Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An oncolytic virus derived from type 2 herpes simplex virus has potent therapeutic effect against metastatic ovarian cancer

Abstract

Oncolytic viruses derived from herpes simplex virus (HSV) have shown considerable promise as antitumor agents against solid tumors including ovarian cancer. The current group of oncolytic HSVs was constructed exclusively from type 1 HSV. To exploit further the therapeutic potential of replication-selective viruses, we constructed an oncolytic virus from type 2 HSV by deleting the protein kinase domain of the viral ICP10 gene, which targets the activated Ras signaling pathway in tumor cells. In the study reported here, we administered this HSV-2-derived virus intraperitoneally (i.p.) to nude mice bearing metastatic human ovarian tumor xenografts, evaluated its oncolytic activity, and compared with to that of a virus constructed from HSV-1. Two injections of the HSV-2-derived virus (3 × 106 pfu per dose) led to complete eradication of disseminated tumors in the peritoneal cavity in more than 87% of the mice, whereas the HSV-1-based oncolytic virus, administered at the same dose and on the same schedule, eradicated tumor nodules in only 12% of mice (P<0.01). We conclude that i.p. administration of this HSV-2-based oncolytic virus may provide effective treatment for metastatic human ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Greenlee RT, Hill-Harmon MB, Murray T, Thun M . Cancer statistics, 2001. CA Cancer J Clin 2001; 51: 15–36.

    Article  CAS  PubMed  Google Scholar 

  2. Landis SH, Murray T, Bolden S, Wingo PA . Cancer statistics, 1999. CA Cancer J Clin 1999; 49: 8–31.

    Article  CAS  PubMed  Google Scholar 

  3. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM . Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–856.

    Article  CAS  PubMed  Google Scholar 

  4. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  5. Coukos G, Makrigiannakis A, Montas S, Kaiser LR, Toyozumi T, Benjamin I et al. Multi-attenuated herpes simplex virus-1 mutant G207 exerts cytotoxicity against epithelial ovarian cancer but not normal mesothelium and is suitable for intraperitoneal oncolytic therapy. Cancer Gene Ther 2000; 7: 275–283.

    Article  CAS  PubMed  Google Scholar 

  6. Nakamori M, Fu X, Meng F, Jin A, Tao L, Bast RCJ et al. Effective therapy of metastatic ovarian cancer with an oncolytic herpes simplex virus incorporating two membrane-fusion mechanisms. Clin Cancer Res 2003; 9: 2727–2733.

    CAS  PubMed  Google Scholar 

  7. Randazzo BP, Kesari S, Gesser RM, Alsop D, Ford JC, Brown SM et al. Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology 1995; 211: 94–101.

    Article  CAS  PubMed  Google Scholar 

  8. Andreansky SS, He B, Gillespie GY, Soroceanu L, Markert J, Chou J et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA 1996; 93: 11313–11318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 1994; 54: 3963–3966.

    CAS  PubMed  Google Scholar 

  10. Martuza RL . Act locally, think globally. Nat Med 1997; 3: 1323.

    Article  CAS  PubMed  Google Scholar 

  11. Alemany R, Gomez-Manzano C, Balague C, Yung WK, Curiel DT, Kyritsis AP et al. Gene therapy for gliomas: molecular targets, adenoviral vectors, and oncolytic adenoviruses. Exp Cell Res 1999; 252: 1–12.

    Article  CAS  PubMed  Google Scholar 

  12. Pennisi E . Will a twist of viral fate lead to a new cancer treatment? Science 1996; 274: 342–343.

    Article  CAS  PubMed  Google Scholar 

  13. Chung TD, Wymer JP, Smith CC, Kulka M, Aurelian L . Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J Virol 1989; 63: 3389–3398.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB . Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol 2000; 74: 10417–10429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farassati F, Yang AD, Lee PW . Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 2001; 3: 745–750.

    Article  CAS  PubMed  Google Scholar 

  16. Fu X, Tao L, Cai R, Prigge J, Zhang X . A Mutant Type 2 Herpes Simplex Virus Deleted for the Protein Kinase Domain of the ICP10 Gene Is a Potent Oncolytic Virus. Mol Ther 2006; 13: 882–890.

    Article  CAS  PubMed  Google Scholar 

  17. Fu X, Tao L, Jin A, Vile R, Brenner M, Zhang X . Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus provides potent synergistic anti-tumor effect. Mol Ther 2003; 7: 748–754.

    Article  CAS  PubMed  Google Scholar 

  18. Saeki Y, Ichikawa T, Saeki A, Chiocca EA, Tobler K, Ackermann M et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors [In Process Citation]. Hum Gene Ther 1998; 9: 2787–2794.

    Article  CAS  PubMed  Google Scholar 

  19. Fu X, Zhang X . Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. Cancer Res 2002; 62: 2306–2312.

    CAS  PubMed  Google Scholar 

  20. Chen SH, Shine HD, Goodman JC, Grossman RG, Woo SL . Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci USA 1994; 91: 3054–3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schellingerhout D, Bogdanov Jr A, Marecos E, Spear M, Breakefield X, Weissleder R . Mapping the in vivo distribution of herpes simplex virions. Hum Gene Ther 1998; 9: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  22. Wood M, Perrotte P, Onishi E, Harper ME, Dinney C, Pagliaro L et al. Biodistribution of an adenoviral vector carrying the luciferase reporter gene following intravesical or intravenous administration to a mouse. Cancer Gene Ther 1999; 6: 367–372.

    Article  CAS  PubMed  Google Scholar 

  23. Ulbricht A, Farber I, Wutzler P . Herpes simplex virus hepatitis in mice: effects of treatment with trisodium phosphonoformate. Acta Virol 1985; 29: 493–498.

    CAS  PubMed  Google Scholar 

  24. Goodman ZD, Ishak KG, Sesterhenn IA . Herpes simplex hepatitis in apparently immunocompetent adults. Am J Clin Pathol 1986; 85: 694–699.

    Article  CAS  PubMed  Google Scholar 

  25. Ebert O, Shinozaki K, Kournioti C, Park MS, Garcia-Sastre A, Woo SL . Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res 2004; 64: 3265–3270.

    Article  CAS  PubMed  Google Scholar 

  26. Su HK, Eberle R, Courtney RJ . Processing of the herpes simplex virus type 2 glycoprotein gG-2 results in secretion of a 34,000-Mr cleavage product. J Virol 1987; 61: 1735–1737.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Duerst RJ, Morrison LA . Herpes simplex virus 2 virion host shutoff protein interferes with type I interferon production and responsiveness. Virology 2004; 322: 158–167.

    Article  CAS  PubMed  Google Scholar 

  28. Ashkar AA, Rosenthal KL . Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 2003; 77: 10168–10171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG . Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J Immunol 2003; 170: 1430–1434.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmad A, Sharif-Askari E, Fawaz L, Menezes J . Innate immune response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction. J Virol 2000; 74: 7196–7203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patton SE, Martin ML, Nelsen LL, Fang X, Mills GB, Bast Jr RC et al. Activation of the ras-mitogen-activated protein kinase pathway and phosphorylation of ets-2 at position threonine 72 in human ovarian cancer cell lines. Cancer Res 1998; 58: 2253–2259.

    CAS  PubMed  Google Scholar 

  32. Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3: 11–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Lawrence Stanberry (University of Texas Medical Branch, Galveston, TX) for providing the wild-type HSV-2 strain 186, and John Gilbert for critical reading of this paper. This work was supported in part by a grant from Department of Defense Ovarian Cancer Research Program (DAMD17-03-1-0434).

Grant support: Department of Defense Ovarian Cancer Research Program (DAMD17-03-1-0434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Tao, L. & Zhang, X. An oncolytic virus derived from type 2 herpes simplex virus has potent therapeutic effect against metastatic ovarian cancer. Cancer Gene Ther 14, 480–487 (2007). https://doi.org/10.1038/sj.cgt.7701033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701033

Keywords

This article is cited by

Search

Quick links