Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Translation of the radio- and chemo-inducible TNFerade vector to the treatment of human cancers

Abstract

Radiotherapy is a widely used treatment for localized malignancies that is often delivered in combination with cytotoxic chemotherapeutic agents. The concept that treatment of localized tumors can be improved with a radio- and chemo-inducible gene therapy strategy has been investigated in the laboratory and now translated to the clinic. The TNFerade (Ad.Egr-TNF11D) adenoviral vector was engineered by inserting radio- and chemo-inducible elements from the Egr-1 promoter upstream to a cDNA encoding tumor necrosis factor-α (TNF-α). Transduction of tumor cells with TNFerade and then treatment with radiation or chemotherapy is associated with spatial and temporal control of TNF-α secretion and enhanced antitumor activity. TNFerade has been evaluated in trials for patients with sarcomas, melanomas and cancers of the pancreas, esophagus, rectum and head and neck. If the ongoing phase III trial for pancreatic cancer is successful, TNFerade will likely become the first gene therapy approved for cancer in the United States.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

Ad:

adenoviral vector

CArG element:

CC(A+T rich)GG

Egr-1:

early growth response gene 1

FLIP:

FLICE-like inhibitory protein

5FU:

5-fluorouracil

IR:

ionizing radiation

RIP1:

receptor-interacting protein

ROS:

reactive oxygen species

SOC:

standard of care;

TACE:

TNF-α converting enzyme

TNF-α:

tumor necrosis factor α

TNFerade:

Ad.Egr-TNF11D

TNF-R:

TNF receptor

TRADD:

TNF receptor-associated death domain

References

  1. Mundt A, Roeske J, Chung T, Weichselbaum R . Principles of radiation oncology. In: Kufe DW, Bast RC, Hait WN, Hong WK, Pollock RE, Weichselbaum RR, Holland JF, and Frei E (eds). Cancer Medicine, 7th edn. Decker BC, Inc.: Hamilton, London. 2006, pp 517–536.

    Google Scholar 

  2. Connell P, Martel M, Hellman S . Principles of cancer management: radiation therapy. In: DeVita V, Hellman S, Rosenberg S (eds). Cancer: Principles and Practice of Oncology. Lippincott Raven: Philadelphia. 7th edn., 2005 pp 267–293.

    Google Scholar 

  3. Weichselbaum R, Hallahan D, Sukhatme V, Kufe D . Gene therapy targeted by ionizing radiation. Int J Rad Oncol Biol Phys 1992; 24: 565–567.

    Article  CAS  Google Scholar 

  4. Datta R, Rubin E, Sukhatme V, Qureshi S, Hallahan D, Weichselbaum RR et al. Ionizing radiation activates transcription of the EGR-1 gene via CArG elements. Proc Natl Acad Sci USA 1992; 89: 10149–10153.

    Article  CAS  Google Scholar 

  5. Datta R, Taneja N, Sukhatme VP, Qureshi SA, Weichselbaum R, Kufe DW . Reactive oxygen intermediates target CArG sequences to mediate activation of the immediate early transcription factor EGR-1 by ionizing radiation. Proc Natl Acad Sci USA 1993; 90: 2419–2422.

    Article  CAS  Google Scholar 

  6. Weichselbaum RR, Hallahan DE, Beckett MA, Mauceri HJ, Lee H, Sukhatme VP et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Res 1994; 54: 4266–4269.

    CAS  PubMed  Google Scholar 

  7. Hallahan DE, Mauceri HJ, Seung LP, Dunphy EJ, Wayne JD, Hanna NN et al. Spatial and temporal control of gene therapy using ionizing radiation. Nat Med 1995; 1: 786–791.

    Article  CAS  Google Scholar 

  8. Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR . Increased tumor necrosis factor expression following ionizing radiation exposure. Proc Natl Acad Sci USA 1989; 86: 10104–10107.

    Article  CAS  Google Scholar 

  9. Sherman M, Datta R, Hallahan D, Weichselbaum R, Kufe D . Ionizing radiation regulates expression of the c-jun protooncogene. Proc Natl Acad Sci USA 1990; 87: 5663–5666.

    Article  CAS  Google Scholar 

  10. Kufe D, Weichselbaum R . Radiation therapy; activation of gene transcription and the development of genetic radiotherapy. Cancer Biol Ther 2003; 2: 326–329.

    Article  CAS  Google Scholar 

  11. Ahmed MM, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Wood Jr DP, Sells SF et al. EGR-1 induction is required for maximal radiosensitivity in A375-C6 melanoma cells. J Biol Chem 1996; 271: 29231–29237.

    Article  CAS  Google Scholar 

  12. Franken NA, Ten Cate R, Van Bree C, Haveman J . Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions. Int J Oncol 2004; 24: 1027–1031.

    CAS  PubMed  Google Scholar 

  13. Takahashi T, Namiki Y, Ohno T . Induction of the suicide HSV-TK gene by activation of the Egr-1 promoter with radioisotopes. Hum Gene Ther 1997; 8: 827–833.

    Article  CAS  Google Scholar 

  14. Greco O, Powell TM, Marples B, Joiner MC, Scott SD . Gene therapy vectors containing CArG elements from the Egr1 gene are activated by neutron irradiation, cisplatin and doxorubicin. Cancer Gene Ther 2005; 12: 655–662.

    Article  CAS  Google Scholar 

  15. Kawashita Y, Ohtsuru A, Kaneda Y, Nagayama Y, Kawazoe Y, Eguchi S et al. Regression of hepatocellular carcinoma in vitro and in vivo by radiosensitizing suicide gene therapy under the inducible and spatial control of radiation. Hum Gene Ther 1999; 10: 1509–1519.

    Article  CAS  Google Scholar 

  16. Hsu H, Rainov NG, Quinones A, Eling DJ, Sakamoto KM, Spear MA . Combined radiation and cytochrome CYP4B1/4-ipomeanol gene therapy using the EGR1 promoter. Anticancer Res 2003; 23: 2723–2728.

    CAS  PubMed  Google Scholar 

  17. Ma HB, Wang XJ, Di ZL, Xia H, Li Z, Liu J et al. Construction of targeted plasmid vector pcDNA3.1-Egr.1p-p16 and its expression in pancreatic cancer JF305 cells induced by radiation in vitro. World J Gastroenterol 2007; 13: 4214–4218.

    Article  CAS  Google Scholar 

  18. Meyer RG, Kupper JH, Kandolf R, Rodemann HP . Early growth response-1 gene (Egr-1) promoter induction by ionizing radiation in U87 malignant glioma cells in vitro. Eur J Biochem 2002; 269: 337–346.

    Article  CAS  Google Scholar 

  19. Scott SD, Joiner MC, Marples B . Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy. Gene Ther 2002; 9: 1396–1402.

    Article  CAS  Google Scholar 

  20. Salloum RM, Saunders MP, Mauceri HJ, Hanna NN, Gorski DH, Posner MC et al. Dual induction of the Epo-Egr-TNF-alpha plasmid in hypoxic human colon adenocarcinoma produces tumor growth delay. Am Surg 2003; 69: 24–27.

    PubMed  Google Scholar 

  21. Greco O, Marples B, Dachs GU, Williams KJ, Patterson AV, Scott SD . Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther 2002; 9: 1403–1411.

    Article  CAS  Google Scholar 

  22. Greco O, Joiner MC, Doleh A, Powell AD, Hillman GG, Scott SD . Hypoxia- and radiation-activated Cre/loxP ‘molecular switch’ vectors for gene therapy of cancer. Gene Ther 2006; 13: 206–215.

    Article  CAS  Google Scholar 

  23. Chadderton N, Cowen RL, Sheppard FC, Robinson S, Greco O, Scott SD et al. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells. Int J Radiat Oncol Biol Phys 2005; 62: 213–222.

    Article  CAS  Google Scholar 

  24. Lopez CA, Kimchi ET, Mauceri HJ, Park JO, Mehta N, Murphy KT et al. Chemoinducible gene therapy: a strategy to enhance doxorubicin antitumor activity. Mol Cancer Ther 2004; 3: 1167–1175.

    Article  CAS  Google Scholar 

  25. Smets LA . Programmed cell death (apoptosis) and response to anti-cancer drugs. Anticancer Drugs 1994; 5: 3–9.

    Article  CAS  Google Scholar 

  26. Park JO, Lopez CA, Gupta VK, Brown CK, Mauceri HJ, Darga TE et al. Transcriptional control of viral gene therapy by cisplatin. J Clin Invest 2002; 110: 403–410.

    Article  CAS  Google Scholar 

  27. Yamini B, Yu X, Gillespie GY, Kufe DW, Weichselbaum RR . Transcriptional targeting of adenovirally delivered tumor necrosis factor alpha by temozolomide in experimental glioblastoma. Cancer Res 2004; 64: 6381–6384.

    Article  CAS  Google Scholar 

  28. Varfolomeev EE, Ashkenazi A . Tumor necrosis factor: an apoptosis JuNKie? Cell 2004; 116: 491–497.

    Article  CAS  Google Scholar 

  29. Aggarwal BB . Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3: 745–756.

    Article  CAS  Google Scholar 

  30. Kriegler M, Perez C, DeFay K, Albert I, Lu SD . A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 1988; 53: 45–53.

    Article  CAS  Google Scholar 

  31. Eissner G, Kolch W, Scheurich P . Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev 2004; 15: 353–366.

    Article  CAS  Google Scholar 

  32. Friedmann E, Hauben E, Maylandt K, Schleeger S, Vreugde S, Lichtenthaler SF et al. SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production. Nat Cell Biol 2006; 8: 843–848.

    Article  CAS  Google Scholar 

  33. Fluhrer R, Grammer G, Israel L, Condron MM, Haffner C, Friedmann E et al. A gamma-secretase-like intramembrane cleavage of TNFalpha by the GxGD aspartyl protease SPPL2b. Nat Cell Biol 2006; 8: 894–896.

    Article  CAS  Google Scholar 

  34. Micheau O, Tschopp J . Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181–190.

    Article  CAS  Google Scholar 

  35. Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 2004; 21: 415–428.

    Article  CAS  Google Scholar 

  36. Boldin M, Goncharov T, Goltsev Y, Wallach D . Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell-death. Cell 1996; 85: 803–815.

    Article  CAS  Google Scholar 

  37. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85: 817–827.

    Article  CAS  Google Scholar 

  38. Stennicke H, Jürgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X et al. Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 1998; 273: 27084–27090.

    Article  CAS  Google Scholar 

  39. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    Article  CAS  Google Scholar 

  40. Sethi G, Ahn KS, Xia D, Kurie JM, Aggarwal BB . Targeted deletion of MKK4 gene potentiates TNF-induced apoptosis through the down-regulation of NF-kappa B activation and NF-kappa B-regulated antiapoptotic gene products. J Immunol 2007; 179: 1926–1933.

    Article  CAS  Google Scholar 

  41. Fiers W, Beyaert R, Boone E, Cornelis S, Declercq W, Decoster E et al. TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflamm 1995; 47: 67–75.

    CAS  PubMed  Google Scholar 

  42. Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W . Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 1997; 9: 801–808.

    Article  CAS  Google Scholar 

  43. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 2003; 22: 3898–3909.

    Article  CAS  Google Scholar 

  44. Soranzo C, Perego P, Zunino F . Effect of tumor necrosis factor on human tumor cell lines sensitive and resistant to cytotoxic drugs, and its interaction with chemotherapeutic agents. Anticancer Drugs 1990; 1: 157–163.

    Article  CAS  Google Scholar 

  45. Hallahan DE, Beckett MA, Kufe D, Weichselbaum RR . The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys 1990; 19: 69–74.

    Article  CAS  Google Scholar 

  46. Wang C-Y, Mayo MW, Baldwin Jr AS . TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kB. Science 1996; 274: 784–787.

    Article  CAS  Google Scholar 

  47. Wong GH, Elwell JH, Oberley LW, Goeddel DV . Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 1989; 58: 923–931.

    Article  CAS  Google Scholar 

  48. Neta R, Oppenheim JJ, Douches SD . Interdependence of the radioprotective effects of human recombinant interleukin 1 alpha, tumor necrosis factor alpha, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor. J Immunol 1988; 140: 108–111.

    CAS  PubMed  Google Scholar 

  49. Carswell E, Old LJ, Kassel RL, Green S, Fiore N, Williamson B . An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72: 3666–3670.

    Article  CAS  Google Scholar 

  50. Old LJ . Tumor necrosis factor. Sci Am 1988; 258: 59–60, 69–75.

    Article  CAS  Google Scholar 

  51. Lejeune FJ, Lienard D, Matter M, Ruegg C . Efficiency of recombinant human TNF in human cancer therapy. Cancer Immunol 2006; 6: 6.

    Google Scholar 

  52. Sherman ML, Spriggs DR, Arthur KA, Imamura K, Frei III E, Kufe DW . Recombinant human tumor necrosis factor administered as a five-day continuous infusion in cancer patients: phase I toxicity and effects on lipid metabolism. J Clin Oncol 1988; 6: 344–350.

    Article  CAS  Google Scholar 

  53. Spriggs DR, Sherman ML, Michie H, Arthur KA, Imamura K, Wilmore D et al. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion. A phase I and pharmacologic study. J Natl Cancer Inst 1988; 80: 1039–1044.

    Article  CAS  Google Scholar 

  54. Wu H, Tschopp J, Lin SC . Smac mimetics and TNFalpha: a dangerous liaison? Cell 2007; 131: 655–658.

    Article  CAS  Google Scholar 

  55. Hallahan DE, Vokes EE, Rubin SJ, O'Brien S, Samuels B, Vijaykumar S et al. Phase I dose-escalation study of tumor necrosis factor-alpha and concomitant radiation therapy. Cancer J Sci Am 1995; 1: 204–209.

    CAS  PubMed  Google Scholar 

  56. Mauceri HJ, Hanna NN, Wayne JD, Hallahan DE, Hellman S, Weichselbaum RR . Tumor necrosis factor alpha (TNF-alpha) gene therapy targeted by ionizing radiation selectively damages tumor vasculature. Cancer Res 1996; 56: 4311–4314.

    CAS  PubMed  Google Scholar 

  57. Staba MJ, Mauceri HJ, Kufe DW, Hallahan DE, Weichselbaum RR . Adenoviral TNF-α gene therapy and radiation damage tumor vasculature in a human malignant glioma xenograft. Gene Ther 1998; 5: 293–300.

    Article  CAS  Google Scholar 

  58. Chung TD, Mauceri HJ, Hallahan DE, Yu JJ, Chung S, Grdina WL et al. Tumor necrosis factor-alpha-based gene therapy enhances radiation cytotoxicity in human prostate cancer. Cancer Gene Ther 1998; 5: 344–349.

    CAS  PubMed  Google Scholar 

  59. Watanabe N, Niitsu Y, Yamauchi N, Ohtsuka Y, Sone H, Neda H et al. Synergistic cytotoxicity of recombinant human TNF and various anti-cancer drugs. Immunopharmacol Immunotoxicol 1988; 10: 117–127.

    Article  CAS  Google Scholar 

  60. Alexander RB, Nelson WG, Coffey DS . Synergistic enhancement by tumor necrosis factor of in vitro cytotoxicity from chemotherapeutic drugs targeted at DNA topoisomerase II. Cancer Res 1987; 47: 2403–2406.

    CAS  Google Scholar 

  61. Yamini B, Yu X, Pytel P, Galanopoulos N, Rawlani V, Veerapong J et al. Adenovirally delivered tumor necrosis factor-alpha improves the antiglioma efficacy of concomitant radiation and temozolomide therapy. Clin Cancer Res 2007; 13: 6217–6223.

    Article  CAS  Google Scholar 

  62. Mauceri HJ, Beckett MA, Liang H, Sutton HG, Pitroda S, Galka E et al. Translational strategies exploiting TNFα that sensitize tumors to radiation therapy. Cancer Gene Ther 2009; 16: 373–381.

    Article  CAS  Google Scholar 

  63. MacGill RS, Davis TA, Macko J, Mauceri HJ, Weichselbaum RR, King CR . Local gene delivery of tumor necrosis factor alpha can impact primary tumor growth and metastases through a host-mediated response. Clin Exp Metastasis 2007; 24: 521–531.

    Article  CAS  Google Scholar 

  64. Lu Y, Yamauchi N, Koshita Y, Fujiwara H, Sato Y, Fujii S et al. Administration of subtumor regression dosage of TNF-alpha to mice with pre-existing parental tumors augments the vaccination effect of TNF gene-modified tumor through the induction of MHC class I molecule. Gene Ther 2001; 8: 499–507.

    Article  CAS  Google Scholar 

  65. Chatzidakis I, Fousteri G, Tsoukatou D, Kollias G, Mamalaki C . An essential role for TNF in modulating thresholds for survival, activation, and tolerance of CD8+ T cells. J Immunol 2007; 178: 6735–6745.

    Article  CAS  Google Scholar 

  66. Zhang B, Karrison T, Rowley DA, Schreiber H . IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest 2008; 118: 1398–1404.

    Article  CAS  Google Scholar 

  67. Havell EA, Fiers W, North RJ . The antitumor function of tumor necrosis factor (TNF), I. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity. J Exp Med 1988; 167: 1067–1085.

    Article  CAS  Google Scholar 

  68. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006; 203: 1259–1271.

    Article  CAS  Google Scholar 

  69. Senzer N, Mani S, Rosemurgy A, Nemunaitis J, Cunningham C, Guha C et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol 2004; 22: 592–601.

    Article  CAS  Google Scholar 

  70. Mundt AJ, Vijayakumar S, Nemunaitis J, Sandler A, Schwartz H, Hanna N et al. A phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clin Cancer Res 2004; 10: 5747–5753.

    Article  CAS  Google Scholar 

  71. Senzer N . Long-term outcome in esophageal cancer after endoscopically delivered intratumoral (IT) injections of TNFerade with neoadjuvant chemotherapy (CRT). Abstract no. 9 Gartointestinal Cancers Symposium-Category: Esophagus and Stomach-Multidisciplinary Treatment 2006. San Francisco, CA.

  72. Hanna N . TNFerade combined with chemoradiation in resectable esophageal cancer. Abstract no 3197. ASCO Annual Meeting: Development Therapeutics-Molecular Therapeutics-Other Novel Agents Gartointestinal Cancers Symposium-Category: Esophagus and Stomach-Multidisciplinary Treatment, 2004. New Orleans, LA.

  73. Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP . A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 1996; 335: 462–467.

    Article  CAS  Google Scholar 

  74. Law S, Fok M, Chow S, Chu KM, Wong J . Preoperative chemotherapy versus surgical therapy alone for squamous cell carcinoma of the esophagus: a prospective randomized trial. J. Thorac Cardiovasc Surg 1997; 114: 210–217.

    Article  CAS  Google Scholar 

  75. Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M . Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 2001; 19: 305–313.

    Article  CAS  Google Scholar 

  76. Burmeister BH, Smithers BM, Gebski V, Fitzgerald L, Simes RJ, Devitt P et al. Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: a randomised controlled phase III trial. Lancet Oncol 2005; 6: 659–668.

    Article  Google Scholar 

  77. Senzer N . Safety and efficacy of TNFerade in unresectable, locally advanced pancreatic cancer (LAPC): results of the first three cohorts of a dose-escalating study. Abstract no. 3038. ASCO Annual Meeting-Category-Development Therapeutics-Molecular Therapeutics-Gene Therapy/Antisense Strategies,. 2004. New Orleans, LA.

  78. Hanna N . Safety and efficacy of TNFerade in unresectable, locally advanced pancreatic cancer (LAPC): results of the first three cohorts of a dose-escalating study. Abstract no. 84. Gastrointestinal Cancers Symposium-Category: All-Pancreas, Small Bowel, Hepatobiliary, 2004. San Francisco, CA.

  79. Senzer N . Updated response and survival data for TNFerade combined with chemoradiation in the treatment of locally advanced pancreatic cancer (LAPC). Abstract no. 4047. ASCO Annual Meeting-Category: Gastrointestinal (Noncolorectal) Cancer-Pancreatic Cancer, 2005. Orlando, FL.

  80. Senzer N . Completion of dose escalation component of phase II study of TNFerade combined with chemoradiation in the treatment of locally advanced pancreatic cancer (LAPC). Abstract no. 128. Gastrointestinal Cancers Symposium-Category: Pancreas, Small Bowel, and Hepatobiliary Tract-Multidisciplinary Treatment,. 2005. Miami, FL.

  81. Senzer N . The PACT trial: Interim results of a randomized trial of TNFerade biologic plus chemoradiation (CRT) compared to CRT alone in locally advanced pancreatic cancer (LAPC). Abstract no. 4102. ASCO Annual Meeting-Category: Gastrointestinal (Nonrectal) Cancer-Subcategory: Pancreatic Cancer, 2006. Atlanta, GA.

  82. Thornton M . Personal communications.

  83. Vokes E . A phase I dose escalation study of Ad GV.EGR.TNF.11D (TNFerade) with concurrent chemotherapy in patients with recurrent head and neck cancer (HNC). Abstract no. 6067. ASCO Annual Meeting-Category: Head and Neck Cancer, 2008. Chicago, IL.

  84. Waehler R, Russell SJ, Curiel DT . Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8: 573–587.

    Article  CAS  Google Scholar 

  85. Murugesan SR, Akiyama M, Einfeld DA, Wickham TJ, King CR . Experimental treatment of ovarian cancers by adenovirus vectors combining receptor targeting and selective expression of tumor necrosis factor. Int J Oncol 2007; 31: 813–822.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mark Thornton, M.D., Ph.D., C. Richter King, Ph.D., and Lisa Wei, Ph.D., of GenVec, Inc., for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R R Weichselbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weichselbaum, R., Kufe, D. Translation of the radio- and chemo-inducible TNFerade vector to the treatment of human cancers. Cancer Gene Ther 16, 609–619 (2009). https://doi.org/10.1038/cgt.2009.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.37

Keywords

This article is cited by

Search

Quick links