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Smac mimetic-induced upregulation of interferon-β
sensitizes glioblastoma to temozolomide-induced
cell death

V Marschall1 and S Fulda*,1,2,3

Inhibitor of apoptosis (IAP) proteins are frequently expressed at high levels in cancer cells and represent attractive therapeutic
targets. We previously reported that the Smac (second mitochondria-derived activator of caspases) mimetic BV6, which
antagonizes IAP proteins, sensitizes glioblastoma cells to temozolomide (TMZ)-induced cell death in a nuclear factor-κB (NF-κB)-
dependent manner. However, BV6-induced NF-κB target genes responsible for this synergistic interaction have remained elusive.
Using whole-genome gene expression profiling, we here identify BV6-stimulated, NF-κB-dependent transcriptional upregulation of
interferon-β (IFNβ) and IFN-mediated proapoptotic signaling as critical events that mediate BV6/TMZ-induced apoptosis.
Knockdown of IFNβ significantly rescues cells from BV6/TMZ-induced cell death. Similarly, silencing of the corresponding receptor
IFNα/β receptor (IFNAR) confers a significant protection against apoptosis, demonstrating that IFNβ and IFN signaling are required
for BV6/TMZ-mediated cell death. Moreover, BV6 and TMZ cooperate to transcriptionally upregulate the proapoptotic B-cell
lymphoma 2 family proteins Bax (Bcl-2-associated X protein) or Puma (p53-upregulated modulator of apoptosis). Knockdown of
Bax or Puma significantly decreases BV6/TMZ-induced apoptosis, showing that both proteins are necessary for apoptosis. By
identifying IFNβ as a key mediator of BV6/TMZ-induced apoptosis, our study provides novel insights into the underlying molecular
mechanisms of Smac mimetic-mediated chemosensitization with important implications for the development of novel treatment
strategies for glioblastoma.
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Glioblastoma is the most common primary malignant brain
tumor and current treatment options include surgical resec-
tion, radiation and chemotherapy with the alkylating agent
temozolomide (TMZ).1 However, despite aggressive treatment
regimens, the prognosis of patients suffering from glioblas-
toma is still very poor,2 highlighting the high medical need for
novel treatment strategies.
Evasion of programmed cell death is one of the hallmarks of

human cancers3 and promotes tumorigenesis as well as
treatment resistance.4 Apoptosis is a common form of
programmed cell death that can be engaged via the intrinsic
(mitochondrial) or extrinsic (death receptor) pathway.5 Activa-
tion of the intrinsic pathway is controlled by pro- and
antiapoptotic B-cell lymphoma 2 (Bcl-2) family protein,
including Bcl-2 family proteins such as p53-upregulated
modulator of apoptosis (Puma) or Bcl-2-associated X protein
(Bax). Following engagement of the mitochondrial pathway,
mitochondrial intermembrane space proteins are released into
the cytosol, including second mitochondria-derived activator
of caspases (Smac).6 Smac binds to and neutralizes Inhibitor
of Apoptosis (IAP) proteins, a family of antiapoptotic proteins,

thereby promoting activation of caspases and apoptosis.7

In addition, binding of Smac to IAP proteins that harbor a
Really Interesting New Gene (RING) domain with E3 ligase
activity triggers their autoubiquitination and proteasomal
degradation, which in turn leads to stabilization of nuclear
factor-κB (NF-κB)-inducing kinase (NIK) and activation of
noncanonical NF-κB signaling.8,9

IAP proteins are expressed at high levels in various cancers
and represent attractive targets for therapeutic intervention.7

BV6 is a synthetically designed Smac mimetic that mimics
the N-terminal part of endogenous Smac protein.8 We
previously reported that Smacmimetics such as BV6 sensitize
glioblastoma cells to chemotherapy- or γ-irradiation-induced
apoptosis in an NF-κB-dependent manner.10–12 Although
BV6-stimulated NF-κB activation was demonstrated to be
critically required for Smac mimetic-mediated sensitization of
glioblastoma cells towards TMZ, the proapoptotic NF-κB-
regulated target genes that mediate this chemosensitization
have so far remained elusive.12 While tumor necrosis factor α
(TNFα), a prototypic NF-κB target gene, was shown tomediate
apoptosis via an autocrine/paracrine loop upon treatment with
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Smac mimetic alone8,9,13 or in combination with anticancer
drugs in different carcinoma cell lines,14 TNFαwas found to be
largely dispensable for BV6/TMZ-induced apoptosis in glio-
blastoma cells.12 In the present study, we therefore aimed at
discovering novel NF-κB-dependent factors that are required
for the cooperative anticancer activity of BV6 and TMZ, the
prototypic chemotherapeutic agent used for the treatment of
glioblastoma.

Results

BV6/TMZ cotreatment upregulates IFN-responsive genes
before cell death induction. Initially, we assessed cell
death upon treatment with the chemotherapeutic agent
TMZ and the Smac mimetic BV6 using the glioblastoma cell
lines A172 and T98G to confirm that Smac mimetic enhances
TMZ-induced apoptosis, as we reported previously.12 Indeed,
determination of DNA fragmentation as a marker of apoptosis
demonstrated that BV6 sensitizes glioblastoma cells to TMZ-
induced apoptotic cell death (Figure 1a and Supplementary
Figure 1). As Smac mimetics have been described to activate
NF-κB signaling, we stably overexpressed dominant-negative

IκBα-superrepressor (IκBα-SR) to block NF-κB signaling15

(Figure 1c). Remarkably, inhibition of NF-κB by IκBα-SR
almost completely rescued cells from BV6/TMZ-induced
apoptosis (Figure 1b), underlining the proapoptotic role of
NF-κB signaling in this context. To further investigate which
BV6-induced NF-κB target genes are responsible for proa-
poptotic signaling upon BV6/TMZ cotreatment, we performed
whole-genome expression profiling using an expression bead
chip hybridization assay. Whole-genome expression data
were ranked according to fold upregulation comparing A172
glioblastoma cells expressing empty vector (EV) with and
without BV6/TMZ treatment. Expression data showing
upregulation in A172 glioblastoma cells expressing IκBα-SR
served as control to identify background expression of non-
NF-κB-regulated genes. BV6-treated cells showed a similar
expression pattern as BV6/TMZ cotreated cells (data not
shown). Interestingly, gene set enrichment analysis (GSEA)
revealed upregulation of interferon (IFN)-responsive genes
after BV6/TMZ treatment (Table 1 and Supplementary Figure
2). These results demonstrate that BV6/TMZ treatment
upregulates IFN-responsive genes in an NF-κB-dependent
manner.
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Figure 1 BV6/TMZ cotreatment upregulates IFN-responsive genes. (a) A172 cells (left) or T98G cells (right) were treated for indicated times with 100 μM TMZ and/or 2 μM
BV6 (A172) or 4 μM BV6 (T98G) or dimethyl sulfoxide (DMSO). Apoptosis was determined by fluorescence-activated cell sorting (FACS) analysis of DNA fragmentation of PI-
stained nuclei. Mean values +S.D. of three to four independent experiments performed in triplicate are shown; *Po0.05; **Po0.01 compared with all other settings. (b) A172
cells (left) or T98G cells (right) stably expressing IκBα-SR or EV were treated for 120 h with 100 μM TMZ and/or 2 μM BV6 (A172) or 4 μM BV6 (T98G) or DMSO. Apoptosis was
determined by FACS analysis of DNA fragmentation of PI-stained nuclei. Mean values +S.D. of three independent experiments performed in triplicate are shown; *Po0.05;
**Po0.01 compared with all other settings. (c) A172 cells (left) or T98G cells (right) stably expressing IκBα-SR or EV were analyzed for IκBα expression levels by western
blotting. Expression of β-actin served as a loading control. A representative experiment of two independent experiments is shown
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BV6-mediated upregulation of IFNβ sensitizes glioblas-
toma cells to TMZ-induced apoptosis. Next, we investi-
gated whether IFNs are involved in BV6/TMZ-induced cell
death. Type I IFNs such as IFNα and IFNβ have been
reported to synergize with TMZ in cell death induction in
glioblastoma cells.16,17 Therefore, we analyzed mRNA
expression levels of IFNα and IFNβ upon treatment with
BV6 and/or TMZ using quantitative real-time-PCR (qRT-PCR)
analysis, as IFNs were not represented on the expression
bead chip hybridization assay. Interestingly, IFNβ was
upregulated upon BV6 single treatment, as well as upon
BV6/TMZ cotreatment (Figure 2a). In addition, BV6-
stimulated transcriptional upregulation of IFNβ was inhibited
in IκBα-SR-overexpressing cells (Figure 2a), demonstrating
that it occurs in an NF-κB-dependent manner. In contrast to
IFNβ, IFNα mRNA expression levels remained largely
unchanged upon treatment with BV6 and/or TMZ (Figure 2b).
To explore whether IFNβ acts in concert with TMZ to cause

cell death, we treated glioblastoma cells with IFNβ alone
and in combination with TMZ. Intriguingly, IFNβ significantly
increased TMZ-induced cell death in A172 and T98G cells
compared to treatment with either agent alone (Figure 2c). In
addition to IFNβ, IFNα significantly enhanced TMZ-induced
cell death in glioblastoma cells (Supplementary Figure 3).
This set of experiments demonstrates that BV6/TMZ
induces upregulation of IFNβ in an NF-κB-dependent manner
and that IFNβ and TMZ cooperate to induce apoptosis in
glioblastoma cells.

IFNβ is required for BV6/TMZ-induced apoptosis. To
examine whether IFNβ is required for BV6/TMZ-induced
cell death, we created IFNβ-knockdown cells (Figure 3a).
Remarkably, silencing of IFNβ significantly inhibited
BV6/TMZ-mediated cell death (Figure 3b). Type I IFNs such
as IFNα and IFNβ bind to a transmembrane receptor termed
IFNα/β receptor (IFNAR) and thereby induce transcriptional

activation of IFN-stimulated genes (ISGs).18 To examine
whether IFNAR signaling is involved in BV6/TMZ-induced
cell death, we generated IFNAR1-knockdown cells
(Figure 3c). Silencing of IFNAR1 significantly reduced
BV6/TMZ-mediated cell death (Figure 3d). In addition,
knockdown of IFNAR1 rescued cells from IFNβ/TMZ-induced
cell death (Figure 3e). Taken together, this set of experiments
demonstrates that IFNβ has an important role in mediating
BV6/TMZ-induced cell death.

BV6/TMZ-induced apoptosis is mediated by cooperative
upregulation of Puma and Bax. ISGs have been described
to mediate IFN-induced apoptosis via upregulation of
proapoptotic proteins, including proteins of the mitochondrial-
dependent cell death pathway.19 To link BV6/TMZ-mediated
activation of IFN signaling to activation of the mitochondrial
apoptotic pathway, we analyzed the expression levels of
various proapoptotic Bcl-2 family members (Supplementary
Figure 4a). BV6/TMZ cotreatment significantly upregulated
mRNA levels of Puma and Bax, whereas no consistent
upregulation was observed for Bak (Bcl-2 homologous
antagonist/killer), Noxa, Bim (Bcl-2-interacting mediator of
cell death), Bid (BH3-interacting domain death agonist)
and Bmf (Bcl-2-modifying factor; Figures 4a and b and
Supplementary Figure 4a). Also, Puma and Bax were
upregulated on the protein level upon BV6/TMZ treatment
(Supplementary Figure 4b). To determine whether Puma and
Bax are required of BV6/TMZ-induced cell death, we created
Puma- or Bax-knockdown cells (Figures 4c and e). Interestingly,
knockdown of either Puma or Bax significantly reduced
BV6/TMZ-mediated cell death (Figures 4d and f). These
results demonstrate that Puma and Bax contribute to
BV6/TMZ-induced cell death.

Discussion

We previously reported NF-κB-dependent sensitization of
glioblastoma cells to TMZ-induced apoptosis by the Smac
mimetic BV6 as a novel approach to enhance the efficacy of
conventional chemotherapy in glioblastoma.12 However, the
proapoptotic NF-κB target genes mediating this synergistic
interaction have so far remained elusive, as autocrine/
paracrine TNFα/TNF receptor 1 (TNFR1) signaling turned
out to be largely dispensable.12 In the present study,
we identify Smac mimetic-stimulated, NF-κB-dependent
upregulation of IFNβ and IFN-mediated proapoptotic signaling
as critical events that mediate BV6/TMZ-induced apoptosis
(Supplementary Figure 5). This conclusion is based on the
following lines of evidence:
First, treatment with BV6 alone or in combination with

TMZ triggers transcriptional upregulation of IFNβ in an NF-κB-
dependent manner, as this increase in IFNβ mRNA levels
is blocked by IκBα-SR-mediated inhibition of NF-κB.
In addition, gene expression profiling shows an NF-κB-
dependent upregulation of ISGs upon BV6/TMZ treatment.
Second, BV6-induced upregulation of IFNβ- and IFN-
mediated signaling are required for the induction of apoptosis,
as genetic silencing of either IFNβ or its corresponding
receptor IFNAR significantly reduces BV6/TMZ-induced
apoptosis. The notion that BV6-stimulated upregulation of

Table 1 BV6/TMZ treatment upregulates ISGs

Enriched gene set ES

MOSERLE_IFNA_RESPONSE 0.82
SANA_RESPONSE_TO_IFNG_UP 0.81
BROWNE_INTERFERON_RESPONSIVE_GENES 0.77
DER_IFN_GAMMA_RESPONSE_UP 0.76
REACTOME_INTERFERON_GAMMA_SIGNALING 0.74
REACTOME_RIG_I_MDA5_MEDIATED_INDUCTION_OF_
IFN_ALPHA_BETA_PATHWAYS

0.73

BOSCO_INTERFERON_INDUCED_ANTIVIRAL_MODULE 0.72
HECKER_IFNB1_TARGETS 0.71
REACTOME_INTERFERON_ALPHA_BETA_SIGNALING 0.70
DER_IFN_ALPHA_RESPONSE_UP 0.69
DER_IFN_BETA_RESPONSE_UP 0.65
REACTOME_INTERFERON_SIGNALING 0.63

A172 cells stably expressing IκBα-SR or EV were treated for 9 h with 100 μM
TMZ and/or 2 μM BV6 or DMSO. Whole-genome expression profiling was
performed. Genes with similar regulation in A172 cells expressing IκBα-SR
served as control for background expression of non-NF-κB-stimulated genes.
GSEA was performed comparing TMZ/BV6-treated cells to all other settings.
The enrichment score (ES) of IFN signaling-mediated gene sets out of the top
100 regulated gene sets upon BV6/TMZ treatment are shown. The false
discovery rate for all gene sets shown in the table iso0.0. Mean values of three
independent experiments are shown

IFNβ mediates BV6/TMZ-induced apoptosis
V Marschall and S Fulda

3

Cell Death and Disease



IFNβ promotes TMZ-induced apoptosis is further underscored
by data showing that exogenous supply of IFNβ cooperates
with TMZ to trigger apoptosis in glioblastoma cells. Third, we
show that IFNβ and TMZ cooperate to upregulate the
proapoptotic Bcl-2 family proteins Puma and Bax, which both
contribute to BV6/TMZ-induced apoptosis, as knockdown of
Bax or Puma significantly rescues cells from BV6/TMZ-
induced apoptosis. Taken together, this identification of Smac
mimetic-stimulated, NF-κB-dependent upregulation of IFNβ
and engagement of proapoptotic IFN signaling pathways
provides novel insights into the molecular mechanisms that
are responsible for Smac mimetic-mediated sensitization of
glioblastoma cells to TMZ-induced cell death.
In the present study, we identify IFNβ as a key mediator of

BV6/TMZ-induced cell death that is transcriptionally upregu-
lated in an NF-κB-dependent manner upon treatment with the
Smac mimetic BV6. Whether or not this increase in IFNβ is
directly mediated via NF-κB transcription factors20 or indirectly
mediated via NF-κB-dependent upregulation or activation of
transcription factors regulating IFNβ21 remains to be investi-
gated in future studies. It is interesting to note that type I IFNs
such as IFNβ or IFNα have recently been reported to act in

concert with TMZ to trigger cell death in glioblastoma cells,
although the mechanisms responsible for this cooperative
effect have so far remained elusive.16,17 In contrast to the
critical role of IFNβ for BV6/TMZ-induced apoptosis
that we discovered in the current study, we previously
reported that TNFα, another prototypic NF-κB target gene, is
largely dispensable for BV6/TMZ-induced apoptosis, as
addition of the TNFα-blocking antibody Enbrel or TNFR1
knockdown failed to rescue apoptosis upon combination
treatment.12

Although our study demonstrates for the first time that the
Smac mimetic BV6 can transcriptionally induce IFNβ as an
important mediator of Smac mimetic-conferred chemosensi-
tization in glioblastoma cells, IFN signaling has been
implicated in the past to foster cell death by Smac mimetics.
For example, we recently reported that BV6 synergizes with
IFNα to trigger apoptosis in acute myeloid leukemia cells.22

Of note, BV6was found in the present study to transcriptionally
upregulate IFNβ, but not IFNα in glioblastoma cells, pointing to
distinct roles of type I IFNs in this context. Moreover, we
identified IFN regulatory factor 1 (IRF1) as a novel dual
regulator of Smac mimetic BV6-induced apoptosis and
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Figure 2 BV6-mediated upregulation of IFNβ sensitizes glioblastoma cells to TMZ-induced apoptosis. A172 cells (left) or T98G cells (right) stably expressing IκBα-SR or EV
were treated for 6 h with 100 μM TMZ and/or 2 μM BV6 (A172) or 4 μM BV6 (T98G) or dimethyl sulfoxide (DMSO). IFNβ (a) or IFNα (b) mRNA levels were analyzed by qRT-PCR,
normalized to 28S rRNA expression and fold increase in mRNA levels are shown. Mean values + S.D. of three to four independent experiments performed in duplicate are shown.
*Po0.05; **Po0.01. (c) A172 cells (left) or T98G cells (right) were treated for 120 h with 100 μM TMZ and/or 1 ng/ml IFNβ or DMSO. Apoptosis was determined by
fluorescence-activated cell sorting (FACS) analysis of DNA fragmentation of PI-stained nuclei. Mean values + S.D. of three independent experiments performed in triplicate are
shown; *Po0.05; **Po0.01
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proinflammatory cytokine secretion with impact on the
immune response.23,24 Furthermore, Smac mimetics have
been described to act in concert with innate immune stimuli

such as oncolytic viruses and adjuvants, which stimulate a
cytokine storm of TNFα, TNF-related apoptosis-inducing
ligand and IFNβ, to trigger cancer cell death.25
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Induction of cell death by IFNβ has been described to
involve ISGs.19 However, little is yet known about which ISGs
mediate these apoptotic functions. Transcription factors
regulated via IFNs such as IRF1 and IRF3 have been reported
to promote upregulation or activation of Puma and Bax.26,27

Puma and Bax were also described as DNA damage-induced
target genes that are upregulated by TMZ treatment.28

Consistently, we show in the present study that IFNβ and
TMZ cooperate to upregulate Puma and Bax, which both
contribute to BV6/TMZ-induced apoptosis, as genetic silen-
cing of either Bax or Puma, two Bcl-2 family proteins known to
promote mitochondrial apoptosis, rescues glioblastoma cells
from cell death. In line with these findings, we previously
reported that cotreatment with BV6/TMZ activates the
mitochondrial pathway of apoptosis as demonstrated by the
loss of mitochondrial membrane potential and cytochrome C
release.12

Furthermore, context-specific settings have an impact on
the regulation of signaling pathways and cellular functions by
Smac mimetics, depending, for example, on additional
cytotoxic stimuli and/or cell types. We demonstrated that
Smac mimetics can exert non-apoptotic functions and can
stimulate migration and invasion of glioblastoma cells via
activation of NF-κB and TNFα/TNFR1 autocrine/paracrine
signaling.23,24 In glioblastoma cancer stem-like cells, Smac
mimetics at non-toxic concentrations can promote astrocytic
differentiation by activating NF-κB.29

Smac mimetics are currently evaluated in early clinical
trials.30 By identifying IFNβ as a novel Smac mimetic-induced
and NF-κB-mediated target gene that has an important role in
mediating chemosensitization by Smac mimetic, our findings
provide novel mechanistic insights into this combination
regimen. Additionally, our present study emphasizes that
Smac mimetics are effective sensitizers for TMZ-induced
apoptosis in glioblastoma cells with implications for the
development of experimental treatment approaches.

Materials and Methods
Cell culture and chemicals. The human glioblastoma cell lines A172 and
T98G were obtained from the American Type Culture Collection (Manassas, VA,
USA) and maintained in DMEM medium (Invitrogen, Karlsruhe, Germany)
supplemented with 1% penicillin/streptomycin, 1% sodium pyruvate and 10% fetal
calf serum (Invitrogen). For experiments, cells were seeded at 5 × 103 cells/cm2.
Smac mimetic BV6, which neutralizes XIAP, cIAP1 and cIAP2,8 was kindly provided
by Genentech Inc. (South San Francisco, CA, USA), TMZ was purchased from
Sigma (Taufkirchen, Germany) and recombinant human IFNα and IFNβ from

Biochrom (Berlin, Germany). All chemicals were obtained from Sigma, unless
indicated otherwise.

Determination of apoptosis. Apoptosis was assessed by flow cytometric
analysis (FACSCanto II; BD Biosciences, Heidelberg, Germany) of DNA
fragmentation of propidium iodide (PI)-stained nuclei as described previously.31

Western blotting. Western blot analysis was performed as described
previously12 using the following antibodies: anti-IκBα (Cell Signaling, Beverly, MA,
USA), anti-Bax (BD Biosciences), anti-Puma (Cell Signaling) and anti-β-actin
(Sigma). Donkey anti-mouse IgG or donkey anti-rabbit IgG labeled with IRDye
infrared dyes were used for fluorescence detection at 680–800 nm (LI-COR
Biotechnology, Bad Homburg, Germany).

Whole-genome gene expression array and GSEA. Gene expression
profiling was performed as described previously32 using Illumina Whole-Genome
Expression Beadchips Human HT12v4 (Illumina, San Diego, CA, USA).
Expression data were ranked according to fold upregulation comparing A172
glioblastoma cells expressing EV with and without BV6/TMZ treatment.
Expression data showing upregulation with and without BV6/TMZ treatment in
A172 glioblastoma cells expressing IκBα-SR served as control to identify
background expression of non-NF-κB-regulated genes. GSEA was performed
using software provided by the Broad Institute website (http://www.broadinstitute.
org/gsea/index.jsp).33

Transduction and siRNA transfection. Overexpression of the dominant-
negative IκBα-SR was performed by retroviral transduction as described
previously.15 For transient knockdown by siRNA, cells were transfected with
20 nM Silencer Select siRNA (Invitrogen) control siRNA (no. 4390844) or targeting
siRNAs (s7188 and s7189 for IFNβ, s782 and s784 for IFNAR1, s1888 and s1890
for Bax, s25840 and s25842 for Puma) using Neon Transfection System (Invitrogen)
according to the manufacturer's instructions.

qRT-PCR analysis. Total RNA extraction and qRT-PCR analysis was
performed as described previously32 using 7900HT Fast Real-Time PCR System
(Applied Biosystems, Darmstadt, Germany). The following primers were used: 28 S
(forward, 5′-TTGAAAATCCGGGGGAGAG-3′; reverse, 5′-ACATTGTTCCAACA
TGCCAG-3′), IFNAR1 (forward, 5′-TCCAGTACATTGTATAAAGACCACAGT-3′;
reverse, 5′-GTTCTGATTTTGGACACTGACTTC-3′), Puma (forward, 5′-GACCTC
AACGCACAGTACGA-3′; reverse, 5′-GAGATTGTACAGGACCCTCCA-3′), Bax
(forward, 5′-AGCAAACTGGTGCTCAAGG-3′; reverse, 5′-TCTTGGATCCAGCC
CAAC-3′), Bak (forward, 5′-CCTGCCCTCTGCTTCTGA-3′; reverse, 5′-CTGCTGA
TGGCGGTAAAAA-3′), Noxa (forward, 5′-GGAGATGCCTGGGAAGAAG-3′;
reverse, 5′-CCTGAGTTGAGTAGCACACTCG-3′), Bid (forward, 5′-TGCAGCTCA
GGAACACCA-3′; reverse, 5′-TCTCCATGTCTCTAGGGTAGGC-3′), Bim (forward,
5′-CATCGCGGTATTCGGTTC-3′; reverse, 5′-GCTTTGCCATTTGGTCTTTTT-3′),
Bmf (forward, 5′-GAGACTCTCTCCTGGAGTCACC-3′; reverse, 5′-CTGGTTGGA
ACACATCATCCT-3′). Melting curves were plotted to verify the specificity of the
amplified products. IFNα and IFNβ mRNA levels were assessed by TaqMan Gene
Expression Assay (Life Technologies, Darmstadt, Germany; IFNαHs01077958_s1,
IFNβHs00855471_g1) according to the manufacturer’s protocol. The relative
expression of the target gene transcript and reference gene transcript was
calculated as ΔΔCt.

Figure 4 BV6/TMZ-induced apoptosis is mediated by the upregulation of Puma and Bax. A172 cells (left) or T98G cells (right) were treated for indicated times with 100 μM
TMZ and/or 2 μM BV6 (A172) or 4 μM BV6 (T98G) or dimethyl sulfoxide (DMSO). Puma (a) or Bax (b) mRNA levels were analyzed by qRT-PCR, normalized to 28S rRNA
expression and fold increase in mRNA levels are shown. Mean values + S.D. of three independent experiments performed in duplicate are shown. *Po0.05; **Po0.01 compared
with DMSO control. (c) A172 cells (left) or T98G cells (right) were transiently transfected with small interfering RNA (siRNA) against Puma. Puma mRNA levels were analyzed
after 120 h by qRT-PCR, normalized to 28S rRNA expression and fold increase in mRNA levels are shown. Mean values + S.D. of three independent experiments performed in
duplicate are shown. *Po0.05; **Po0.01 compared with all other settings, if not indicated otherwise. (d) A172 cells (left) or T98G cells (right) were transiently transfected with
siRNA against Puma. Cells were treated for 120 h with 100 μM TMZ and/or 2 μM BV6 (A172) or 4 μM BV6 (T98G) or DMSO. Apoptosis was determined by fluorescence-
activated cell sorting (FACS) analysis of DNA fragmentation of PI-stained nuclei. Mean values + S.D. of three to four independent experiments performed in triplicate are shown;
*Po0.05; **Po0.01. (e) A172 cells (left) or T98G cells (right) were transiently transfected with siRNA against Bax. Bax mRNA levels were analyzed after 120 h by qRT-PCR,
normalized to 28 S rRNA expression and fold increase in mRNA levels are shown. Mean values + S.D. of three independent experiments performed in duplicate are shown.
*Po0.05; **Po0.01. (f) A172 cells (left) or T98G cells (right) were transiently transfected with siRNA against Bax. Cells were treated for 120 h with 100 μM TMZ and/or 2 μM
BV6 (A172) or 4 μM BV6 (T98G) or DMSO. Apoptosis was determined by FACS analysis of DNA fragmentation of PI-stained nuclei. Mean values + S.D. of three independent
experiments performed in triplicate are shown; *Po0.05; **Po0.01
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Statistical analysis. Statistical significance was assessed by Student's t-test
(two-tailed distribution, two-sample unequal variance).
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