Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial

Abstract

The major focus of intrahepatic arterial (IHA) administration of adenoviruses (Ad) has been on safety. Currently, there is little published data on the biological responses to Ad when administered via this route. As part of a Phase I study, we evaluated biological responses to a replication-defective adenovirus encoding the p53 transgene (SCH 58500) when administered by hepatic arterial infusion to patients with primarily colorectal cancer metastatic to the liver. In analyzing biological responses to the Ad vector, we found that both total and neutralizing Ad antibodies increased weeks after SCH 58500 infusion. The fold increase in antibody titers was not dependent on SCH 58500 dosage. The proinflammatory cytokine interleukin-6 (IL-6) transiently peaked within 6 h of dosing. The cytokine sTNF-R2 showed elevation by 24 h post-treatment, and fold increases were directly related to SCH 58500 doses. Cytokines TNF-α, IL-1β, and sTNF-R1 showed no increased levels over 24 h. Predose antibody levels did not appear to predict transduction, nor did serum Ad neutralizing factor (SNF). Delivery of SCH 58500 to tumor tissue occurred, though we found distribution more predominantly in liver tissues, as opposed to tumors. RT-PCR showed significantly higher expression levels (P<0.0001, ANOVA) for adenovirus type 2 and 5 receptor (CAR) in liver tissues, suggesting a correlation with transduction. Evidence of tumor-specific apoptotic activity was provided by laser scanning cytometry, which determined a coincidence of elevated nuclear p53 protein expression with apoptosis in patient tissue. IHA administration of a replication defective adenovirus is a feasible mode of delivery, allowing for exogenous transfer of the p53 gene into target tissues, with evidence of functional p53. Limited and transient inflammatory responses to the drug occurred, but pre-existing immunity to Ad did not preclude SCH 58500 delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kemeny N, Huang Y, Cohen AM, Shi W, Conti JA, Brennan MF et al. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med 1999; 341 (27): 2039–2048.

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs CS, Moore MR, Harker G, Villa L, Rinaldi D, Hecht JR . Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol 2003; 21 (5): 807–814.

    Article  CAS  PubMed  Google Scholar 

  3. Levine AJ, Momand J, Finlay CA . The p53 tumour suppressor gene. Nature 1991; 351 (6326): 453–456.

    Article  CAS  PubMed  Google Scholar 

  4. Fridman JS, Lowe SW . Control of apoptosis by p53. Oncogene 2003; 22 (56): 9030–9040.

    Article  CAS  PubMed  Google Scholar 

  5. Oda T, Tsuda H, Sakamoto M, Hirohashi S . Different mutations of the p53 gene in nodule-in-nodule hepatocellular carcinoma as a evidence for multistage progression. Cancer Lett 1994; 83 (1–2): 197–200.

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen LL, Maneval DC . P53 tumor suppressor gene therapy for cancer. Cancer Gene Ther 1998; 5 (1): 52–63.

    CAS  PubMed  Google Scholar 

  7. St George JA . Gene therapy progress and prospects: adenoviral vectors. Gene Ther 2003; 10 (14): 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  8. Wilson JM . Adenoviruses as gene-delivery vehicles. N Engl J Med 1996; 334 (18): 1185–1187.

    Article  CAS  PubMed  Google Scholar 

  9. Legrand V, Leissner P, Winter A, Mehtali M, Lusky M . Transductional targeting with recombinant adenovirus vectors. Curr Gene Ther 2002; 2 (3): 323–339.

    Article  CAS  PubMed  Google Scholar 

  10. Wills KN, Maneval DC, Menzel P, Harris MP, Sutjipto S, Vaillancourt MT et al. Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer. Hum Gene Ther 1994; 5 (9): 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson SC, Johnson DE, Harris MP, Engler H, Hancock W, Huang WM et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin Cancer Res 1998; 4 (7): 1649–1659.

    CAS  PubMed  Google Scholar 

  12. Bookstein R, Demers W, Gregory R, Maneval D, Park J, Wills K . p53 gene therapy in vivo of herpatocellular and liver metastatic colorectal cancer. Semin Oncol 1996; 23 (1): 66–77.

    CAS  PubMed  Google Scholar 

  13. Warren RS, Kirn DH . Liver-directed viral therapy for cancer p53-targeted adenoviruses and beyond. Surg Oncol Clin N Am 2002; 11 (3): 571–588, vi.

    Article  PubMed  Google Scholar 

  14. Buller RE, Shahin MS, Horowitz JA, Runnebaum IB, Mahavni V, Petrauskas S et al. Long term follow-up of patients with recurrent ovarian cancer after Ad p53 gene replacement with SCH 58500. Cancer Gene Ther 2002; 9 (7): 567–572.

    Article  CAS  PubMed  Google Scholar 

  15. Buller RE, Runnebaum IB, Karlan BY, Horowitz JA, Shahin M, Buekers T et al. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther 2002; 9 (7): 553–566.

    Article  CAS  PubMed  Google Scholar 

  16. Schuler M, Herrmann R, De Greve JL, Stewart AK, Gatzemeier U, Stewart DJ et al. Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lung cancer: results of a multicenter phase II study. J Clin Oncol 2001; 19 (6): 1750–1758.

    Article  CAS  PubMed  Google Scholar 

  17. Kuball J, Wen SF, Leissner J, Atkins D, Meinhardt P, Quijano E et al. Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation. J Clin Oncol 2002; 20 (4): 957–965.

    Article  CAS  PubMed  Google Scholar 

  18. Crystal RG, Hirschowitz E, Lieberman M, Daly J, Kazam E, Henschke C et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther 1997; 8 (8): 985–1001.

    Article  CAS  PubMed  Google Scholar 

  19. Sung MW, Yeh HC, Thung SN, Schwartz ME, Mandeli JP, Chen SH et al. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol Ther 2001; 4 (3): 182–191.

    Article  CAS  PubMed  Google Scholar 

  20. Habib NA, Hodgson HJ, Lemoine N, Pignatelli M . A phase I/II study of hepatic artery infusion with wtp53-CMV-Ad in metastatic malignant liver tumours. Hum Gene Ther 1999; 10 (12): 2019–2034.

    Article  CAS  PubMed  Google Scholar 

  21. Habib NA, Sarraf CE, Mitry RR, Havlik R, Nicholls J, Kelly M et al. E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Hum Gene Ther 2001; 12 (3): 219–226.

    Article  CAS  PubMed  Google Scholar 

  22. Reid T, Galanis E, Abbruzzese J, Sze D, Andrews J, Romel L et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther 2001; 8 (21): 1618–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reid T, Warren R, Kirn D . Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 2002; 9 (12): 979–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harris MP, Sutjipto S, Wills KN, Hancock W, Cornell D, Johnson DE et al. Adenovirus-mediated p53 gene transfer inhibits growth of human tumor cells expressing mutant p53 protein. Cancer Gene Ther 1996; 3 (2): 121–130.

    CAS  PubMed  Google Scholar 

  25. Schuler M, Rochlitz C, Horowitz JA, Schlegel J, Perruchoud AP, Kommoss F et al. A phase I study of adenovirus-mediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer. Hum Gene Ther 1998; 9 (14): 2075–2082.

    Article  CAS  PubMed  Google Scholar 

  26. Wen SF, Xie L, McDonald M, DiGiacomo R, Chang A, Gurnani M et al. Development and validation of sensitive assays to quantitate gene expression after p53 gene therapy and paclitaxel chemotherapy using in vivo dosing in tumor xenograft models. Cancer Gene Ther 2000; 7 (11): 1469–1480.

    Article  CAS  PubMed  Google Scholar 

  27. Gibson UE, Heid CA, Williams PM . A novel method for real time quantitative RT-PCR. Genome Res 1996; 6 (10): 995–1001.

    Article  CAS  PubMed  Google Scholar 

  28. Grace MJ, Xie L, Musco ML, Cui S, Gurnani M, DiGiacomo R et al. The use of laser scanning cytometry to assess depth of penetration of adenovirus p53 gene therapy in human xenograft biopsies. Am J Pathol 1999; 155 (6): 1869–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Musco ML, Cui S, Small D, Nodelman M, Sugarman B, Grace M et al. Comparison of flow cytometry and laser scanning cytometry for the intracellular evaluation of adenoviral infectivity and p53 protein expression in gene therapy. Cytometry 1998; 33 (3): 290–296.

    Article  CAS  PubMed  Google Scholar 

  30. Maron DJ, Tada H, Moscioni AD, Tazelaar J, Fraker DL, Wilson JM et al. Intra-arterial delivery of a recombinant adenovirus does not increase gene transfer to tumor cells in a rat model of metastatic colorectal carcinoma. Mol Ther 2001; 4 (1): 29–35.

    Article  CAS  PubMed  Google Scholar 

  31. Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R . The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9 (16): 2363–2373.

    Article  CAS  PubMed  Google Scholar 

  32. Lai YJ, Pong RC, McConnell JD, Hsieh JT . Surrogate marker for predicting the virus binding of urogenital cancer cells during adenovirus-based gene therapy. Biotechniques 2003; 35 (1): 186–190, 192–194.

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Ko LJ, Jayaraman L, Prives C . p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 1996; 10 (19): 2438–2451.

    Article  CAS  PubMed  Google Scholar 

  34. McPake CR, Shetty S, Kitchingman GR, Harris LC . Wild-type p53 induction mediated by replication-deficient adenoviral vectors. Cancer Res 1999; 59 (17): 4247–4251.

    CAS  PubMed  Google Scholar 

  35. Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62 (21): 6070–6079.

    CAS  PubMed  Google Scholar 

  36. Makower D, Rozenblit A, Kaufman H, Edelman M, Lane ME, Zwiebel J et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res 2003; 9 (2): 693–702.

    PubMed  Google Scholar 

  37. Hong SS, Habib NA, Franqueville L, Jensen S, Boulanger PA . Identification of adenovirus (ad) penton base neutralizing epitopes by use of sera from patients who had received conditionally replicative ad (addl1520) for treatment of liver tumors. J Virol 2003; 77 (19): 10366–10375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Molnar-Kimber KL, Sterman DH, Chang M, Kang EH, ElBash M, Lanuti M et al. Impact of preexisting and induced humoral and cellular immune responses in an adenovirus-based gene therapy phase I clinical trial for localized mesothelioma. Hum Gene Ther 1998; 9 (14): 2121–2133.

    Article  CAS  PubMed  Google Scholar 

  39. Donnelly TJ, Meade P, Jagels M, Cryer HG, Law MM, Hugli TE et al. Cytokine, complement, and endotoxin profiles associated with the development of the adult respiratory distress syndrome after severe injury. Crit Care Med 1994; 22 (5): 768–776.

    Article  CAS  PubMed  Google Scholar 

  40. Nemunaitis J, Cunningham C, Tong AW, Post L, Netto G, Paulson AS et al. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther 2003; 10 (5): 341–352.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Kemeny, DL Fraker, CA Staley and E Burke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I A Atencio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atencio, I., Grace, M., Bordens, R. et al. Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial. Cancer Gene Ther 13, 169–181 (2006). https://doi.org/10.1038/sj.cgt.7700870

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700870

Keywords

This article is cited by

Search

Quick links