Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Potent antitumor efficacy of XAF1 delivered by conditionally replicative adenovirus vector via caspase-independent apoptosis

Abstract

XAF1 is a newly identified tumor-suppressor gene that can antagonize XIAP and sensitize cells to other cell death triggers. In this study, we utilized ZD55, a conditionally replicative adenovirus (CRAd) similar to ONYX-015 as the vector to transfer XAF1 into the tumor cells to evaluate its antitumor efficacy in vitro and in vivo. Potent and specific cytopathic effect (CPE) was observed upon infection with ZD55-XAF1 in tumor cell lines. Importantly, ZD55-XAF1 exhibited a superior suppression of tumor growth in an animal model of colorectal carcinoma in nude mice compared with Ad-XAF1 (E1-deleted replication-defective viral) and ONYX-015. Complete eradication of the established tumors was observed in four of eight mice. Our data also showed that infection with ZD55-XAF1 resulted in caspase-independent apoptosis. Although caspase-3, poly(ADP-ribose) polymerase were mildly activated in response to ZD55-XAF1 infection, pretreatment with pan-caspase inhibitor hardly influence its apoptosis-inducing activity. In summary, our study strongly suggested that ZD55-XAF1 could serve as an effective gene-virotherapy strategy and has highly potential against human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Holcik M, Gibson H, Korneluk RG . XIAP: apoptotic brake and promising therapeutic target. Apoptosis 2001; 6: 253–261.

    Article  CAS  PubMed  Google Scholar 

  2. Hersey P, Zhang XD . Overcoming resistance of cancer cells to apoptosis. J Cell Physiol 2003; 196: 9–18.

    Article  CAS  PubMed  Google Scholar 

  3. Ferreira CG, Epping M, Kruyt FA, Giaccone G . Apoptosis: target of cancer therapy. Clin Cancer Res 2002; 8: 2024–2034.

    CAS  PubMed  Google Scholar 

  4. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES et al. Structural basis of caspase-7 inhibition by XIAP. Cell 2001; 104: 769–780.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R . X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem 2001; 276: 27058–27063.

    Article  CAS  PubMed  Google Scholar 

  6. Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG . Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 2000; 70: 113–122.

    Article  CAS  PubMed  Google Scholar 

  7. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000; 6: 1796–1803.

    CAS  PubMed  Google Scholar 

  8. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D et al. Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol 2001; 3: 128–133.

    Article  CAS  PubMed  Google Scholar 

  9. Byun DS, Cho K, Ryu BK, Lee MG, Kang MJ, Kim HR et al. Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus in human gastric adenocarcinomas. Cancer Res 2003; 63: 7068–7075.

    CAS  PubMed  Google Scholar 

  10. Ma TL, Ni PH, Zhong J, Tan JH, Qiao MM, Jiang SH . Low expression of XIAP-associated factor 1 in human colorectal cancers. Chin J Dig Dis 2005; 6: 10–14.

    Article  CAS  PubMed  Google Scholar 

  11. Ng KC, Campos EI, Martinka M, Li G . XAF1 expression is significantly reduced in human melanoma. J Invest Dermatol 2004; 123: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  12. Fang X, Liu Z, Fan Y, Zheng C, Nilson S, Egevad L et al. Switch to full-length of XAF1 mRNA expression in prostate cancer cells by the DNA methylation inhibitor. Int J Cancer 2006; 118: 2485–2489.

    Article  CAS  PubMed  Google Scholar 

  13. Jang JY, Kim HJ, Chi SG, Lee KY, Nam KD, Kim NH et al. [Frequent epigenetic inactivation of XAF1 by promotor hypermethylation in human colon cancers]. Korean J Gastroenterol 2005; 45: 285–293.

    PubMed  Google Scholar 

  14. Leaman DW, Chawla-Sarkar M, Vyas K, Reheman M, Tamai K, Toji S et al. Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 2002; 277: 28504–28511.

    Article  CAS  PubMed  Google Scholar 

  15. Xia Y, Novak R, Lewis J, Duckett CS, Phillips AC . Xaf1 can cooperate with TNFalpha in the induction of apoptosis, independently of interaction with XIAP. Mol Cell Biochem 2006; 286: 67–76.

    Article  CAS  PubMed  Google Scholar 

  16. Hermiston T . Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer. J Clin Invest 2000; 105: 1169–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vile RG, Russell SJ, Lemoine NR . Cancer gene therapy: hard lessons and new courses. Gene Therapy 2000; 7: 2–8.

    Article  CAS  PubMed  Google Scholar 

  18. Vorburger SA, Hunt KK . Adenoviral gene therapy. Oncologist 2002; 7: 46–59.

    Article  CAS  PubMed  Google Scholar 

  19. Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR . A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 1994; 22: 5506–5507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pei Z, Chu L, Zou W, Zhang Z, Qiu S, Qi R et al. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology 2004; 39: 1371–1381.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2003; 13: 481–489.

    Article  CAS  PubMed  Google Scholar 

  22. Abou El Hassan MA, van der Meulen-Muileman I, Abbas S, Kruyt FA . Conditionally replicating adenoviruses kill tumor cells via a basic apoptotic machinery-independent mechanism that resembles necrosis-like programmed cell death. J Virol 2004; 78: 12243–12251.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Srivastava RK . TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001; 3: 535–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lockshin RA, Zakeri Z . Caspase-independent cell death? Oncogene 2004; 23: 2766–2773.

    Article  CAS  PubMed  Google Scholar 

  25. Guo Y, Chen C, Zheng Y, Zhang J, Tao X, Liu S et al. A novel anti-human DR5 monoclonal antibody with tumoricidal activity induces caspase-dependent and caspase-independent cell death. J Biol Chem 2005; 280: 41940–41952.

    Article  CAS  PubMed  Google Scholar 

  26. Yang L, Cao Z, Yan H, Wood WC . Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res 2003; 63: 6815–6824.

    CAS  PubMed  Google Scholar 

  27. Leist M, Jaattela M . Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2: 589–598.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson DE . Noncaspase proteases in apoptosis. Leukemia 2000; 14: 1695–1703.

    Article  CAS  PubMed  Google Scholar 

  29. Mathiasen IS, Jaattela M . Triggering caspase-independent cell death to combat cancer. Trends Mol Med 2002; 8: 212–220.

    Article  CAS  PubMed  Google Scholar 

  30. Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000; 60: 6359–6366.

    CAS  PubMed  Google Scholar 

  31. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R . A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

  32. Shinoura N, Yoshida Y, Tsunoda R, Ohashi M, Zhang W, Asai A et al. Highly augmented cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res 1999; 59: 3411–3416.

    CAS  PubMed  Google Scholar 

  33. Wickham TJ . Targeting adenovirus. Gene Ther 2000; 7: 110–114.

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Hernandez-Alcoceba R, Shankar V, Zabala M, Kochanek S, Sangro B et al. Prolonged and inducible transgene expression in the liver using gutless adenovirus: a potential therapy for liver cancer. Gastroenterology 2004; 126: 278–289.

    Article  CAS  PubMed  Google Scholar 

  35. Yant SR, Ehrhardt A, Mikkelsen JG, Meuse L, Pham T, Kay MA . Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 2002; 20: 999–1005.

    Article  CAS  PubMed  Google Scholar 

  36. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18: 723–727.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Hallden G, Hill R, Anand A, Liu TC, Francis J et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol 2003; 21: 1328–1335.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Douglas W Leaman (The University of Toledo, USA) for the provision of pcDNA3-HA-XAF1 plasmid. We also thank Lanyin Sun for help in the cell culture, Ming Zhuo and Yanhong Zhang for discussion of this paper. This work was supported by the Key Project of the Chinese Academy of Sciences (No. KSCX2-3-06), the National Natural Science Foundation of China (No. 30120160823), a Chinese National b863Q High Tech Project Foundation grant (No. 2002AA216021), the 973 Project (No. 2004CB518804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Y Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, R., Gu, J., Zhang, Z. et al. Potent antitumor efficacy of XAF1 delivered by conditionally replicative adenovirus vector via caspase-independent apoptosis. Cancer Gene Ther 14, 82–90 (2007). https://doi.org/10.1038/sj.cgt.7700992

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700992

Keywords

This article is cited by

Search

Quick links