Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL-12 gene-modified bone marrow cell therapy suppresses the development of experimental metastatic prostate cancer

A Corrigendum to this article was published on 12 September 2007

Abstract

To investigate the immunomodulatory effects of interleukin-12 (IL-12) for treatment of metastatic prostate cancer, we administered adult bone marrow cells (BMC) that were genetically modified by retroviral vector-mediated IL-12 gene transduction in an experimental mouse model of prostate cancer metastasis. This therapy produced significant anti-metastatic effects in bone and lung and prolonged animal survival. Flow cytometric analysis indicated donor BMC could effectively home to bone and lung after treatment. Intensive infiltration of CD4 and CD8T cells in lung metastases and increased systemic natural killer and cytotoxic T lymphocyte activities indicated induction of a significant anti-metastatic immune response after treatment with IL-12 transduced BMC. Our results demonstrate the therapeutic potential of gene-modified BMC gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55: 10–30.

    Article  PubMed  Google Scholar 

  2. Han M, Partin AW, Pound CR, Epstein JI, Walsh PC . Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience. Urol Clin North Am 2001; 28: 555–565.

    Article  CAS  PubMed  Google Scholar 

  3. Miller AM, Ozenci V, Kiessling R, Pisa P . Immune monitoring in a phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J Immunother 2005; 28: 389–395.

    Article  CAS  PubMed  Google Scholar 

  4. Gregor PD, Wolchok JD, Turaga V, Latouche JB, Sadelain M, Bacich D et al. Induction of autoantibodies to syngeneic prostate-specific membrane antigen by xenogeneic vaccination. Int J Cancer 2005; 116: 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peshwa MV, Shi JD, Ruegg C, Laus R, van Schooten WC . Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. Prostate 1998; 36: 129–138.

    Article  CAS  PubMed  Google Scholar 

  6. Pantuck AJ, van Ophoven A, Gitlitz BJ, Tso CL, Acres B, Squiban P et al. Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J Immunother 2004; 27: 240–253.

    Article  CAS  PubMed  Google Scholar 

  7. Fossa A, Alsoe L, Crameri R, Funderud S, Gaudernack G, Smeland EB . Serological cloning of cancer/testis antigens expressed in prostate cancer using cDNA phage surface display. Cancer Immunol Immunother 2004; 53: 431–438.

    Article  CAS  PubMed  Google Scholar 

  8. Antonia S, Mule JJ, Weber JS . Current developments of immunotherapy in the clinic. Curr Opin Immunol 2004; 16: 130–136.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002; 109: 409–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ward S, Casey D, Labarthe MC, Whelan M, Dalgleish A, Pandha H et al. Immunotherapeutic potential of whole tumour cells. Cancer Immunol Immunother 2002; 51: 351–357.

    Article  PubMed  Google Scholar 

  12. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003; 21: 3343–3350.

    Article  CAS  PubMed  Google Scholar 

  13. Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA, Lim M et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 1999; 59: 5160–5168.

    CAS  PubMed  Google Scholar 

  14. Thompson TC, Timme TL, Ebara S, Satoh T, Yang G, Wang J et al. In situ gene therapy for prostate cancer: immunomodulatory approaches. Expert Opin Biol Ther 2001; 1: 481–495.

    Article  CAS  PubMed  Google Scholar 

  15. Eastham JA, Chen SH, Sehgal I, Yang G, Timme TL, Hall SJ et al. Prostate cancer gene therapy: herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models. Hum Gene Ther 1996; 7: 515–523.

    Article  CAS  PubMed  Google Scholar 

  16. Miles BJ, Shalev M, Aguilar-Cordova E, Timme TL, Lee HM, Yang G et al. Prostate-specific antigen response and systemic T cell activation after in situ gene therapy in prostate cancer patients failing radiotherapy. Hum Gene Ther 2001; 12: 1955–1967.

    Article  CAS  PubMed  Google Scholar 

  17. Gdor Y, Timme TL, Miles BJ, Kadmon D, Thompson TC . Gene therapy for prostate cancer. Expert Rev Anticancer Ther 2002; 2: 309–321.

    Article  CAS  PubMed  Google Scholar 

  18. Nasu Y, Bangma CH, Hull GW, Lee HM, Hu J, Wang J et al. Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Therapy 1999; 6: 338–349.

    Article  CAS  PubMed  Google Scholar 

  19. Timme TL, Satoh T, Tahir SA, Wang H, Teh BS, Butler EB et al. Therapeutic targets for metastatic prostate cancer. Curr Drug Targets 2003; 4: 251–261.

    Article  CAS  PubMed  Google Scholar 

  20. Green NK, Seymour LW . Adenoviral vectors: systemic delivery and tumor targeting. Cancer Gene Ther 2002; 9: 1036–1042.

    Article  CAS  PubMed  Google Scholar 

  21. Friedrich G, Soriano P . Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 1991; 5: 1513–1523.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson TC, Park SH, Timme TL, Ren C, Eastham JA, Donehower LA et al. Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Oncogene 1995; 10: 869–879.

    CAS  PubMed  Google Scholar 

  23. Tahara H, Zitvogel L, Storkus WJ, Zeh III HJ, McKinney TG, Schreiber RD et al. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol 1995; 154: 6466–6474.

    CAS  PubMed  Google Scholar 

  24. Lee HM, Timme TL, Thompson TC . Resistance to lysis by cytotoxic T cells: a dominant effect in metastatic mouse prostate cancer cells. Cancer Res 2000; 60: 1927–1933.

    CAS  PubMed  Google Scholar 

  25. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993; 178: 1223–1230.

    Article  CAS  PubMed  Google Scholar 

  26. Colombo MP, Trinchieri G . Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13: 155–168.

    Article  CAS  PubMed  Google Scholar 

  27. Noguchi Y, Jungbluth A, Richards EC, Old LJ . Effect of interleukin 12 on tumor induction by 3-methylcholanthrene. Proc Natl Acad Sci USA 1996; 93: 11798–11801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nanni P, Nicoletti G, De Giovanni C, Landuzzi L, Di Carlo E, Cavallo F et al. Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J Exp Med 2001; 194: 1195–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jacobsen SE . IL12, a direct stimulator and indirect inhibitor of haematopoiesis. Res Immunol 1995; 146: 506–514.

    Article  CAS  PubMed  Google Scholar 

  30. Car BD, Eng VM, Lipman JM, Anderson TD . The toxicology of interleukin-12: a review. Toxicol Pathol 1999; 27: 58–63.

    Article  CAS  PubMed  Google Scholar 

  31. Xu YX, Gao X, Janakiraman N, Chapman RA, Gautam SC . IL-12 gene therapy of leukemia with hematopoietic progenitor cells without the toxicity of systemic IL-12 treatment. Clin Immunol 2001; 98: 180–189.

    Article  CAS  PubMed  Google Scholar 

  32. Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H . Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res 1999; 59: 4035–4041.

    CAS  PubMed  Google Scholar 

  33. Stewart FM, Crittenden RB, Lowry PA, Pearson-White S, Quesenberry PJ . Long-term engraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice. Blood 1993; 81: 2566–2571.

    CAS  PubMed  Google Scholar 

  34. Stewart FM, Zhong S, Wuu J, Hsieh C, Nilsson SK, Quesenberry PJ . Lymphohematopoietic engraftment in minimally myeloablated hosts. Blood 1998; 91: 3681–3687.

    CAS  PubMed  Google Scholar 

  35. Luznik L, Slansky JE, Jalla S, Borrello I, Levitsky HI, Pardoll DM . et al. Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. Blood 2003; 101: 1645–1652.

    Article  CAS  PubMed  Google Scholar 

  36. Bubnic SJ, Keating A . Donor stem cells home to marrow efficiently and contribute to short- and long-term hematopoiesis after low-cell-dose unconditioned bone marrow transplantation. Exp Hematol 2002; 30: 606–611.

    Article  PubMed  Google Scholar 

  37. Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J . Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 1995; 87: 581–586.

    Article  CAS  PubMed  Google Scholar 

  38. Duda DG, Sunamura M, Lozonschi L, Kodama T, Egawa S, Matsumoto G et al. Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res 2000; 60: 1111–1116.

    CAS  PubMed  Google Scholar 

  39. Rosenzweig M, Connole M, Glickman R, Yue SP, Noren B, DeMaria M et al. Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells. Blood 2001; 97: 1951–1959.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Cancer Institute (Specialized Program or Research Excellence, SPORE P50-58204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T C Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Yang, G., Timme, T. et al. IL-12 gene-modified bone marrow cell therapy suppresses the development of experimental metastatic prostate cancer. Cancer Gene Ther 14, 819–827 (2007). https://doi.org/10.1038/sj.cgt.7701069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701069

Keywords

This article is cited by

Search

Quick links