Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Improved lentiviral transduction of human mesenchymal stem cells for therapeutic intervention in pancreatic cancer

Abstract

Genetic modification of human bone marrow mesenchymal stem cells (MSC) is highly valuable for their exploitation in basic science and therapeutic applications, for example in cancer. We present here a new, fast and easy-to-use method to enrich a functional population of lentiviral (LV)-transduced MSC expressing enhanced green fluorescent protein (eGFP). We replaced the eGFP gene by a fusion gene of puromycin acetyltransferase and eGFP. Upon LV gene transfer and puromycin selection, we quickly obtained a pure transduced MSC population, in which growth, differentiation capacity and migration preferences were not compromised. Furthermore, we are the first to report the migration velocity of MSC among which 30% were moving and velocity of about 15 μm h−1 was not altered by LV transduction. Manipulated MSC underwent senescence one passage earlier than non-transduced cells, suggesting the use for therapeutic intervention in early passage numbers. Upon tail vein application in nude mice, the majority of LV-transduced MSC could be detected in human orthotopic pancreatic tumor xenografts and to a minor extent in mouse liver, kidney and lung. Together, LV transduction of genes to MSC followed by puromycin selection is a powerful tool for basic research and improves the therapeutic prospects of MSC as vehicles in gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Caplan AI, Dennis JE . Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98: 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  2. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006; 24: 1254–1264.

    Article  CAS  PubMed  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  4. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM . Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98: 2615–2625.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    Article  CAS  PubMed  Google Scholar 

  6. Fukuda K, Fujita J . Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney Int 2005; 68: 1940–1943.

    Article  CAS  PubMed  Google Scholar 

  7. Mahmood A, Lu D, Lu M, Chopp M . Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 2003; 53: 697–702; discussion 702–693.

    Article  PubMed  Google Scholar 

  8. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  PubMed  Google Scholar 

  9. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  10. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

    Article  CAS  PubMed  Google Scholar 

  11. Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel DT . Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells 2003; 21: 389–404.

    Article  CAS  PubMed  Google Scholar 

  12. Rombouts WJ, Ploemacher RE . Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003; 17: 160–170.

    Article  CAS  PubMed  Google Scholar 

  13. Pfeifer A, Ikawa M, Dayn Y, Verma IM . Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 2002; 99: 2140–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE . Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283: 682–686.

    Article  CAS  PubMed  Google Scholar 

  15. Bartlett DW, Davis ME . Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 2006; 34: 322–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiznerowicz M, Trono D . Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77: 8957–8961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tiscornia G, Tergaonkar V, Galimi F, Verma IM . CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc Natl Acad Sci USA 2004; 101: 7347–7351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller AD, Rosman GJ . Improved retroviral vectors for gene transfer and expression. Biotechniques 1989; 7: 980–982, 984–986, 989–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fischer A, Cavazzana-Calvo M . Integration of retroviruses: a fine balance between efficiency and danger. PLoS Med 2005; 2: e10.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wagner W, Feldmann Jr RE, Seckinger A, Maurer MH, Wein F, Blake J et al. The heterogeneity of human mesenchymal stem cell preparations—evidence from simultaneous analysis of proteomes and transcriptomes. Exp Hematol 2006; 34: 536–548.

    Article  CAS  PubMed  Google Scholar 

  21. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33: 1402–1416.

    Article  CAS  PubMed  Google Scholar 

  22. Wagner W, Wein F, Roderburg C, Saffrich R, Faber A, Krause U et al. Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell–cell interaction. Exp Hematol 2007; 35: 314–325.

    Article  CAS  PubMed  Google Scholar 

  23. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  24. Persons DA, Allay JA, Allay ER, Smeyne RJ, Ashmun RA, Sorrentino BP et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood 1997; 90: 1777–1786.

    CAS  PubMed  Google Scholar 

  25. Wenger T, Mattern J, Haas TL, Sprick MR, Walczak H, Debatin KM et al. Apoptosis mediated by lentiviral TRAIL transfer involves transduction-dependent and -independent effects. Cancer Gene Ther 2007; 14: 316–326.

    Article  CAS  PubMed  Google Scholar 

  26. Wenger T, Mattern J, Penzel R, Gassler N, Haas TL, Sprick MR et al. Specific resistance upon lentiviral TRAIL transfer by intracellular retention of TRAIL receptors. Cell Death Differ 2006; 13: 1740–1751.

    Article  CAS  PubMed  Google Scholar 

  27. Gassler N, Zhang C, Wenger T, Schnabel PA, Dienemann H, Debatin KM et al. Dexamethasone-induced cisplatin and gemcitabine resistance in lung carcinoma samples treated ex vivo. Br J Cancer 2005; 92: 1084–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buchler P, Reber HA, Roth MM, Shiroishi M, Friess H, Hines OJ . Target therapy using a small molecule inhibitor against angiogenic receptors in pancreatic cancer. Neoplasia 2007; 9: 119–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 2007; 25: 520–528.

    Article  CAS  PubMed  Google Scholar 

  30. Ozaki Y, Nishimura M, Sekiya K, Suehiro F, Kanawa M, Nikawa H et al. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16: 119–129.

    Article  CAS  PubMed  Google Scholar 

  31. Lopez Ponte A, Marais E, Gallay N, Langonné A, Delorme B, Hérault O et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007; 25: 1737–1745.

    Article  Google Scholar 

  32. Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F . Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 2007; 86: 8–16.

    Article  CAS  PubMed  Google Scholar 

  33. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhäuser M et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22: 377–384.

    Article  PubMed  Google Scholar 

  34. Song YS, Lee HJ, Park IH, Kim WK, Ku JH, Kim SU . Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells. Int J Impot Res 2007; 19: 378–385.

    Article  CAS  PubMed  Google Scholar 

  35. Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007; 14: 894–903.

    Article  CAS  PubMed  Google Scholar 

  36. Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J, Dell'Accio F et al. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 2006; 24: 896–907.

    Article  PubMed  Google Scholar 

  37. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271–278.

    Article  CAS  PubMed  Google Scholar 

  38. Yao S, Sukonnik T, Kean T, Bharadwaj RR, Pasceri P, Ellis J . Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications. Mol Ther 2004; 10: 27–36.

    Article  CAS  PubMed  Google Scholar 

  39. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K . Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  40. Banfi A, Bianchi G, Notaro R, Luzzatto L, Cancedda R, Quarto R . Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue Eng 2002; 8: 901–910.

    Article  CAS  PubMed  Google Scholar 

  41. Rosenqvist N, Hard Af Segerstad C, Samuelsson C, Johansen J, Lundberg C . Activation of silenced transgene expression in neural precursor cell lines by inhibitors of histone deacetylation. J Gene Med 2002; 4: 248–257.

    Article  PubMed  Google Scholar 

  42. Hanazono Y, Yu JM, Dunbar CE, Emmons RV . Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disadvantage. Hum Gene Ther 1997; 8: 1313–1319.

    Article  CAS  PubMed  Google Scholar 

  43. Martinez-Serrano A, Villa A, Navarro B, Rubio FJ, Bueno C . Human neural progenitor cells: better blue than green? Nat Med 2000; 6: 483–484.

    Article  CAS  PubMed  Google Scholar 

  44. Mackenzie TC, Flake AW . Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis 2001; 27: 601–604.

    Article  CAS  PubMed  Google Scholar 

  45. Yang W, Arii S, Mori A, Furumoto K, Nakao T, Isobe N et al. sFlt-1 gene-transfected fibroblasts: a wound-specific gene therapy inhibits local cancer recurrence. Cancer Res 2001; 61: 7840–7845.

    CAS  PubMed  Google Scholar 

  46. Ramezani A, Hawley TS, Hawley RG . Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood 2003; 101: 4717–4724.

    Article  CAS  PubMed  Google Scholar 

  47. Baum C, Dullmann J, Li Z, Meyer J, Williams DA, von Kalle C et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    Article  CAS  PubMed  Google Scholar 

  48. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  49. Woods NB, Muessig A, Schmidt M, Flygare J, Olsson K, Salmon P et al. Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 2003; 101: 1284–1289.

    Article  CAS  PubMed  Google Scholar 

  50. Conget PA, Minguell JJ . Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp Hematol 2000; 28: 382–390.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr van Parijs for providing the lentiviral vector pLL3.7 and K Hexel for help in FACS sorting. This study was supported by grants from the Tumorzentrum Heidelberg/Mannheim, Deutsche Krebshilfe and BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Herr.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallifatidis, G., Beckermann, B., Groth, A. et al. Improved lentiviral transduction of human mesenchymal stem cells for therapeutic intervention in pancreatic cancer. Cancer Gene Ther 15, 231–240 (2008). https://doi.org/10.1038/sj.cgt.7701097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701097

Keywords

This article is cited by

Search

Quick links