, Lu X, Slepushkin V, Humeau LM et al. Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 2005; 16: 17–25.

    Article  CAS  PubMed  Google Scholar 

  43. Wang S, Liu H, Ren L, Pan Y, Zhang Y . Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia 2008; 10: 399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shibata MA, Morimoto J, Shibata E, Otsuki Y . Combination therapy with short interfering RNA vectors against VEGF-C and VEGF-A suppresses lymph node and lung metastasis in a mouse immunocompetent mammary cancer model. Cancer Gene Ther 2008; 15: 776–786.

    Article  CAS  PubMed  Google Scholar 

  45. Chen SM, Wang Y, Xiao BK, Tao ZZ . Effect of blocking VEGF, hTERT and Bcl-xl by multiple shRNA expression vectors on the human laryngeal squamous carcinoma xenograft in nude mice. Cancer Biol Ther 2008; 7: 734–739.

    Article  CAS  PubMed  Google Scholar 

  46. Lopez-Ocejo O, Viloria-Petit A, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS . Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 2000; 19: 4611–4620.

    Article  CAS  PubMed  Google Scholar 

  47. ter Brake O, t Hooft K, Liu YP, Centlivre M, von Eije KJ, Berkhout B . Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 2008; 16: 557–564.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ibtissam Abdul Jabbar for her technical support of cell sorting. Funding sources are NHMRC project grant (NM, GL) and NHMRC Peter Doherty Fellowship (WG) and Early Career Researcher Grant (WG) of the University of Queensland, Brisbane, Australia and the Australian Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Gu or N A J McMillan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, W., Payne, E., Sun, S. et al. Inhibition of cervical cancer cell growth in vitro and in vivo with dual shRNAs. Cancer Gene Ther 18, 219–227 (2011). https://doi.org/10.1038/cgt.2010.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.72

Keywords

This article is cited by

Search

Quick links