Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anticancer activity of oncolytic adenovirus vector armed with IFN-α and ADP is enhanced by pharmacologically controlled expression of TRAIL

Abstract

We have previously described oncolytic adenovirus (Ad) vectors KD3 and KD3–interferon (IFN) that were rendered cancer-specific by mutations in the E1A region of Ad; these mutations abolish binding of E1A proteins to p300/CBP and pRB. The antitumor activity of the vectors was enhanced by overexpression of the Adenovirus Death Protein (ADP, E3-11.6K) and by replication-linked expression of IFN-α. We hypothesized that the anticancer efficacy of the KD3–IFN vector could be further improved by expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). E1-deleted Ad vectors were constructed carrying reporter genes for enhanced green fluorescent protein or secreted placental alkaline phosphatase (SEAP) and a therapeutic gene for TRAIL under control of the TetON system. Expression of the genes was increased in the presence of a helper virus and the inducer doxycycline such that up to 231-fold activation of expression for the TetON–SEAP vector was obtained. Coinfection with TetON–TRAIL augmented oncolytic activity of KD3 and KD3–IFN in vitro. Induction of TRAIL expression did not reduce the yield of progeny virus. Combination of TetON–TRAIL and KD3–IFN produced superior antitumor activity in vivo as compared with either vector alone demonstrating the efficacy of a four-pronged cancer gene therapy approach, which includes Ad oncolysis, ADP overexpression, IFN-α-mediated immunotherapy, and pharmacologically controlled TRAIL activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Therapy 2001; 8: 89–98.

    Article  CAS  PubMed  Google Scholar 

  2. Hermiston T . A demand for next-generation oncolytic adenoviruses. Curr Opin Mol Ther 2006; 8: 322–330.

    CAS  PubMed  Google Scholar 

  3. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  4. Garber K . China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 2006; 98: 298–300.

    Article  PubMed  Google Scholar 

  5. Shashkova EV, Spencer JF, Wold WS, Doronin K . Targeting interferon-alpha increases antitumor efficacy and reduces hepatotoxicity of E1A-mutated spread-enhanced oncolytic adenovirus. Mol Ther 2007; 15: 598–607.

    Article  CAS  PubMed  Google Scholar 

  6. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  8. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997; 277: 818–821.

    Article  CAS  PubMed  Google Scholar 

  9. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG . The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997; 7: 813–820.

    Article  CAS  PubMed  Google Scholar 

  10. Kagawa S, He C, Gu J, Koch P, Rha SJ, Roth JA et al. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res 2001; 61: 3330–3338.

    CAS  PubMed  Google Scholar 

  11. Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N et al. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 2004; 9: 496–509.

    Article  CAS  PubMed  Google Scholar 

  12. Ren XW, Liang M, Meng X, Ye X, Ma H, Zhao Y et al. A tumor-specific conditionally replicative adenovirus vector expressing TRAIL for gene therapy of hepatocellular carcinoma. Cancer Gene Ther 2006; 13: 159–168.

    Article  CAS  PubMed  Google Scholar 

  13. Dong F, Wang L, Davis JJ, Hu W, Zhang L, Guo W et al. Eliminating established tumor in nu/nu nude mice by a tumor necrosis factor-{alpha}-related apoptosis-inducing ligand-armed oncolytic adenovirus. Clin Cancer Res 2006; 12: 5224–5230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Gu J, Zhao L, He L, Qian W, Wang J et al. Complete elimination of colorectal tumor xenograft by combined manganese superoxide dismutase with tumor necrosis factor-related apoptosis-inducing ligand gene virotherapy. Cancer Res 2006; 66: 4291–4298.

    Article  CAS  PubMed  Google Scholar 

  15. Griffith TS, Broghammer EL . Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther 2001; 4: 257–266.

    Article  CAS  PubMed  Google Scholar 

  16. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 2000; 6: 564–567.

    Article  CAS  PubMed  Google Scholar 

  17. Armeanu S, Lauer UM, Smirnow I, Schenk M, Weiss TS, Gregor M et al. Adenoviral gene transfer of tumor necrosis factor-related apoptosis-inducing ligand overcomes an impaired response of hepatoma cells but causes severe apoptosis in primary human hepatocytes. Cancer Res 2003; 63: 2369–2372.

    CAS  PubMed  Google Scholar 

  18. Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 2001; 7: 954–960.

    Article  CAS  PubMed  Google Scholar 

  19. Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF et al. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005; 12: 189–211.

    Article  CAS  PubMed  Google Scholar 

  20. Habib NA, Mitry R, Seth P, Kuppuswamy M, Doronin K, Toth K et al. Adenovirus replication-competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc). Cancer Gene Ther 2002; 9: 651–654.

    Article  CAS  PubMed  Google Scholar 

  21. Lee CT, Lee YJ, Kwon SY, Lee J, Kim KI, Park KH et al. In vivo imaging of adenovirus transduction and enhanced therapeutic efficacy of combination therapy with conditionally replicating adenovirus and adenovirus-p27. Cancer Res 2006; 66: 372–377.

    Article  CAS  PubMed  Google Scholar 

  22. Thorne SH, Tam BY, Kirn DH, Contag CH, Kuo CJ . Selective intratumoral amplification of an antiangiogenic vector by an oncolytic virus produces enhanced antivascular and anti-tumor efficacy. Mol Ther 2006; 13: 938–946.

    Article  CAS  PubMed  Google Scholar 

  23. Guo W, Zhu H, Zhang L, Davis J, Teraishi F, Roth JA et al. Combination effect of oncolytic adenovirotherapy and TRAIL gene therapy in syngeneic murine breast cancer models. Cancer Gene Ther 2006; 13: 82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clemens MJ . Interferons and apoptosis. J Interferon Cytokine Res 2003; 23: 277–292.

    Article  CAS  PubMed  Google Scholar 

  25. Shigeno M, Nakao K, Ichikawa T, Suzuki K, Kawakami A, Abiru S et al. Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation. Oncogene 2003; 22: 1653–1662.

    Article  CAS  PubMed  Google Scholar 

  26. Liedtke C, Groger N, Manns MP, Trautwein C . Interferon-alpha enhances TRAIL-mediated apoptosis by up-regulating caspase-8 transcription in human hepatoma cells. J Hepatol 2006; 44: 342–349.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar-Sinha C, Varambally S, Sreekumar A, Chinnaiyan AM . Molecular cross-talk between the TRAIL and interferon signaling pathways. J Biol Chem 2002; 277: 575–585.

    Article  CAS  PubMed  Google Scholar 

  28. Chawla-Sarkar M, Leaman DW, Jacobs BS, Borden EC . IFN-beta pretreatment sensitizes human melanoma cells to TRAIL/Apo2 ligand-induced apoptosis. J Immunol 2002; 169: 847–855.

    Article  CAS  PubMed  Google Scholar 

  29. Leaman DW, Chawla-Sarkar M, Vyas K, Reheman M, Tamai K, Toji S et al. Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 2002; 277: 28504–28511.

    Article  CAS  PubMed  Google Scholar 

  30. Doronin KK, Zakharchuk AN, Grinenko NF, Yurov GK, Krougliak VA, Naroditsky BS . Expression of the gene encoding secreted placental alkaline phosphatase (SEAP) by a nondefective adenovirus vector. Gene 1993; 126: 247–250.

    Article  CAS  PubMed  Google Scholar 

  31. Doronin K, Toth K, Kuppuswamy M, Krajcsi P, Tollefson AE, Wold WS . Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus. Virology 2003; 305: 378–387.

    Article  CAS  PubMed  Google Scholar 

  32. Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WS . Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23: 75–111.

    Article  CAS  PubMed  Google Scholar 

  33. Shashkova EV, Cherenova LV, Kazansky DB, Doronin K . Avian adenovirus vector CELO-TK displays anticancer activity in human cancer cells and suppresses established murine melanoma tumors. Cancer Gene Ther 2005; 12: 617–626.

    Article  CAS  PubMed  Google Scholar 

  34. Guse K, Dias JD, Bauerschmitz GJ, Hakkarainen T, Aavik E, Ranki T et al. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo. Gene Therapy 2007; 14: 902–911.

    Article  CAS  PubMed  Google Scholar 

  35. Alemany R, Lai S, Lou YC, Jan HY, Fang X, Zhang WW . Complementary adenoviral vectors for oncolysis. Cancer Gene Ther 1999; 6: 21–25.

    Article  CAS  PubMed  Google Scholar 

  36. Rang A, Will H . The tetracycline-responsive promoter contains functional interferon-inducible response elements. Nucleic Acids Res 2000; 28: 1120–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wirth T, Kuhnel F, Fleischmann-Mundt B, Woller N, Djojosubroto M, Rudolph KL et al. Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer Res 2005; 65: 7393–7402.

    Article  CAS  PubMed  Google Scholar 

  38. Mi J, Li ZY, Ni S, Steinwaerder D, Lieber A . Induced apoptosis supports spread of adenovirus vectors in tumors. Hum Gene Ther 2001; 12: 1343–1352.

    Article  CAS  PubMed  Google Scholar 

  39. Ganly I, Kim YT, Hann B, Balmain A, Brown R . Replication and cytolysis of an E1B-attenuated adenovirus in drug-resistant ovarian tumour cells is associated with reduced apoptosis. Gene Therapy 2001; 8: 369–375.

    Article  CAS  PubMed  Google Scholar 

  40. Chiou SK, White E . Inhibition of ICE-like proteases inhibits apoptosis and increases virus production during adenovirus infection. Virology 1998; 244: 108–118.

    Article  CAS  PubMed  Google Scholar 

  41. Subramanian T, Vijayalingam S, Chinnadurai G . Genetic identification of adenovirus type 5 genes that influence viral spread. J Virol 2006; 80: 2000–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jounaidi Y, Waxman DJ . Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy. Cancer Res 2004; 64: 292–303.

    Article  CAS  PubMed  Google Scholar 

  43. Sipo I, Hurtado PA, Wang X, Eberle J, Petersen I, Weger S et al. An improved Tet-On regulatable FasL-adenovirus vector system for lung cancer therapy. J Mol Med 2006; 84: 215–225.

    Article  CAS  PubMed  Google Scholar 

  44. Shetty S, Gladden JB, Henson ES, Hu X, Villanueva J, Haney N et al. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) up-regulates death receptor 5 (DR5) mediated by NFkappaB activation in epithelial derived cell lines. Apoptosis 2002; 7: 413–420.

    Article  CAS  PubMed  Google Scholar 

  45. Benedict CA, Norris PS, Prigozy TI, Bodmer JL, Mahr JA, Garnett CT et al. Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2. J Biol Chem 2001; 276: 3270–3278.

    Article  CAS  PubMed  Google Scholar 

  46. Tollefson AE, Toth K, Doronin K, Kuppuswamy M, Doronina OA, Lichtenstein DL et al. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. J Virol 2001; 75: 8875–8887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lichtenstein DL, Doronin K, Toth K, Kuppuswamy M, Wold WS, Tollefson AE . Adenovirus E3-6.7K protein is required in conjunction with the E3-RID protein complex for the internalization and degradation of TRAIL receptor 2. J Virol 2004; 78: 12297–12307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamanaka T, Shiraki K, Sugimoto K, Ito T, Fujikawa K, Ito M et al. Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 2000; 32: 482–490.

    Article  CAS  PubMed  Google Scholar 

  49. Power AT, Bell JC . Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer. Mol Ther 2007; 15: 660–665.

    Article  CAS  PubMed  Google Scholar 

  50. Pereboeva L, Curiel DT . Cellular vehicles for cancer gene therapy: current status and future potential. BioDrugs 2004; 18: 361–385.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Hallden G, Hill R, Anand A, Liu TC, Francis J et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol 2003; 21: 1328–1335.

    Article  CAS  PubMed  Google Scholar 

  52. Toth K, Doronin K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Adenovirus immunoregulatory E3 proteins prolong transplants of human cells in immunocompetent mice. Virus Res 2005; 108: 149–159.

    Article  CAS  PubMed  Google Scholar 

  53. Kojaoghlanian T, Flomenberg P, Horwitz MS . The impact of adenovirus infection on the immunocompromised host. Rev Med Virol 2003; 13: 155–171.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants CA108335 and CA118022 to WSMW, and CA105841 to KD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Doronin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shashkova, E., Kuppuswamy, M., Wold, W. et al. Anticancer activity of oncolytic adenovirus vector armed with IFN-α and ADP is enhanced by pharmacologically controlled expression of TRAIL. Cancer Gene Ther 15, 61–72 (2008). https://doi.org/10.1038/sj.cgt.7701107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701107

Keywords

This article is cited by

Search

Quick links