Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Expression-targeted gene therapy for the treatment of transitional cell carcinoma

Abstract

Targeted gene delivery for induced apoptosis of transitional cell carcinomas was carried out in vivo in mice via utilization of the murine cyclooxygenase type 2 (Cox-2) promoter (Tis10). MB49 cells, which constitutively overexpress Cox-2 like numerous other carcinomas, selectively expressed delivered genes that utilized this transcriptional control element. The products of the delivered genes were artificially inducible forms of caspases 3 and 9, which remained inactive until a chemical inducer of dimerization was later injected intraperitoneally. The genes were delivered intravesically as plasmids complexed with poly(ethylenimine). Significant improvements, in the form of reduced bladder mass, reduced tumor volume, anti-angiogenesis and inhibition of tumor growth were seen versus untreated or unactivated controls. In some instances, tumors were seen to go into complete remission. There were no apparent bystander effects associated with the treatments. This targeted gene therapy regimen could have wide applicability to numerous cancers due to constitutive overexpression of Cox-2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ma H, Sumbilla C, Farrance IK, Klein MG, Inesi G . Cell specific expression of exogenous Ca2+ Transport ATPase (SERCA) in Cardiac Myocytes. Am J Physiol Cell Physiol 2004; 286: C556–C564.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Schlachetzki F, Li JY, Boado RJ, Pardridge WM . Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis 2003; 9: 465–472.

    CAS  PubMed  Google Scholar 

  3. Kim S, Lin H, Barr E, Chu L, Leiden JM, Parmacek MS . Transcriptional targeting of replication-defective adenovirus transgene expression to smooth muscle cells in vivo. J Clin Invest 1997; 100: 1006–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Palma M, Venneri MA, Naldini L . In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 2003; 14: 1193–1206.

    Article  CAS  PubMed  Google Scholar 

  5. Modlich U, Pugh CW, Bicknell R . Increasing endothelial cell-specific expression by the use of heterologous hypoxic and cytokine-inducible enhancers. Gene Therapy 2000; 7: 896–902.

    Article  CAS  PubMed  Google Scholar 

  6. Barker SD, Coolidge CJ, Kanerva A, Hakkarainen T, Yamamoto M, Liu B et al. The secretory leukoprotease inhibitor (SLPI) promoter for ovarian cancer gene therapy. J Gene Med 2003; 5: 300–310.

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto M, Davydova J, Wang M, Siegal GP, Krasnykh V, Vickers SM et al. Infectivity enhanced, cyclooxygenase-2 promoter-based conditionally replicative adenovirus for pancreatic cancer. Gastroenterology 2003; 125: 1203–1218.

    Article  CAS  PubMed  Google Scholar 

  8. Chell S, Kadi A, Williams AC, Paraskeva C . Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochim Biophys Acta 2006; 1766: 104–119.

    CAS  PubMed  Google Scholar 

  9. Lee A, Frischer J, Serur A, Huang J, Bae JO, Kornfield ZN et al. Inhibition of cyclooxygenase-2 disrupts tumor vascular mural cell recruitment and survival signaling. Cancer Res 2006; 66: 4378–4384.

    Article  CAS  PubMed  Google Scholar 

  10. Grimes KR, Warren GW, Fang F, Xu Y, St Clair WH . Cyclooxygenase-2 inhibitor, nimesulide, improves radiation treatment against non-small cell lung cancer both in vitro and in vivo. Oncol Rep 2006; 16: 771–776.

    CAS  PubMed  Google Scholar 

  11. Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H et al. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res 2006; 66: 7059–7066.

    Article  CAS  PubMed  Google Scholar 

  12. Kawamori T, Rao CV, Seibert K, Reddy BS . Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 1998; 58: 409–412.

    CAS  PubMed  Google Scholar 

  13. Fischer SM, Lo HH, Gordon GB, Seibert K, Kelloff G, Lubet RA et al. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Mol Carcinog 1999; 25: 231–240.

    Article  CAS  PubMed  Google Scholar 

  14. Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, Paulson S et al. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 2000; 60: 293–297.

    CAS  PubMed  Google Scholar 

  15. Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G . COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 2001; 15: 2742–2744.

    Article  CAS  PubMed  Google Scholar 

  16. Song X, Lin HP, Johnson AJ, Tseng PH, Yang YT, Kulp SK et al. Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells. J Natl Cancer Inst 2002; 94: 585–591.

    Article  CAS  PubMed  Google Scholar 

  17. Shamma A, Yamamoto H, Doki Y, Okami J, Kondo M, Fujiwara Y et al. Upregulation of cyclooxygenase-2 in squamous carcinogenesis of the esophagus. Clin Cancer Res 2000; 6: 1229–1238.

    CAS  PubMed  Google Scholar 

  18. Rajnakova A, Moochhala S, Goh PM, Ngoi S . Expression of nitric oxide synthase, cyclooxygenase, and p53 in different stages of human gastric cancer. Cancer Lett 2001; 172: 177–185.

    Article  CAS  PubMed  Google Scholar 

  19. Ferrandez A, Prescott S, Burt RW . COX-2 and colorectal cancer. Curr Pharm Des 2003; 9: 2229–2251.

    Article  CAS  PubMed  Google Scholar 

  20. Bostrom PJ, Aaltonen V, Soderstrom KO, Uotila P, Laato M . Expression of cyclooxygenase-1 and -2 in urinary bladder carcinomas in vivo and in vitro and prostaglandin E2 synthesis in cultured bladder cancer cells. Pathology 2001; 33: 469–474.

    Article  CAS  PubMed  Google Scholar 

  21. Shirahama T, Sakakura C . Overexpression of cyclooxygenase-2 in squamous cell carcinoma of the urinary bladder. Clin Cancer Res 2001; 7: 558–561.

    CAS  PubMed  Google Scholar 

  22. Yoshimura R, Sano H, Mitsuhashi M, Kohno M, Charqui J, Wada S . Expression of cyclooxygenase-2 in patients with bladder carcinoma. J Urol 2001; 165: 1468–1472.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Turner C, Godbey WT . Comparison of caspase genes for the induction of apoptosis following gene delivery. 2008 (submitted).

  24. Shariat SF, Desai S, Song W, Khan T, Zhao J, Nguyen C et al. Adenovirus-mediated transfer of inducible caspases: a novel ‘death switch’ gene therapeutic approach to prostate cancer. Cancer Res 2001; 61: 2562–2571.

    CAS  PubMed  Google Scholar 

  25. Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H . Caspase-9 transduction overrides the resistance mechanism against p53-mediated apoptosis in U-87MG glioma cells. Neurosurgery 2001; 49: 177–186.

    CAS  PubMed  Google Scholar 

  26. Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H . Transduction of Apaf-1 or caspase-9 induces apoptosis in A-172 cells that are resistant to p53-mediated apoptosis. Biochem Biophys Res Commun 2000; 272: 667–673.

    Article  CAS  PubMed  Google Scholar 

  27. Fan L, Freeman KW, Khan T, Pham E, Spencer DM . Improved artificial death switches based on caspases and FADD. Hum Gene Ther 1999; 10: 2273–2285.

    Article  CAS  PubMed  Google Scholar 

  28. Clackson T, Yang W, Rozamus LW, Hatada M, Amara JF, Rollins CT et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 1998; 95: 10437–10442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wencker D, Chandra M, Nquyen K, Miao W, Garantziotis S, Factor SM et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003; 111: 1497–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mallet VO, Mitchell C, Guidotti JE, Jaffray P, Fabre M, Spencer D et al. Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 2002; 20: 1234–1239.

    Article  CAS  PubMed  Google Scholar 

  31. Gunther JH, Jurczok A, Wulf T, Brandau S, Deinert I, Jocham D et al. Optimizing syngeneic orthotopic murine bladder cancer (MB49). Cancer Res 1999; 59: 2834–2837.

    CAS  PubMed  Google Scholar 

  32. Godbey WT, Atala A . Directed apoptosis in Cox-2-overexpressing cancer cells through expression-targeted gene delivery. Gene Therapy 2003; 10: 1519–1527.

    Article  CAS  PubMed  Google Scholar 

  33. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wong WW . ICE family proteases in inflammation and apoptosis. Agents Actions Suppl 1998; 49: 5–13.

    CAS  PubMed  Google Scholar 

  35. Bishop CE, Hata D . Molecular cloning and sequence analysis of a mouse Y chromosome RNA transcript expressed in the testis. Nucleic Acids Res 1987; 15: 2959–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones MK, Wang H, Peskar BM, Levin E, Itani RM, Sarfeh IJ et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 1999; 5: 1418–1423.

    Article  CAS  PubMed  Google Scholar 

  37. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, Dubois RN . Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998; 93: 705–716.

    Article  CAS  PubMed  Google Scholar 

  38. Davies G, Salter J, Hills M, Martin LA, Sacks N, Dowsett M . Correlation between cyclooxygenase-2 expression and angiogenesis in human breast cancer. Clin Cancer Res 2003; 9: 2651–2656.

    CAS  PubMed  Google Scholar 

  39. Uefuji K, Ichikura T, Mochizuki H . Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer. Clin Cancer Res 2000; 6: 135–138.

    CAS  PubMed  Google Scholar 

  40. Fujimoto J, Toyoki H, Sato E, Sakaguchi H, Jahan I, Alam SM et al. Expression of cyclooxygenase-2 related to angiogenesis in uterine cervical cancers. J Biomed Sci 2006; 13: 825–832.

    Article  CAS  PubMed  Google Scholar 

  41. Ohsawa M, Fukushima H, Ikuri Y, Inoue T, Shirai N, Sugama Y et al. Expression of cyclooxygenase-2 in Hodgkin's lymphoma, its role in cell proliferation and angiogenesis. Leuk Lymphoma 2006; 47: 1863–1871.

    Article  CAS  PubMed  Google Scholar 

  42. Loskog A, Dzojic H, Vikman S, Ninalga C, Essand M, Korsgren O et al. Adenovirus CD40 ligand gene therapy counteracts immune escape mechanisms in the tumor microenvironment. J Immunol 2004; 172: 7200–7205.

    Article  CAS  PubMed  Google Scholar 

  43. Loskog AS, Fransson ME, Totterman TT . AdCD40 L gene therapy counteracts T regulatory cells and cures aggressive tumors in an orthotopic bladder cancer model. Clin Cancer Res 2005; 11: 8816–8821.

    Article  CAS  PubMed  Google Scholar 

  44. Wu Q, Mahendran R, Esuvaranathan K . Nonviral cytokine gene therapy on an orthotopic bladder cancer model. Clin Cancer Res 2003; 9: 4522–4528.

    CAS  PubMed  Google Scholar 

  45. Shirakawa T, Hamada K, Zhang Z, Okada H, Tagawa M, Kamidono S et al. A cox-2 promoter-based replication-selective adenoviral vector to target the cox-2-expressing human bladder cancer cells. Clin Cancer Res 2004; 10: 4342–4348.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank George Taylor, MD, and Patricia Dunning, RT(r), for assistance with ultrasound experiments, Carol Pilbeam, PhD for providing the TIS10 (murine Cox-2) promoter, ARIAD (www.ariad.com/regulationkits) for providing significant amounts of AP20187, and John C Prindle Jr, PhD for numerical discussions. This work was funded, in part, by the Louisiana Board of Regents (LEQSF(2004-07)-RD-A-28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W T Godbey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Atala, A. & Godbey, W. Expression-targeted gene therapy for the treatment of transitional cell carcinoma. Cancer Gene Ther 15, 543–552 (2008). https://doi.org/10.1038/cgt.2008.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.7

Keywords

This article is cited by

Search

Quick links