Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

International progress in cancer gene therapy

Abstract

We overview the current status and most recent developments in the field of cancer gene therapy from an international viewpoint. We have largely based our review on presentations from the eigth annual meeting of the International Society for Cell and Gene Therapy of Cancer held in Mumbai, India (www.iscgt.com and www.iscgtindia.com). This has afforded us with the opportunity to describe the most recently published and unpublished data in the field of cancer gene therapy, gaining an insight into the priorities in this field today. In doing so, we hope to have provided a state of the art review of cancer gene therapy, with the help of some of the best-known researchers in the field. In addition, due to the location of the meeting, we had a unique opportunity to listen to some of the seminal cancer gene therapy work being performed in India at this time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Abbreviations

AAV:

adeno-associated virus

Ab:

antibody

Ad:

adenovirus

AML:

acute myeloid leukemia

AP-2α:

activator protein-2α

APC:

anaphase-promoting complex

CTL:

cytotoxic T lymphocyte

DC:

dendritic cell

DLI:

donor leukocyte infusion

FPRL1:

formyl peptide receptor like 1

HAART:

highly active antiretroviral therapy

HCC:

hepatocellular carcinoma

HCV:

hepatitis C virus

HDL:

high-density lipoprotein

HIV:

human immunodeficiency virus

HSV-tk:

Herpes simplex virus-thymidine kinase

ISCGT:

International Society for Cell and Gene Therapy of Cancer

LCMV GP:

glycoprotein of lymphocytic choriomeningitis

LV:

lentiviral vector

MK:

midkine

pDNA:

plasmid DNA

RV:

retroviral

s.c::

sub-cutaneous

SCID:

severe-combined immunodeficiency

shRNA:

short hairpin RNA

siRNA:

short-interfering RNA

SMAD:

Sma- and Mad-related protein

SSX2IP:

synovial sarcoma X breakpoint 2 interacting protein

TCR:

T-cell receptor

TGF-β1:

transforming growth factor-β 1

TRAIL:

TNF-related apoptosis-inducing ligand

Tregs:

regulatory/suppressor T cells

TAA:

tumor-associated antigen

VLP:

virus-like particle

VSV-G:

vesicular stomatitis virus glycoprotein

WT:

wild type

References

  1. de Bruijn DR, dos Santos NR, Kater-Baats E, Thijssen J, van den Berk L, Stap J et al. The cancer-related protein SSX2 interacts with the human homologue of a Ras-like GTPase interactor, RAB3IP, and a novel nuclear protein, SSX2IP. Genes Chromosomes Cancer 2002; 34: 285–298.

    CAS  PubMed  Google Scholar 

  2. Guinn BA, Bland EA, Lodi U, Liggins AP, Tobal K, Petters S et al. Humoral detection of leukaemia-associated antigens in presentation acute myeloid leukaemia. Biochem Biophys Res Commun 2005; 335: 1293–1304.

    CAS  PubMed  Google Scholar 

  3. Denniss FA, Breslin A, Ingram W, Hardwick NR, Mufti GJ, Guinn BA . The leukaemia-associated antigen, SSX2IP, is expressed during mitosis on the surface of myeloid leukaemia cells. Br J Haematol 2007; 138: 668–669.

    PubMed  Google Scholar 

  4. Guinn BA, Bullinger L, Thomas NS, Mills KI, Greiner J . SSX2IP expression in acute myeloid leukaemia: an association with mitotic spindle failure in t(8;21), and cell cycle in t(15;17) patients. Br J Haematol 2008; 140: 250–251.

    PubMed  Google Scholar 

  5. Zachariae W, Nasmyth K . Whose end is destruction: cell division and the anaphase-promoting complex. Genes Develop 1999; 13: 2039–2058.

    CAS  PubMed  Google Scholar 

  6. Boyapati A, Yan M, Peterson LF, Biggs JR, Le Beau MM, Zhang DE . A leukemia fusion protein attenuates the spindle checkpoint and promotes aneuploidy. Blood 2007; 109: 3963–3971.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wajapeyee N, Somasundaram K . Cell cycle arrest and apoptosis induction by activator protein 2α(AP-2α) and the role of p53 and p21WAF1/CIP1 in AP-2α-mediated growth inhibition. J Biol Chem 2003; 278: 52093–52101.

    CAS  PubMed  Google Scholar 

  8. Wajapeyee N, Britto R, Ravishankar HM, Somasundaram K . Apoptosis induction by activator protein 2α involves transcriptional repression of Bcl-2. J Biol Chem 2006; 281: 16207–16219.

    CAS  PubMed  Google Scholar 

  9. Prudkin L, Behrens C, Liu DD, Zhou X, Ozburn NC, Bekele BN et al. Loss and reduction of Fus1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clin Cancer Res 2008; 14: 41–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ji L, Nishizaki M, Gao B, Burbee D, Kondo M, Kamibayashi C et al. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 2002; 62: 2715–2720.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ito I, Began G, Mohiuddin I, Saeki T, Saito Y, Branch CD et al. Increased uptake of liposomal–DNA complexes by lung metastases following intravenous administration. Mol Ther 2003; 7: 409–418.

    CAS  PubMed  Google Scholar 

  12. Ito I, Ji L, Tanaka F, Saito Y, Gopalan B, Branch CD et al. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 2004; 11: 733–739.

    CAS  PubMed  Google Scholar 

  13. Gopalan B, Ito I, Branch CD, Stephens C, Roth JA, Ramesh R . Nanoparticle-based systemic gene therapy for lung cancer: molecular mechanisms and strategies to suppress nanoparticle-mediated inflammatory response. Technol Cancer Res Treat 2004; 3: 647–657.

    CAS  PubMed  Google Scholar 

  14. Rainov NG, Ren H . Clinical trials with retrovirus mediated gene therapy—what have we learned? J Neuro-Oncol 2003; 65: 227–236.

    Google Scholar 

  15. Thomas SM, Naresh KN, Wagle AS, Mulherkar R . Preclinical studies on suicide gene therapy for head/neck cancer: a novel method for evaluation of treatment efficacy. Anticancer Res 1998; 18: 4393–4398.

    CAS  PubMed  Google Scholar 

  16. Wagle AS, Joshi GV, Naresh KN, Mulherkar R . Preclinical studies for gene therapy of head and neck cancers using the HSV-tk/GCV strategy. Indian J Biotechnol 2005; 4: 82–87.

    CAS  Google Scholar 

  17. Duiker EW, Mom CH, de Jong S, Willemse PH, Gietema JA, van der Zee AG et al. The clinical trail of TRAIL. Eur J Cancer 2006; 42: 2233–2240.

    CAS  PubMed  Google Scholar 

  18. Shi J, Zheng D, Liu Y, Sham MH, Tam P, Farzaneh F et al. Overexpression of soluble TRAIL induces apoptosis in human lung adenocarcinoma and inhibits growth of tumor xenografts in nude mice. Cancer Res 2005; 65: 1687–1692.

    CAS  PubMed  Google Scholar 

  19. Ma H, Liu Y, Liu S, Kung HF, Sun X, Zheng D et al. Recombinant adeno-associated virus-mediated TRAIL gene therapy suppresses liver metastatic tumors. Int J Cancer 2005; 116: 314–321.

    CAS  PubMed  Google Scholar 

  20. Ma H, Liu Y, Liu S, Xu R, Zheng D . Oral adeno-associated virus-sTRAIL gene therapy suppresses human hepatocellular carcinoma growth in mice. Hepatology 2005; 42: 1355–1363.

    CAS  PubMed  Google Scholar 

  21. Guo Y, Chen C, Zheng Y, Zhang J, Tao X, Liu S et al. A novel anti-human DR5 monoclonal antibody with tumoricidal activity induces caspase-dependent and caspase-independent cell death. J Biol Chem 2005; 280: 41940–41952.

    CAS  PubMed  Google Scholar 

  22. Shi J, Liu Y, Zheng Y, Guo Y, Zhang J, Cheung PT et al. Therapeutic expression of an anti-death receptor 5 single-chain fixed-variable region prevents tumor growth in mice. Cancer Res 2006; 66: 11946–11953.

    CAS  PubMed  Google Scholar 

  23. Lin C, Wei W, Zhang J, Liu S, Liu Y, Zheng D . Formyl peptide receptor-like one mediated endogenous TRAIL gene expression with tumoricidal activity. Mol Cancer Ther 2007; 6: 2618–2625.

    CAS  PubMed  Google Scholar 

  24. Collins CG, Tangney M, Larkin JO, Casey G, Whelan MC, Cashman J et al. Local gene therapy of solid tumors with GM-CSF and B7-1 eradicates both treated and distal tumors. Cancer Gene Ther 2006; 13: 1061–1071.

    CAS  PubMed  Google Scholar 

  25. Wang ZG, Zhao W, Ramachandra M, Seth P . An oncolytic adenovirus expressing soluble transforming growth factor-βtype II receptor for targeting breast cancer: in vitro evaluation. Mol Cancer Ther 2006; 5: 367–373.

    CAS  PubMed  Google Scholar 

  26. Katayose D, Gudas J, Nguyen H, Srivastava S, Cowan KH, Seth P . Cytotoxic effects of adenovirus-mediated wild-type p53 protein expression in normal and tumor mammary epithelial cells. Clin Cancer Res 1995; 1: 889–897.

    CAS  PubMed  Google Scholar 

  27. Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA . High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther 1994; 1: 5–13.

    PubMed  Google Scholar 

  28. Peng Z . Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Human Gene Ther 2005; 16: 1016–1027.

    CAS  Google Scholar 

  29. Wadler S, Yu B, Tan JY, Kaleya R, Rozenblit A, Makower D et al. Persistent replication of the modified chimeric adenovirus ONYX-015 in both tumor and stromal cells from a patient with gall bladder carcinoma implants. Clin Cancer Res 2003; 9: 33–43.

    CAS  PubMed  Google Scholar 

  30. Warren RS, Kirn DH . Liver-directed viral therapy for cancer p53-targeted adenoviruses and beyond. Surg Oncol Clin North Am 2002; 11: 571–588.

    Google Scholar 

  31. Buller RE, Runnebaum IB, Karlan BY, Horowitz JA, Shahin M, Buekers T et al. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther 2002; 9: 553–566.

    CAS  PubMed  Google Scholar 

  32. Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000; 60: 6359–6366.

    CAS  PubMed  Google Scholar 

  33. Miyauchi M, Shimada H, Kadomatsu K, Muramatsu T, Matsubara S, Ikematsu S et al. Frequent expression of midkine gene in esophageal cancer suggests a potential usage of its promoter for suicide gene therapy. Jpn J Cancer Res 1999; 90: 469–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lo HL, Chang T, Yam P, Marcovecchio PM, Li S, Zaia JA et al. Inhibition of HIV-1 replication with designed miRNAs expressed from RNA polymerase II promoters. Gene Ther 2007; 14: 1503–1512.

    CAS  PubMed  Google Scholar 

  35. Miletic H, Fischer YH, Giroglou T, Rueger MA, Winkeler A, Li H et al. Normal brain cells contribute to the bystander effect in suicide gene therapy of malignant glioma. Clin Cancer Res 2007; 13: 6761–6768.

    CAS  PubMed  Google Scholar 

  36. Lyons M, Onion D, Green NK, Aslan K, Rajaratnam R, Bazan-Peregrino M et al. Adenovirus type 5 interactions with human blood cells may compromise systemic delivery. Mol Ther 2006; 14: 118–128.

    CAS  PubMed  Google Scholar 

  37. Green NK, Herbert CW, Hale SJ, Hale AB, Mautner V, Harkins R et al. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther 2004; 11: 1256–1263.

    CAS  PubMed  Google Scholar 

  38. Fisher KD, Green NK, Hale A, Subr V, Ulbrich K, Seymour LW . Passive tumour targeting of polymer-coated adenovirus for cancer gene therapy. J Drug Target 2007; 15: 546–551.

    CAS  PubMed  Google Scholar 

  39. Stevenson M, Hale AB, Hale SJ, Green NK, Black G, Fisher KD et al. Incorporation of a laminin-derived peptide (SIKVAV) on polymer-modified adenovirus permits tumor-specific targeting via α6-integrins. Cancer Gene Ther 2007; 14: 335–345.

    CAS  PubMed  Google Scholar 

  40. Teichler Zallen D . US gene therapy in crisis. Trends Genet 2000; 16: 272–275.

    CAS  PubMed  Google Scholar 

  41. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. New Engl J Med 2003; 348: 255–256.

    PubMed  Google Scholar 

  42. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    CAS  PubMed  Google Scholar 

  43. Teo SK, Stirling DI, Zeldis JB . Thalidomide as a novel therapeutic agent: new uses for an old product. Drug Discov Today 2005; 10: 107–114.

    CAS  PubMed  Google Scholar 

  44. Thrasher AJ . Gene therapy for primary immunodeficiencies. Immunol Allergy Clin North Am 2008; 28: 457–471.

    PubMed  Google Scholar 

  45. Thrasher AJ, Hacein-Bey-Abina S, Gaspar HB, Blanche S, Davies EG, Parsley K et al. Failure of SCID-X1 gene therapy in older patients. Blood 2005; 105: 4255–4257.

    CAS  PubMed  Google Scholar 

  46. Schwarzwaelder K, Howe SJ, Schmidt M, Brugman MH, Deichmann A, Glimm H et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007; 117: 2241–2249.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan L, Hardwick NR, Guinn BA, Darling D, Gaken J, Galea-Lauri J et al. An immune edited tumour versus a tumour edited immune system: prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol, Immunother 2006; 55: 1017–1024.

    CAS  Google Scholar 

  48. Miyagi T, Ahuja H, Kubota T, Kubonishi I, Koeffler HP, Miyoshi I . Expression of the candidate Wilm's tumor gene, WT1, in human leukemia cells. Leukemia 1993; 7: 970–977.

    CAS  PubMed  Google Scholar 

  49. Greiner J, Ringhoffer M, Simikopinko O, Szmaragowska A, Huebsch S, Maurer U et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol 2000; 28: 1413–1422.

    CAS  PubMed  Google Scholar 

  50. Greiner J, Ringhoffer M, Taniguchi M, Li L, Schmitt A, Shiku H et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer 2004; 108: 704–711.

    CAS  PubMed  Google Scholar 

  51. Adams SP, Sahota SS, Mijovic A, Czepulkowski B, Padua RA, Mufti GJ et al. Frequent expression of HAGE in presentation chronic myeloid leukaemias. Leukemia 2002; 16: 2238–2242.

    CAS  PubMed  Google Scholar 

  52. Guinn BA, Gilkes AF, Woodward E, Westwood NB, Mufti GJ, Linch D et al. Microarray analysis of tumour antigen expression in presentation acute myeloid leukaemia. Biochem Biophys Res Commun 2005; 333: 703–713.

    CAS  PubMed  Google Scholar 

  53. Hirano N, Takahashi T, Takahashi T, Ohtake S, Hirashima K, Emi N et al. Expression of costimulatory molecules in human leukemias. Leukemia 1996; 10: 1168–1176.

    CAS  PubMed  Google Scholar 

  54. Maeda A, Yamamoto K, Yamashita K, Asagoe K, Nohgawa M, Kita K et al. The expression of co-stimulatory molecules and their relationship to the prognosis of human acute myeloid leukaemia: poor prognosis of B7-2-positive leukaemia. Br J Haematol 1998; 102: 1257–1262.

    CAS  PubMed  Google Scholar 

  55. Tsukada N, Aoki S, Maruyama S, Kishi K, Takahashi M, Aizawa Y . The heterogeneous expression of CD80, CD86 and other adhesion molecules on leukemia and lymphoma cells and their induction by interferon. J Exp Clin Cancer Res 1997; 16: 171–176.

    CAS  PubMed  Google Scholar 

  56. Harding FA, Allison JP . CD28-B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help. J Exp Med 1993; 177: 1791–1796.

    CAS  PubMed  Google Scholar 

  57. Hirst WJ, Buggins A, Darling D, Gaken J, Farzaneh F, Mufti GJ . Enhanced immune costimulatory activity of primary acute myeloid leukaemia blasts after retrovirus-mediated gene transfer of B7.1. Gene Ther 1997; 4: 691–699.

    CAS  PubMed  Google Scholar 

  58. Chan L, Hardwick N, Darling D, Galea-Lauri J, Gaken J, Devereux S et al. IL-2/B7.1 (CD80) fusagene transduction of AML blasts by a self-inactivating lentiviral vector stimulates T cell responses in vitro: a strategy to generate whole cell vaccines for AML. Mol Ther 2005; 11: 120–131.

    CAS  PubMed  Google Scholar 

  59. Klenerman P, Cerundolo V, Dunbar PR . Tracking T cells with tetramers: new tales from new tools. Nat Rev 2002; 2: 263–272.

    CAS  Google Scholar 

  60. Jost PJ, Harbottle RP, Knight A, Miller AD, Coutelle C, Schneider H . A novel peptide, THALWHT, for the targeting of human airway epithelia. FEBS Lett 2001; 489: 263–269.

    CAS  PubMed  Google Scholar 

  61. Kostarelos K, Miller AD . What role can chemistry play in cationic liposome-based gene therapy research today? Adv Genet 2005; 53PA: 69–118.

    PubMed  Google Scholar 

  62. Kostarelos K, Miller AD . Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev 2005; 34: 970–994.

    CAS  PubMed  Google Scholar 

  63. Miller AD . The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr Med Chem 2003; 10: 1195–1211.

    CAS  PubMed  Google Scholar 

  64. Akbulut H, Tang Y, Akbulut KG, Maynard J, Zhang L, Deisseroth A . Antitumor immune response induced by i.t. injection of vector-activated dendritic cells and chemotherapy suppresses metastatic breast cancer. Mol Cancer Ther 2006; 5: 1975–1985.

    CAS  PubMed  Google Scholar 

  65. Tang Y, Zhang L, Yuan J, Akbulut H, Maynard J, Linton PJ et al. Multistep process through which adenoviral vector vaccine overcomes anergy to tumor-associated antigens. Blood 2004; 104: 2704–2713.

    CAS  PubMed  Google Scholar 

  66. Zhang L, Tang Y, Akbulut H, Zelterman D, Linton PJ, Deisseroth AB . An adenoviral vector cancer vaccine that delivers a tumor-associated antigen/CD40-ligand fusion protein to dendritic cells. Proc Natl Acad Sci USA 2003; 100: 15101–15106.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gershon RK, Cohen P, Hencin R, Liebhaber SA . Suppressor T cells. J Immunol 1972; 108: 586–590.

    CAS  PubMed  Google Scholar 

  68. Gershon RK, Mokyr MB, Mitchell MS . Activation of suppressor T cells by tumour cells and specific antibody. Nature 1974; 250: 594–596.

    CAS  PubMed  Google Scholar 

  69. Hall BM . Mechanisms maintaining enhancement of allografts. I. Demonstration of a specific suppressor cell. J Exp Med 1985; 161: 123–133.

    CAS  PubMed  Google Scholar 

  70. Hall BM, Jelbart ME, Gurley KE, Dorsch SE . Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Mediation of specific suppression by T helper/inducer cells. J Exp Med 1985; 162: 1683–1694.

    CAS  PubMed  Google Scholar 

  71. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T . Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985; 161: 72–87.

    CAS  PubMed  Google Scholar 

  72. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    CAS  PubMed  Google Scholar 

  73. Raimondi G, Turner MS, Thomson AW, Morel PA . Naturally occurring regulatory T cells: recent insights in health and disease. Crit Rev Immunol 2007; 27: 61–95.

    CAS  PubMed  Google Scholar 

  74. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006; 12: 178–180.

    CAS  PubMed  Google Scholar 

  75. Terrada C, Fisson S, De Kozak Y, Kaddouri M, Lehoang P, Klatzmann D et al. Regulatory T cells control uveoretinitis induced by pathogenic Th1 cells reacting to a specific retinal neoantigen. J Immunol 2006; 176: 7171–7179.

    CAS  PubMed  Google Scholar 

  76. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    CAS  PubMed  Google Scholar 

  77. Marodon G, Fisson S, Levacher B, Fabre M, Salomon BL, Klatzmann D . Induction of antigen-specific tolerance by intrathymic injection of lentiviral vectors. Blood 2006; 108: 2972–2978.

    CAS  PubMed  Google Scholar 

  78. Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 2002; 16: 779–790.

    CAS  PubMed  Google Scholar 

  79. Bellier B, Dalba C, Clerc B, Desjardins D, Drury R, Cosset FL et al. DNA vaccines encoding retrovirus-based virus-like particles induce efficient immune responses without adjuvant. Vaccine 2006; 24: 2643–2655.

    CAS  PubMed  Google Scholar 

  80. Vyas GN, Rao KR, Ibrahim AB . Australia antigen (hepatitis B antigen): a conformational antigen dependent on disulfide bonds. Science 1972; 178: 1300–1301.

    CAS  PubMed  Google Scholar 

  81. Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM . The influence of antigen organization on B cell responsiveness. Science 1993; 262: 1448–1451.

    CAS  PubMed  Google Scholar 

  82. Storni T, Ruedl C, Schwarz K, Schwendener RA, Renner WA, Bachmann MF . Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J Immunol 2004; 172: 1777–1785.

    CAS  PubMed  Google Scholar 

  83. Dreux M, Cosset FL . The scavenger receptor BI and its ligand, HDL: partners in crime against HCV neutralizing antibodies. J Viral Hepatol 2007; 14: 68–76.

    Google Scholar 

Download references

Acknowledgements

This review contains personal comments and unpublished data from a number of investigators and their groups. We thank the following for their much appreciated contributions to this paper: Ramani Aiyer, Sara Collins, Charlotte Dalba, Albert Deisseroth, Farzin Farzaneh, Noriyuki Kasahara, David Klatzmann, Andrew Miller, Rajagopal Ramesh, Prem Seth, Len Seymour, Masatoshi Tagawa, Mark Tangney, Adrian Thrasher, Dorothee von Laer, Ruian Xu, Jiing-Kuan Yee and Dexian Zheng. The ISCGT India meeting was sponsored by Actis Biologics Pvt. Ltd., a biotechnology company focussed on discovering and developing novel products and technologies for therapeutic and diagnostic applications. BG is funded by the Leukaemia Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A Guinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guinn, B., Mulherkar, R. International progress in cancer gene therapy. Cancer Gene Ther 15, 765–775 (2008). https://doi.org/10.1038/cgt.2008.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.66

Keywords

This article is cited by

Search

Quick links