Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Short interfering RNAs as a tool for cancer gene therapy

Abstract

There are mainly two types of short RNAs that target complementary messengers in animals: small interfering RNAs and micro-RNAs. Both are produced by the cleavage of double-stranded RNA precursors by Dicer, a member of the Rnase III family of double-stranded specific endonucleases, and both guide the RNA-induced silencing complex to cleave specifically RNAs sharing sequence identity with them. In designing a particular RNA interference (RNAi), it is important to identify the sense/antisense combination that provides the most potent suppression of the target mRNA, and several rules have been established to give >90% gene expression inhibition. RNAi technology can be directed against cancer using a variety of strategies. These include the inhibition of overexpressed oncogenes, blocking cell division by interfering with cyclin E and related genes or promoting apoptosis by suppressing antiapoptotic genes. RNAi against multidrug resistance genes or chemoresistance targets may also provide useful cancer treatments. Studies investigating these approaches in preclinical models are also reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Napoli C, Lemieux C, Jorgensen R . Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Van der Krol AR, Mur LA, Beld M, et al. Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990;2:291–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811.

    CAS  PubMed  Google Scholar 

  4. Tuschl T, Zamore PD, Lehman R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 1999;15:3191–3197.

    Google Scholar 

  5. Hammond S, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404:293–296.

    CAS  PubMed  Google Scholar 

  6. Nicanen A, Haley B, Zamore PD . ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell. 2001;107:309–321.

    Google Scholar 

  7. Schwarz DS, Hutvagner G, Haley B, et al. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell. 2002;10:537–548.

    CAS  PubMed  Google Scholar 

  8. Elbashir SM, Lendeckel W, Tuschi T . RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15:188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dalmay T, Hamilton A, Rudd S, et al. An RNA dependent RNA polymerase in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell. 2000;101:543–553.

    CAS  PubMed  Google Scholar 

  10. Cogoni C, Macino G . Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature. 1999;399:166–169.

    CAS  PubMed  Google Scholar 

  11. Smardon A, Spoerke JM, Stacey SC, et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol. 2000;10:169–178.

    CAS  PubMed  Google Scholar 

  12. Li H, Li WX, Ding SW . Induction and suppression of RNA silencing by an animal virus. Science. 2002;296:1319–1321.

    CAS  PubMed  Google Scholar 

  13. Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–858.

    CAS  PubMed  Google Scholar 

  14. Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294:858–862.

    CAS  PubMed  Google Scholar 

  15. Bartel DP . MicroRNAs: genomics, biogenesis mechanism, and function. Cell. 2004;116:281–297.

    Article  CAS  PubMed  Google Scholar 

  16. Bartel B, Bartel DP . MicroRNAs: at the root of plant development? Plant Physiol. 2003;132:709–717.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–86.

    CAS  PubMed  Google Scholar 

  18. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Basyuk E, Suavet F, Doglio A, et al. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acid Res. 2003;31:6593–6597.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lund E, Güttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science. 2004;303:95–98.

    CAS  PubMed  Google Scholar 

  21. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–3016.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419.

    CAS  PubMed  Google Scholar 

  23. Zamore PD, Tuschl T, Sharp PA, et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.

    CAS  PubMed  Google Scholar 

  24. Bernstein E, Caudy AA, Hammond SM, et al. Role of a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:295–296.

    Google Scholar 

  25. Zhang H, Kolb FA, Brondani V, et al. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 2002;21:5875–5885.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–86.

    CAS  PubMed  Google Scholar 

  27. Zeng Y, Yi R, Cullen BR . MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA. 2003;100:9779–9784.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Doench JG, Peterson CP, Sharp PA . siRNAs can function as miRNAs. Genes Dev. 2003;17:438–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pal-Bhadra M, Leibovitch BA, Sumit GG, et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science. 2004;303:669–672.

    CAS  PubMed  Google Scholar 

  30. Verdel A, Jia S, Gerber S, et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science. 2004;303:672–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aukerman MJ, Sakai H . Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 2003;10:10.

    Google Scholar 

  32. Marathe R, Anandalakshmi R, Smith TH, et al. RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Mol Biol. 2000;43:295–306.

    CAS  PubMed  Google Scholar 

  33. Vance V, Vaucheret H . RNA silencing in plants — defense and counterdefense. Science. 2001;292:2277–2280.

    CAS  PubMed  Google Scholar 

  34. Waterhouse PM, Helliwell CA . Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet. 2003;4:29–38.

    CAS  PubMed  Google Scholar 

  35. Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117:69–81.

    CAS  PubMed  Google Scholar 

  36. Finnegan EJ, Margis R, Waterhouse PM . Posttranscriptional gene silencing is not compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) mutant, a homolog of Dicer-1 from Drosophila. Curr Biol. 2003;13:236–240.

    CAS  PubMed  Google Scholar 

  37. Pham JW, Pellino JL, Lee YS, et al. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. 2004;117:83–94.

  38. Sijen T, Plasterk RH . Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature. 2003;426:310–314.

    CAS  PubMed  Google Scholar 

  39. Reinhart BJ, Slack FJ, Basson M, et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–906.

    CAS  PubMed  Google Scholar 

  40. Brennecke J, Hipfner DR, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.

    CAS  PubMed  Google Scholar 

  41. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ambros V, Lee RC . Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol. 2004;265:131–158.

    CAS  PubMed  Google Scholar 

  43. Kuwabara T, Hsieh J, Nakashima K, et al. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell. 2004;116:779–793.

    CAS  PubMed  Google Scholar 

  44. Novina CD, Sharp PA . The RNAi revolution. Nature. 2004;430:161–164.

    CAS  PubMed  Google Scholar 

  45. Bridge AJ, Pebernard S, Ducraux A, et al. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet. 2003;34:363–364.

    Google Scholar 

  46. Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5:834–839.

    CAS  PubMed  Google Scholar 

  47. Stojdl DF, Lichty B, Knowles S, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000;6:821–825.

    CAS  PubMed  Google Scholar 

  48. Yoshinari K, Miyagishi M, Taira K . Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acid Res. 2004;32:691–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Khvorova A, Reynolds A, Jayasena SD . Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–216.

    CAS  PubMed  Google Scholar 

  50. Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115:199–208.

    CAS  PubMed  Google Scholar 

  51. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–330.

    CAS  PubMed  Google Scholar 

  52. Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Meister G, Landthaler M, Dorsett Y, et al. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA. 2004;10:544–550.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dunoyer P, Lecellier CH, Parizotto EA, et al. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell. 2004;5:1235–1250.

    Google Scholar 

  55. Zamore PD . Plant RNAi: how a viral silencing suppressor inactivates siRNA. Curr Biol. 2004;14:R198–R200.

    CAS  PubMed  Google Scholar 

  56. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498.

    CAS  PubMed  Google Scholar 

  57. Kim DH, Longo M, Han Y, et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol. 2004;22:321–325.

    CAS  PubMed  Google Scholar 

  58. Semizarov D, Frost L, Sarthy A, et al. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci USA. 2003;100:6347–6352.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA. 2004;101:1892–1897.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553.

    CAS  PubMed  Google Scholar 

  61. Sui G, Soohoo C, Affar E, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA. 2002;99:5515–5520.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shinagawa T, Ishii S . Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 2003;17:1340–1345.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002;2:243–247.

    CAS  PubMed  Google Scholar 

  64. Devroe E, Silver PA . Retrovirus-delivered siRNA. BMC Biotechnol. 2002;2:15–20.

    PubMed  PubMed Central  Google Scholar 

  65. de Felipe P, Izquierdo M . Tricistronic and tetracistronic retroviral vectors for gene transfer. HumGene Ther. 2000;11:1921–1931.

    CAS  Google Scholar 

  66. Hawkins LK, Lemoine NR, Kirn D . Oncolytic biotherapy: a novel therapeutic platform. Lancet Oncol. 2002;3:17–26.

    CAS  PubMed  Google Scholar 

  67. Freytag SO, Khil M, Stricker H, et al. Phase I study of replication–competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 2002;62:4968–4976.

    CAS  PubMed  Google Scholar 

  68. Carette JE, Overmeer RM, Schagen FHE, et al. Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. Cancer Res. 2004;64:2663–2667.

    CAS  PubMed  Google Scholar 

  69. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 2003;33:401–406.

    CAS  PubMed  Google Scholar 

  70. Hommel JD, Sears RM, Georgescu D, et al. Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med. 3003;9:1539–1544.

    Google Scholar 

  71. Van Den Haute C, Eggermont K, Nuttin B, et al. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum Gene Ther. 2003;14:1799–1807.

    CAS  PubMed  Google Scholar 

  72. Hingorani SR, Jacobetz MA, Robertson GP, et al. Suppression of BRAFV599E in human melanoma abrogates transformation. Cancer Res. 2003;63:5198–5202.

    CAS  PubMed  Google Scholar 

  73. Sumimoto H, Miyagishi M, Miyoshi H, et al. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene. 2004;24 advanced publication 21 June.

  74. Mitsushita J, Lambeth JD, Kamata T . The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 2004;64:3580–3585.

    CAS  PubMed  Google Scholar 

  75. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954.

    CAS  PubMed  Google Scholar 

  76. Lyons JF, Wilhelm S, Hibner B, et al. Discovery of a novel Raf kinase inhibitor. Endocr-Relat Cancer. 2001;8:219–225.

    CAS  PubMed  Google Scholar 

  77. Menendez JA, Vellon L, Mehmi I, et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci USA. 2004, www.pnas.org/cgi/doi/10.1073/pnas.0403390101 online early edition.

  78. Li K, Lin S, Brunicardi FC, et al. Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res. 2003;63:3593–3597.

    CAS  PubMed  Google Scholar 

  79. Martin-Lluesma S, Stucke VM, Nigg EA . Role of Hec1 in spindle checkpoint signalling and kinetochore recruitment of Mad1/Mad2. Science. 2002;297:2267–2270.

    CAS  PubMed  Google Scholar 

  80. Chen Y, Riley DJ, Zheng L, et al. Phosphorylation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation. J Biol Chem. 2002;277:49408–49416.

    CAS  PubMed  Google Scholar 

  81. Cohen M, Feinstein N, Wilson KL, et al. Nuclear pore protein gp210 is essential for viability in Hela cells and Caenorhabditis elegans. Mol Biol Cell. 2003;14:4230–4237.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Duensing A, Medeiros F, McConarty B, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23:3999–4006.

    CAS  PubMed  Google Scholar 

  83. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advance gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–480.

    CAS  PubMed  Google Scholar 

  84. Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene. 2002;21:5716–5724.

    CAS  PubMed  Google Scholar 

  85. Scherr M, Battmer K, Winkler T, et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood. 2003;101:1566–1569.

    CAS  PubMed  Google Scholar 

  86. Nieth C, Priebsch A, Stege A, et al. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–150.

    CAS  PubMed  Google Scholar 

  87. Duxbury MS, Ito H, Zinner MJ, et al. RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene. 2004;23:1539–1548.

    CAS  PubMed  Google Scholar 

  88. Daniel JC, Cao X, Miller SD, et al. RNA interference of the bcl-xl gene in esophageal adenocarcinoma. J Surg Res. 2003;114:278.

    Google Scholar 

  89. Crnkovic-Mertens I, Hoppe-Seyler F, Butz K . Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene. Oncogene. 2003;22:8330–8336.

    CAS  PubMed  Google Scholar 

  90. Altieri DC . Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene. 2003;22:8581–8589.

    CAS  PubMed  Google Scholar 

  91. Carvalho A, Carmena M, Sambade C . Survivin is required for stable checkpoint activation in taxol-treated Hela cells. J Cell Sci. 2003;116:2987–2998.

    CAS  PubMed  Google Scholar 

  92. Ling X, Li F . Silencing of antiapoptotic and surviving gene by multiple approaches of RNA interference technology. Biotechniques. 2004;36:450–460.

    CAS  PubMed  Google Scholar 

  93. Brower V . Tumor angiogenesis — new drugs on the block. Nat Biotechnol. 1999;17:963–968.

    CAS  PubMed  Google Scholar 

  94. Jansen M, de Witt Hamer PC, Witmer AN, et al. Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res Rev. 2004;45:143–163.

    CAS  PubMed  Google Scholar 

  95. Novak K . Angiogenesis inhibitors revised and revived at AACR. American Association for Cancer Research. Nat Med. 2002;8:427.

    CAS  PubMed  Google Scholar 

  96. Filleur S, Volpert O, Degeorges A, et al. In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev. 2001;15:1373–1382.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Filleur S, Courtin A, Ait-Si-Ali S, et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res. 2003;63:3919–3922.

    CAS  PubMed  Google Scholar 

  98. Cullen BR, Lomedico PT, Ju G . Transcriptional interference in avian retroviruses-implications for the promoter insertion model of leukaemogenesis. Nature. 1984;307:241–245.

    CAS  PubMed  Google Scholar 

  99. Emmerman M, Temin HM . High-frequency deletion in recovered retrovirus vector containing endogenous DNA with promoters. J Virol. 1984;50:42–49.

    Google Scholar 

  100. Emmerman M, Temin HM . Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell. 1984;39:459–467.

    Google Scholar 

  101. Emmerman M, Temin HM . Quantitative analysis of gene suppression in retrovirus vectors. Mol Cell Biol. 1986;6:792–800.

    Google Scholar 

  102. Emmerman M, Temin HM . Comparison of promoter suppression in avian and murine retrovirus vectors. Nucleic Acids Res. 1986;14:9381–9396.

    Google Scholar 

  103. Clark EA, Golub TR, Lander ES, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532–535.

    CAS  PubMed  Google Scholar 

  104. Amatschek S, Koenig U, Auer H, et al. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res. 2004;64:844–856.

    CAS  PubMed  Google Scholar 

  105. Hafkemeyer P, Brinkmann U, Gottesman M, et al. Apoptosis induced by Pseudomonas exotoxin: a sensitive and rapid marker for gene delivery in vivo. Hum Gene Ther. 1999;10:923–934.

    CAS  PubMed  Google Scholar 

  106. Brinkmann U, Pastan I . Immunotoxins against cancer. Biochim Biophs Acta. 1994;1198:27–45.

    CAS  Google Scholar 

  107. Martín V, Cortés ML de Felipe P, et al. Cancer gene therapy by thyroid-hormone mediated expression of toxin genes. Cancer Res. 2000;60:218–3224.

    Google Scholar 

  108. Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268:1766–1769.

    CAS  PubMed  Google Scholar 

  109. No D, Yao TP, Evans RM . Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA. 1996;93:3346–3351.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gupta S, Schoer R, Egan JE, et al. Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA. 2004;101:1927–1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gupta S, Schoer R, Egan JE, et al. Inducible, reversible and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA. 2004;101:1927–1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Van Craenenbroeck K, Vanhoenacker P, Leysen JE, et al. Evaluation of the tetracycline- and ecdysone-inducible systems for expression of neurotransmitter receptors in mammalian cells. Eur J Neurosci. 2001;14:968–976.

    CAS  PubMed  Google Scholar 

  113. Izquierdo M, Cortés ML, de Felipe P, et al. Long-term rat survival after malignant brain tumor regression by retroviral gene therapy. Gene Ther. 1995;2:66–69.

    CAS  PubMed  Google Scholar 

  114. Cortés ML, de Felipe P, Martín V, et al. Successful use of a plant gene in the treatment of cancer in vivo. Gene Ther. 1998;5:1499–1507.

    PubMed  Google Scholar 

  115. Cortés ML, García-Escudero V, Hughes M, et al. The cyanide bystander effect of the linamarase/linamarin killer-suicide gene therapy system. J Gene Med. 2002;4:1–8.

    Google Scholar 

  116. Izquierdo M, Martín V, de Felipe P, et al. Human malignant brain tumor response to herpes simplex thymidine kinase (HSVtk)/ganciclovir gene therapy. Gene Ther. 1996;3:491–495.

    CAS  PubMed  Google Scholar 

  117. Ram Z, Culver KW, Oshiro EM, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med. 1997;3:1354–1361.

    CAS  PubMed  Google Scholar 

  118. Brummelkamp TR, Bernards R . New tools for functional mammalian cancer genetics. Nat Rev Cancer. 2003;3:781–789.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Izquierdo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izquierdo, M. Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 12, 217–227 (2005). https://doi.org/10.1038/sj.cgt.7700791

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700791

Keywords

This article is cited by

Search

Quick links