Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A gene transfer comparative study of HSA-conjugated antiangiogenic factors in a transgenic mouse model of metastatic ocular cancer

A Corrigendum to this article was published on 14 March 2007

Abstract

Different antiangiogenic and antimetastatic recombinant adenoviruses were tested in a transgenic mouse model of metastatic ocular cancer (TRP1/SV40 Tag transgenic mice), which is a highly aggressive tumor, developed from the pigmented epithelium of the retina. These vectors, encoding amino-terminal fragments of urokinase plasminogen activator (ATF), angiostatin Kringles (K1–3), endostatin (ES) and canstatin (Can) coupled to human serum albumin (HSA) were injected to assess their metastatic and antiangiogenic activities in our model. Compared to AdCO1 control group, AdATF-HSA did not significantly reduce metastatic growth. In contrast, mice treated with AdK1–3-HSA, AdES-HSA and AdCan-HSA displayed significantly smaller metastases (1.19±1.19, 0.87±1.5, 0.43±0.56 vs controls 4.04±5.12 mm3). Moreover, a stronger inhibition of metastatic growth was obtained with AdCan-HSA than with AdK1–3-HSA (P=0.04). Median survival was improved by 4 weeks. A close correlation was observed between the effects of these viruses on metastatic growth and their capacity to inhibit tumor angiogenesis. Our study indicates that systemic antiangiogenic factors production by recombinant adenoviruses, particularly Can, might represent an effective way of delaying metastatic growth via inhibition of angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  3. Holash J, Maisonpierre P, Compton D, Boland P, Alexander CR, Zagzag D et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994–1998.

    Article  CAS  PubMed  Google Scholar 

  4. Zagzag D, Amirnovin R, Greco MA, Yee H, Holash, Wiegand SJ et al. Vascular apoptosis and involutionin gliomas precede neovascularisation: a novel concept for glioma growth and angiogenesis. Lab Invest 2000; 80: 837–849.

    Article  CAS  PubMed  Google Scholar 

  5. O'Reilly MS, Boehm T, Shin Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  PubMed  Google Scholar 

  6. Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000; 275: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  7. O'Reilly MS, Holmgren L, Shing Y, Fukai N, Vasios G, Lane WS et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  CAS  PubMed  Google Scholar 

  8. O'Reilly MS, Holmgren L, Chen C, Folkman J . Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689–692.

    Article  CAS  PubMed  Google Scholar 

  9. Griscelli F, Li H, Bennaceur-Gricelli A, Soria J, Opolon P, Soria C et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 1998; 95: 6367–6372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bouquet C, Frau E, Opolon P, Connault E, Abitbol M, Griscelli F et al. Systemic administration of a recombinant adenovirus encoding a HSA-angiostatin kringle 1–3 conjugate inhibits MDA-MB-231 tumor growth and metastasis in transgenic model of spontaneous eye cancer. Mol Ther 2003; 7: 174–183.

    Article  CAS  PubMed  Google Scholar 

  11. Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SL . Adenovirus-mediated gene trasnfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. PNAS 2000; 97: 4802–4807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kobayashi H, Gotoh J, Hirashima Y, Fujie M, Sugino D, Terao T . Inhibitory effect of a conjugate between human urokinase and urinary trypsin inhibitor on tumor cell invasion in vitro. J Biol Chem 1995; 270: 8361–8366.

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Lu H, Griscelli F, Opolon P, Sun LQ, Ragot T et al. Adenovirus-mediated delivery of a uPA/uPAR antagonist suppresses angiogenesis-dependant tumor growth and dissemination. Gene Ther 1998; 5: 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Griscelli F, Lindenmeyer F, Opolon P, Sun LQ, Connault E et al. Systemic delivery of antiangiogenic adenovirus AdmATF induces liver resistance to metastasis and prolongs survival of mice. Human Gene Ther 1999; 10: 3045–3053.

    Article  CAS  Google Scholar 

  15. Apparailly F, Bouquet C, Millet V, Noel D, Jacquet C, Opolon P et al. Adenovirus-mediated gene tranfer of urokinase plasminogen inhibitor inhibits angiogenesis in experimental arthritis. Gene Therapy 2002; 2002: 192–200.

    Article  Google Scholar 

  16. Chen QR, Kumar D, Stass SA, Mixon AJ . Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999; 59: 3308–3312.

    CAS  PubMed  Google Scholar 

  17. Kuo CJ, Farnebo F, Yu EI, Christofferson R, Swearingen RA, Carter R et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci 2001; 98: 4605–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Penna D, Schmidt A, Beerman F . Tumors of the retinal pigment epithelium metastasise to inguinal lymph nodes and spleen in tyrosinase-related protein 1/SV40T antigen transgenic mice. Oncogene 1998; 17: 2601–2607.

    Article  CAS  PubMed  Google Scholar 

  19. Magnon C, Galaup A, Mullan B, Rouffiac V, Bouquet C, Bidart J-M et al. Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alpha beta 3 and alpha beta 5 integrins. Cancer Res 2005; 65: 4353–4361.

    Article  CAS  PubMed  Google Scholar 

  20. Folberg R, Pe'er J, Gruman LM, Woolson RF, Jeng G, Montague PR et al. The morphologic characteristics of tumor blood vessels as a marker of tumor progression in primary uveal melanoma: a matched case–control study. Hum Pathol 1992; 23: 1298–1305.

    Article  CAS  PubMed  Google Scholar 

  21. Folberg R, Rummelt V, Parys-Van ginderdeuren R, Hwang T, Woolson RF, Pe'er J et al. The pronostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 1993; 100: 1389–1398.

    Article  CAS  PubMed  Google Scholar 

  22. Folberg R, Mehaffey M, Gardner LM, Meyer M, Rummelt V, Pe'er J . The microcirculation of choroidal and ciliary body melanomas. Eye 1997; 11: 227–238.

    Article  PubMed  Google Scholar 

  23. Rummelt V, Folberg R, Rummelt C, Gruman LM, Hwang T, Woolson RF et al. Microcirculation architecture of melanocytic naevi and malignant melanoma of the ciliary body and choroid:A comparative histopathologic and ultrastructural study. Ophthalmology 1994; 101: 718–727.

    Article  CAS  PubMed  Google Scholar 

  24. Rummelt V, Folberg R, Woolson RF, Hwang T, Pe'er J . Relation between the microcirculation architecture and the aggressive behavior of ciliary body melanomas. Ophthalmology 1995; 102: 844–851.

    Article  CAS  PubMed  Google Scholar 

  25. Apte RS, Niederkorn JY, Mayhew E, Alizadeh H . Angiostatin produced by certain primary uveal melanoma cell lines impedes the development of liver metastases. 2001; 119: 1805–1809.

  26. Mueller AJ, Freeman WR, Schaller UC, Kampik A, Folberg R . Complex microcirculation patterns detected by confocal indocyanine green angiography predict time to growth of small choridal melanocytic tumors: MuSIC Report II. Ophthalmology 2002; 109: 22204–22214.

    Article  Google Scholar 

  27. Blezinger P, Wang J, Gondo M, Quesada A, Mehrens D, French M et al. Sytemic inhibition of tumor growth and tumor metastases by intramuscular administration of endostatin gene. Nat Biotechnol 1999; 17: 343–348.

    Article  CAS  PubMed  Google Scholar 

  28. Chen CT, Lin J, Li Q, Phipps SS, Jacubczak JL, Stewart DA et al. Antiangiogenic gene therapy for cancer via systemic administration of adenoviral vectors expressing secretable endostatin. Hum Gene Ther 2000; 11: 1983–1996.

    Article  CAS  PubMed  Google Scholar 

  29. Libutti SK . Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 2000; 60: 1503–1506.

    PubMed  PubMed Central  Google Scholar 

  30. Dkhissi F, Lu H, Soria C, Opolon P, Griscelli F, Liu H et al. Endostatin exhibits a direct antitumor effect in addition to its antiangiogenic activity in colon cancer cells. Hum Gene Ther 2003; 14: 997–1008.

    Article  CAS  PubMed  Google Scholar 

  31. MacDonald NJ, Murad AC, Fogler WE, Lu Y, Sim BK . The tumor suppressing activity of angiostatin protein resides within kringles 1 to 3. Biochem Biophys Res Commun 1999; 264: 469–477.

    Article  CAS  PubMed  Google Scholar 

  32. De Boüard S, Guillamo JS, Christov C, Lefevre N, Brugieres P, Gola E et al. Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin. Hum Gene Ther 2003; 14: 883–895.

    Article  PubMed  Google Scholar 

  33. Murphy SF, Mahl CF, Bloom SM . Choroidal melanoma. Optomet Clin 1993; 3: 63–77.

    CAS  Google Scholar 

  34. Egan K, Seddon J, Glynn R, Gragoudas ES, Albert DM . Epidemiologic aspect of uveal melanoma. Surv Ophthalmol 1988; 32: 239–251.

    Article  CAS  PubMed  Google Scholar 

  35. Vidal JL, Bacin F, Albuisson E, Rozan R, Desjardins L, D'Hermies F et al. ‘Melanome 92’ Etude épidémiologique des mélanomes uvéaux en France. J Fr Ophtalmol 1995; 18: 520–528.

    CAS  PubMed  Google Scholar 

  36. Diener-West M, Hawkins BS, Markowitz JA, Schatchat AP . A review of mortality from choroidal melanoma. II. A meta-analysis of 5-years mortality rates following enucleation, 1966 through 1988. Arch Ophthalmol 1992; 110: 245–250.

    Article  CAS  PubMed  Google Scholar 

  37. Crouzet J, Naudin L, Orsini C, Vigne E, Ferrero L, Le Roux A et al. Recombinational construction in E. coli of infectious adenoviral genomes. Proc Natl Acad Sci 1997; 94: 1414–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mullan B, Dugué C, Moutard V, Raoux D, Tremp G, Denefle P et al. Towards robust functional gene validation by adenoviral vectors: One Step E-coli-derived Recombinant Adenoviral Genome Construction. Gene Ther 2004; 11: 1599–1605.

    Article  CAS  PubMed  Google Scholar 

  39. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH et al. Tumor anglogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J NaH Cancer Inst 1992; 84: 1875–1887.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to all the staff (in particular C Chianale and P Ardouin) in the animal facilities at the Institut Gustave Roussy for their help during the in vivo experiments. We thank Faroudy Boufassa (INSERM CHU de Bicêtre) for his help in statistical analysis. We also thank L St Ange for editing. La Ligue National Contre le Cancer, l'Association pour la Recherche Contre le Cancer (ARC), and le Centre National de la Recherche scientifique (CNRS) are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Bouquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frau, E., Magnon, C., Opolon, P. et al. A gene transfer comparative study of HSA-conjugated antiangiogenic factors in a transgenic mouse model of metastatic ocular cancer. Cancer Gene Ther 14, 251–261 (2007). https://doi.org/10.1038/sj.cgt.7701005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701005

Keywords

Search

Quick links