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Artesunate induces necrotic cell death in
schwannoma cells

RW Button'*, F Lin?*, E Ercolano’, JH Vincent', B Hu®, CO Hanemann' and S Luo*'

Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some
cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here,
we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human
primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on
necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells
show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study
suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may

act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity.
Cell Death and Disease (2014) 5, €1466; doi:10.1038/cddis.2014.434; published online 16 October 2014

Artemisinin, a sesquiterpene lactone isolated from the
Chinese herb Artemisia annua L., has profound activity
against malaria." Artemisinin contains an endoperoxide
moiety that reacts with iron to produce toxic reactive oxygen
species (ROS). When malaria parasite (Plasmodia)
consumes iron-rich haemoglobin within its acidic food vacuole
in erythrocytes, the exposure of artemisinin to haem-derived iron
results in lethal ROS production that exerts fatal toxicity to the
parasite.2 Therefore, artemisinin, its water-soluble derivative
artesunate (ART) and other analogues are potent in killing
malarial parasites.’®

Cancer cells contain substantial free iron, resulting from
their higher-rate iron uptake via transferrin receptors com-
pared with normal cells. Therefore, artemisinin-based drugs
such as ART possess selective toxicity to cancer cells.*™®
Importantly, the pharmacokinetics and tolerance of ART as an
anti-malarial drug have been well documented, with clinical
studies showing excellent safety. Collectively, these properties
make artemisinin-based compounds attractive drug candi-
dates for cancer chemotherapy. Artemisinin and ART have
been shown to induce cell death in multiple cancer cells,
including colon, breast, ovarian, prostate,7 pancreatic8 and
leukaemia® cancer cells. Preliminary in vivo experiments also
indicate the therapeutic potential for these drugs as anti-
cancer treatments. In animal models, artemisinin or ART has
shown promising results in Kaposi Sarcoma,'® pancreatic
cancer'' and hepatoma,’® while compassionate use of
ART in uveal melanoma patients fortifies standard chemo-
therapy potential for the patients.’® Currently, ART is on
clinical trial for breast cancer treatment (ClinicalTrials.gov ID:
NCT00764036).

Programmed cell death (PCD) is one of the critical terminal
paths for the cells of metazoans. Among PCD, apoptosis has
been well studied and it is known that caspase activation is
essential in this process.’ In addition to apoptosis, necrop-
tosis is another form of PCD. The RIP1-RIP3 complex
highlights the signals that regulate necroptosis.'®~'" Artemi-
sinin derivatives, mostly ART, have been suggested to lead to
apoptosis via ROS production in cancer cells. Efforts
have been focused on ROS-mediated mitochondrial
apoptosis,® 8% and DNA damage® in cancer cells. Recent
data suggest that artemisinin and its derivatives may induce
cell death or inhibit proliferation through diverse mechanisms
in different cell types. Artemisinin or its analogues were shown
to inhibit cell proliferation in multiple cancer cells by regulating
cell-cycle arrest®’ 22 or inducing apoptosis.?*?® Nevertheless,
the detailed molecular mechanisms underlying artemisinin or
ART-induced cell death are poorly understood, thus need to be
further addressed.

Neurofibromatosis 2 (NF2) is caused by the loss of NF2
gene encoding Merlin protein. NF2 gene mutations cause the
low grade tumour syndrome, composed of schwannomas,
meningiomas and ependymomas.®® All spontaneous
schwannomas, the majority of meningiomas and a third
of ependymomas are caused by NF2 gene mutations.
Notably, approximately 10% of intracranial tumours are
schwannomas.?” Interestingly, NF2 gene mutations are also
found in a variety of cancers, including breast cancer and
mesothelioma.?®~3° The low grade tumours caused by NF2
gene mutations do not respond well to current cancer drugs
and therapy is restricted to surgery and radiosurgery.?®
Therefore, there is a need for drug treatment of the diseases.
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ART sufficiently induces schwannoma cell death that is reversed by ROS scavenger. (a) RT4 schwannoma cells were treated with ART for 20 h at indicated

concentrations. Cell viability was measured with ATP-based Celltiter Glo kit (Promega). Data are shown as mean + S.D. (b) RT4 schwannoma cells were treated with ART at
indicated concentrations for 24, 48 and 72 h, respectively. Cell viability was measured as above. Data are shown as mean + S.D. (¢) RT4 schwannoma cells were treated with
ARTat indicated concentrations, in the presence or absence of 10 mM NAC for 20 h. Cell viability was measured. Data are shown as mean + S.D. (d) HeLa cells were treated with
ART at indicated concentrations for 20 h. Cell viability was measured. Data were shown as mean + S.D. *P<0.05

Here, we show that ART sufficiently induced schwannoma cell
death in both RT4 cell line and human primary cells.
Importantly, we show, for the first time, that ART-induced cell
death is largely dependent on necroptosis. Our data suggest
that ART has great potential in schwannoma chemotherapy,
especially when used in synergy with an apoptosis-inducing
drug and/or an autophagy-inhibitory drug.

Results

The effect of ART on schwannoma cell death. To
investigate whether ART can effectively kill schwannoma
cells, we first tested the effects of ART on RT4 schwannoma
cell death induction with a series of concentrations of ART
(Figure 1a). Our data show that ART effectively killed RT4
schwannoma cells at 25 uM, and the cells were almost 100%
killed at the concentration of 50 uM in 24 h (Figure 1a).

We further established the time-course effect of ART on cell
death (Figure 1b). Taken together, these results demonstrate
that ART is capable of kiling RT4 schwannoma cells. We
confirmed that the cell death was dependent on ROS since
ROS scavenger, n-acety-cysteine (NAC), fully rescued the cell
death effect of ART (Figure 1c). In contrast, ART exerted
milder toxicity to HelLa cells in these conditions (Figure 1d).
Table 1 shows that ART has cell killing effects on different cell
types, however, RT4 schwannoma cells appeared to be more
sensitive to ART among the cells.
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Table 1 The effect of ART on various cell types

Cell Type % Viability with ART 50 uM
RT4 0

HEK293T 45.3

Colo-205 51.1

SH5Y 71.3

Hela 78

RT4, HEK293T, COLO-205, SH5Y and Hela cells were treated with control
(DMSO) or 50 uM ART. After 20 h, cell viability was measured with MTT assays.
The cell viability in 50 uM ART was calculated in relation to control, in which the
viability was set as 100%

ART appeared to be efficacious in killing RT4 schwannoma
cells. We thus further tested whether the drug was effective in
treating human primary schwannoma cells. Interestingly, ART
was shown to kill human primary schwannoma cells effectively
(~37%) (Figure 2a), although higher dose of the drug was
needed for the killing compared with RT4 cells (Figure 2b). The
effect of ART on cell death induction was tested in multiple
assays, including viability assays and the cytotoxicity assay
(Figures 2b—d).

Apoptosis does not determine ART-induced cell death. It
is established that apoptosis is caspase-dependent cell
death." We sought to know whether ART-induced cell death
was caspase dependent in RT4 cells or whether apoptosis
was a determinant for ART-induced cell death. To this end,
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Figure 2 ART induces cell death in human primary schwannoma cells. (a) Human primary schwannoma cells were treated with ART (200 .M). Phase-contrast cell images
were acquired with a microscope. Scale bar: 200 zm. To quantify cell viability/toxicity, human primary schwannoma cells were incubated with DMSO (control) or ART for 24 h.
(b) Cell viability was measured using the Cell Titer-Glo Luminescent cell viability Assay. The cell viability in DMSO control was set as 100, and the relative values were computed
in ART-treated samples. (c) Cell viability was measured using MTT assay. The viability in DMSO control was set as 100, and the relative values were computed in ART-treated
samples. (d) Cytotoxicity was measured using the CytoTox-Fluor Cytotoxicity Assay. Cytotoxicity in DMSO control was set as 0. Data are shown as mean + S.E.M. *P<0.05;

P<0.01; **P<0.001

the cells were treated with ART in the presence or absence of
pan caspase inhibitor z-VAD-fmk (zVAD).3! Surprisingly, cell
death induced by ART was not influenced by zVAD (Figures
3a and b). This suggests that ART-induced cell death is not
determined by apoptosis.

Apoptotic pathways are well conserved across metazoans.
This nature allows us to explore apoptosis in ART-induced cell
death across different cell types from various species with
exploitation of their unique genetic makeups. To validate that
the cell death is independent of apoptosis, we treated Bax/Bak
double knockout (DKO) mouse embryonic fibroblasts (MEFs)
that do not undergo mitochondria-dependent apoptosis, which
we used in our earlier study,32 and tested whether Bax/Bak
DKO MEFs underwent cell death induced by ART. Figure 3c
shows that the apoptosis-inducing drug staurosporine (STS)%?
sufficiently killed wild-type (WT) MEFs but not Bax/Bak DKO
MEFs. However, ART killed Bax/Bak DKO MEFs largely as
effectively as WT MEFs (Figure 3c), further indicating that
apoptosis is not a main factor contributing to ART-induced
cell death.

ART has been suggested to induce apoptosis in tumour
cells by a number of studies (reviewed in Lai et al.3*).35-3" We
thus further confirmed whether ART induced apoptosis in our
system. It is well known that caspase 3 (casp-3) as an
executioner is essential in apoptosis.’® Interestingly, the
apoptosis hallmark casp-3 cleavage did not occur in RT4
cells and COLO-205 colon adenocarcinoma cells treated
with  ART, while casp-3 is activated in ART-treated HelLa
cells (Supplementary Figure S1). We also confirmed that
ART induced PARP cleavage, a marker of apoptosis
(Supplementary Figure S2a).%83° Consistently, immunostain-
ing showed that casp-3 was activated by ART treatment in

Hela cells (Supplementary Figure S2b). These data suggest
that depending on cell type, apoptosis may or may not occur in
cells treated with ART. Figure 3d shows that casp-3 knock-
down did not affect ART-induced cell death in RT4 cells, further
indicating that apoptosis is not required for ART-induced RT4
schwannoma cell death. Similarly, casp-3 knockdown did not
significantly reduce the cell death induced by ART in Hela
cells (Supplementary Figure S3). By contrast, caspase-3
knockdown ameliorated the toxicity caused by TNF+cyclo-
heximide (CHX) treatment in the cells (Figure 3e), which has
been established to induce apoptosis in various cells. %41
Collectively, these data indicate that apoptosis does not occur
in ART-treated RT4 schwannoma cells. Although apoptosis
appears to occur in Hela cells when treated with the drug, it
may not be a major mechanism underpinning ART-induced
cell death. In these cells, the cell death may be merely
associated with apoptosis, but not determined by apoptosis.

ART induces necroptosis in schwannoma cells.
Programmed necrosis or necroptosis is an alternative cell
death in addition to apoptosis. As necroptosis is frequently
associated with mitochondrial ROS generation,*?*® we
assessed whether ART-induced cell death was necroptosis
related by testing whether necrostatin 1 (Nec), a selective
inhibitor of RIP1 that is essential for RIP1-RIP3-dependent
necroptosis,'®***® could inhibit the cell death triggered by
ART. Remarkably, the RT4 cell death was largely suppressed
by Nec (Figures 4a and b), suggesting that necroptotic
pathways have pivotal roles in ART-induced cell death.
However, Nec did not exhibit any protective effect on the cell
death induced by STS (Supplementary Figure S4a), which
has been established to mainly induce apoptosis.*® These
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Figure 3 Apoptosis does not determine ART-induced cell death. (a) RT4 schwannoma cells were treated with DMSO, ART (50 M), ART (50 xM)+zVAD (20 M) or zVAD
(20 «M). Images were acquired with contrast microscopy. Scale bar: 100 m. (b) Cell viability was measured. Data are shown as mean + S.D. (¢) WTor Bax/Bak DKO MEFs were
treated with ART at indicated concentrations, respectively. Meanwhile, apoptosis inducer staurosoporine (STS, 1 M) was used to treat WT or Bax/Bak DKO MEFs. After 20 h, cell
viability was measured. Data are shown as mean + S.D. ***P< 0.001; ns: not significant. (d) Control siRNA or caspase 3 siRNA was transfected into RT4 cells. Cells were treated
with ART (25 uM). Cell viability was measured with Cell Titer-Glo Luminescent cell viability assay. Data are shown as mean = S.D. ***P<0.001. Western blot was used to test
caspase-3 knockdown effectiveness. (e) RT4 schwannoma cells were knocked down with control siRNA or caspase-3 siRNA. After 40 h, cells were treated with control (DMSO) or
TNF (30 ng/ml)+cycloheximide (CHX, 30 M) as indicated for further 16 h. Cell viability was measured with Cell Titer-Glo luminescent assay. Data are shown as mean + S.D.

**P<0.01; **P<0.001

data further suggest that Nec specifically inhibits ART-
induced necroptosis. Recently, Wang’s group reported that
phosphorylation of MLKL at threonine 357 (T357) and serine
358 (S358) is a hallmark of necroptosis,*”**® thus necroptosis
can be detected by the phospho-MLKL antibody (p-MLKL).
We tested whether necroptosis occurred when cells were
induced by ART, and immunoblot confirmed that ART
treatment induced MLKL phosphorylation (Figure 4c). Con-
sistently, we observed that ART induced the necroptotic
morphology decorated by p-MLKL in RT4 schwannoma cells
(Figure 4d) and primary schwannoma cells (Figure 4e).
Likewise, necroptosis was also observed in COLO-205 and
Hela cells (Supplementary Figure S4b and c). Collectively,
these data suggest that necroptosis is induced by ART, which
is crucial in mediating ART-induced cell death.

RIP1-RIP3 signalling has been shown to be essential in
regulating necroptosis,’®™ " thus we tested whether the

Cell Death and Disease

protein levels in the pathway altered in ART-treated RT4
schwannoma cells. Interestingly, we found that RIP1 levels
enhanced in the cells treated with the increasing concentra-
tions of ART (Figure 5a). Consistently, immunochemistry also
showed that RIP1 levels increased in the cells treated with
ART (Figure 5b). However, gPCR shows that RIP1 mRNA
levels were not regulated by ART (Figure 5c), suggesting that
ART may upregulate RIP1 in protein level. By contrast,
apoptosis inducer STS did not increase RIP1 levels as ART
did (Supplementary Figure S5a), and ART did not appear to
overtly alter the levels of apoptosis-related proteins
(Supplementary Figure S5b). To test whether RIP1 levels
are important in ART-induced cell death, we knocked down
RIP1 and observed that RIP1 knockdown largely reduced the
sensitization of the cells to ART treatment (Figure 5d), in
contrast to the effect of casp-3 knockdown in the cell death
(Figure 3d). However, RIP1 knockdown did not have any
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Figure 4 ART induces necroptosis in schwannoma cells. (a) RT4 schwannoma cells were treated with vehicle, ART (50 xM), ART (50 zM)+Nec (20 M) or Nec (20 uM).
Images were acquired with contrast microscopy. Scale bar: 100 um. (b) Cell viability was measured. Data are shown as mean + S.D. ***P< 0.001. (c) RT4 cells were treated with
DMSO and ART (25 or 50 M) for 20 h. Cells were lysed and subjected to SDS-PAGE and immunoblot with indicated antibodies. (d) RT4 cells were treated with DMSO and ART
(25 uM) for 20 h. Cells were then fixed and stained with p-MLKL. The images were acquired with confocal microscopy. (e) Human primary schwannoma cells were treated with
DMSO and ART (100 M) for 20 h. Cells were then fixed and stained with p-MLKL. The images were acquired with confocal microscopy

effects on STS-induced apoptosis (Figure 5e). These data
further show that necroptosis is effectively required for the
cell death and RIP1 is critical in mediating ART-induced
necroptosis.

Autophagy is inhibited by ART. Auotphagy is a bulk
lysosomal degradation system that mediates the clearance
of long-lived toxic proteins and damaged organelles.*® In
addition to apoptosis and necroptosis, cell death may also be
regulated by autophagy since autophagy is now believed to
have cytoprotective roles in cells.®® ART generates ROS in
cells, which in turn can regulate autophagy.®' Therefore, we
asked whether ART modulates autophagy. It is well known
that autophagosome numbers correlate with the numbers of
LC3-positive vesicles or the levels of the autophagosome-
associated protein LC3-1.52 We observed that ART
significantly increased autophagosome accumulation by
measuring GFP-LC3 vesicles (Figure 6a) and LC3-Il levels
in RT4 and Bax/Bak DKO MEFs (Figures 6b and c).

To test whether autophagosome accumulation by ART is
attributed to increased autophagosome synthesis or impaired
autophagosome-lysosome fusion (thereby inhibiting autopha-
gosome clearance), we employed GFP-mRFP-LC3 stably
expressing cells for GFP-mRFP-LC3 vesicle analysis. This

allows us to monitor autophagosome synthesis and
autophagosome-lysosome fusion by labelling autophagosomes
(green and red) and autolysosomes (red), since low lysosomal
pH quenches GFP more quickly.32°® We found that autopha-
gosome number increased, while autolysosome number
significantly decreased in the cells treated with ART
(Figure 6d). These data suggest that ART inhibits autophagy
by impairing lysosomal or autolysosomal function, leading to
autophagosome accumulation. Consistently, we observed
that ART inhibits autophagic flux/activity since the autophagic
substrate p62 accumulated when the cells were treated with
ART (Figures 6b and c). Collectively, these data suggest that
ART-mediated autophagy inhibition and autophagosome
accumulation may contribute to ART-induced cell death since
autophagy activity is important for cell survival.>*

Combination treatment of ART and chloroquine can
enhance the death of human primary schwannoma
cells. The data in Figure 6 suggest that ART-induced cell
death may also attribute to autophagy inhibition in addition to
necroptosis. We then directly tested whether autophagy
inhibition alone induced primary schwannoma cell death.
Chloroquine (CQ) is an approved anti-malarial drug and it
also shows autophagy inhibition by blocking lysosomal

o

Cell Death and Disease



Artesunate induces necroptosis
RW Button et al

L)

RT4 Ctrl ART

ART 0 10 25 50 100 uM

e R

- e o st
¢ d

Ea =

120 4 Ctrl RIP1 KD
< o o 1001 - o Q‘?
nE: é é\ 80 - ok G, Q}
] 8 % 60 —_=
% g > 40
X 054 = il
o @ 5
w O 20-
0 l
e E £ EE
ART 0 25 uM R
1209 Ctl  RIP1KD

- 100 4 H ns{_ "
°>, 80 [ | Q'\
= Hkk *k X
5 604 &
R —
> 40
o)
© 904

2 =

Figure 5 RIP1 may mediate ART-induced necroptosis in schwannoma cells. (a) RT4 cells were treated with ART at indicated concentrations. After 20 h, cells were harvested
and cell lysates were subjected to SDS-PAGE, and blots were probed with anti-RIP1 and actin antibodies. (b) RT4 cells were treated with ART (25 :M). After 24 h, cells were fixed
and stained with anti-RIP1 antibody. Scale bar: 20 zm. (c) RT4 cells were treated with control or ART (25 M) for 20 h. RNA was isolated from the cells, and subjected to analysis
by qRT-PCR to detect the expression of RIP1 mRNA. The mean + S.D. of relative levels (normalized to GAPDH) from three independent experiments is shown. ns: not significant.
(d) Control siRNA or RIP1 siRNA was transfected into RT4 cells. After 48 h, cells were treated with ART (25 M) for 20 h, and cell viability was measured with Cell Titer-Glo
Luminescent cell viability assay. Data are shown as mean + S.D. **P<0.01. Western blot was used to test RIP1 knockdown effectiveness. (e) RT4 schwannoma cells were
knocked down with control siRNA or RIP1 siRNA. After 40 h, cells were treated with control (DMSO) or staurosporine (STS, 0.5 M) for 15 h. Cell viability was measured with MTT

assays. Data are shown as mean + S.D. ns: not significant; **P<0.001

activity.>® Interestingly, autophagy inhibition by CQ only
induces modest cell death in the primary cells. We
investigated whether combining treatments of ART and CQ
could enhance the death of primary human schwannoma
cells. Importantly, CQ increased the cell death induced by
ART when added in combination (Figure 7a). Interestingly,
Nec blocked ART or ART+CQ-induced cell death (Figure 7a).
This confirms that necropotosis is required for ART-induced
cell death. The results were consistent across multiple
assays (Figures 7a and b). Like ART, CQ is also an anti-
malarial drug that has been suggested to display some
cytotoxic activity, although CQ alone only shows minimal
toxicity in human primary schwannoma cells. Given that CQ
is a well-documented medicine in clinic, the combinatory
treatment of ART and CQ is a promising strategy to treat
schwannomas.

Our observations suggest that ART is efficacious in
inducing RT4 schwannoma cell death. Interestingly, ART
largely induces necroptosis rather than apoptosis, and RIP1

Cell Death and Disease

levels are markedly enhanced by ART (Figure 5). ART
also triggers autophagosome accumulation by inhibiting
autophagic activity, likely contributing to the cell death.
Figure 7c summarizes these observations and the proposed
mechanisms underlying ART-induced cell death.

Discussion

ART has been well documented in drug safety and efficacy in
anti-malarial therapy, and it has been attractive as a cancer
drug candidate due to its selective toxicity to cancer cells and
low toxicity to normal cells. Previous studies have shown that
ART has significant anti-tumour and anti-angiogenesis
effects in vivo and in vitro.'®='® There is a special need for
new drug treatment in low grade tumours. A genetically well-
defined group of low grade tumours are merlin-deficient
tumours, and schwannomas have been used as a model for
the group of tumours.2%%%%7 |t is unknown whether this drug
is useful in schwannoma drug therapy, thus it is important to
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Figure 6 ART impairs autophagy. (a) GFP-LC3 stably expressing HeLa cells was treated with ART. GFP-LC3 vesicles were scored with Cellomics microscopy. Data are
shown as mean + S.D. Scale bar: 20 um. (b and ¢) RT4 cells (b) or Bax/Bak DKO MEFs (c) were treated with ART at indicated concentrations. After 20 h, cells were harvested
and cell lysates were subjected to SDS-PAGE, and blots were probed with anti-p62, LC3 or GAPDH antibodies. (d) GFP-mRFP-LC3-stably expressing HeLa cells were treated
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96-well plates and incubated with DMSO (control), CQ (25 M), ART (200 xM) or a combination of CQ and ART for 24 h. The cells were also treated with Nec (20 M), Nec+CQ,
Nec+ART or Nec+CQ+ART as indicated. Both cell viability and cytotoxicity were assessed. All graphs represent the mean + S.E.M. (a) Cell viability measured using MTT assay.
The DMSO control is considered 100% viability. (b) Cytotoxicity measured using the CytoTox-Fluor Cytotoxicity Assay. The DMSO control is considered 0 cytotoxicity. *P< 0.05;
**P<0.01. (c) The double effects of ART in inducing cell death. ART induces cell death mainly via necroptotic pathways, and autophagy inhibition induced by ART may also
contribute to the cell death. Apoptosis is associated with, but not determining the cell death

~

Cell Death and Disease



Artesunate induces necroptosis
RW Button et al

L)

study the efficacy of ART in cell death induction of
schwannomas as a model for merlin-deficient tumours and
its role in cell death. Moreover, the mechanisms underlying
ART-induced cell death are poorly understood, although it
has been proposed that the drug induces cell death by
apoptotic pathways.®*

Our data demonstrate that ART is effective in cell death
induction of RT4 schwannoma cells and human primary
schwannoma cells. Previously, studies suggested that ART-
induced cell death is apoptosis dependent, however, the
conclusion was not tested with an apoptosis inhibitor orin cells
where apoptosis is deficient.>*=3” Unexpectedly, our current
study shows that ART appears to solely induce RIP1-
dependent necroptosis in schwannoma cells, although it
induces both necroptosis and apoptosis in HelLa cells where
apoptosis may be merely associated with ART-induced cell
death rather than determinant for the cell death since casp-3
knockdown does not effectively reduce cell death induced by
ART in the cells (Supplementary Figure S3). ART is competent
in killing Bax/Bak DKO MEFs that are apoptosis defective
(Figure 3). These data further suggest that apoptosis is not a
major mechanism for the cell death after ART treatment. It is
not clear how ART increases RIP1 levels. We postulate that
ROS production from ART may compromise the ubiquitin-
proteasome system that mediates RIP1 degradation, thus
potentially enhancing RIP1 protein levels. We first demon-
strate that ART-induced cell death is largely dependent on
necroptosis rather than apoptosis in RT4 schwannomas and
other cell types. This is important because it could lead us to
understand that ART’s efficacy can vary in different cell types,
and offer us the knowledge on the application of the drug in the
cells where necroptosis is competent. While using ART, other
agents could be used to trigger apoptosis to maximize the
efficacy of treatments.

In addition, we demonstrated that ART inhibits autophagy,
and ART-led autophagy inhibition may also contribute to its
induced cell death. Hamacher-Brady et al.'® showed that ART
induces cell death via lysosomal ROS production in breast
cancer cells, but it is enigmatic that lysosomotropic agent CQ
or Bafilomycin A1 prevents ART-induced cell death in the cells.
Interestingly, we found that autophagy inhibitor CQ signifi-
cantly enhances ART efficacy in kiling human primary
schwannoma cells. These findings suggest that the combina-
tory treatment of CQ and ART needs to be further investigated
for schwannoma drug therapy, given that both CQ and ART as
mature malarial first-line medicines have proved safe clinically.
Thus, this study highlights a new therapeutic implication on
drug treatment for NF2 as well as other tumours/cancer.

Materials and Methods

Antibodies and reagents. Rabbit polyclonal antibodies were anti-LC3
(1:10000; Novus Biologicals, Cambridge, UK), anti-caspase 3 (1:1000; Cell
Signaling, Hitchin, UK), phospho-T357-S358 MLKL (1:1000; Abcam, Cambridge,
UK), anti-active caspase 3 (1: 1000; Cell Signaling), anti-PARP (1 : 1000; Promega,
Southampton, UK), RIP1 (1:1000; Cell Signaling), Bel-xL (1:1000; BD, Oxford,
UK), Bim (1:1000; Cell Signaling), Bax (1:1000; Cell Signaling), caspase 8
(1:1000; Cell Signaling) and anti-actin (1:2000; Sigma, Gillingham, UK). Anti-
mouse monoclonal antibodies were anti-GAPDH (1:5000; Ambion, Warrington,
UK), anti-p62 (1:1000; BD) and anti-tubulin (1:5000; Sigma). ART, CQ and Nec
were purchased from Sigma. zVAD-fmk (zVAD) was a product of Merck (Feltham,
UK). TNFa was purchased from Invitrogen (Paisley, UK). CHX and STS were from
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Sigma. All control siRNAs and siRNAs against caspase 3 and RIP1 were from
Dharmacon (Lafayette, CO, USA).

Cell culture. Bax/Bak DKO MEFs were kindly offered by Dr Christoph Borner
(University of Freiburg, Germany). Hela cells and Bax/Bak DKO MEFs were
cultured with standard methods in DMEM supplemented with 10% FCS (Sigma).
RT4 schwannoma cells were purchased from Sigma and cultured in DMEM with
10% FCS.

siRNA transfection. Cells were split 1 day before transfection to 50%
confluence and left overnight in antibiotic-free DMEM containing 10% FBS. siRNAs
were transfected with Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions. The final concentration of siRNAs was 100 nM. Non-
targeting siRNA was the control siRNA. Cells were maintained in 10% FBS DMEM
containing no antibiotics for 48 hours after transfection.

Schwannoma primary cell isolation and culture. Ethical approval is
granted and patients gave consent with the usage of the tumour samples to isolate
of human primary schwannoma cells. The methods were described by Rosenbaum
et al.*® Briefly, schwannomas were surgically removed under local anaesthesia, and
were then preincubated for 1-7 days in incubation medium (DMEM plus 10% FBS,
500 U/ml penicillin/streptomycin, 0.5 M Forskolin, 2.5 ug/ml Amphotericin B) in
10% CO, and then dissected into 1-mm-long pieces in DMEM with 10% FCS
containing 500 U/ml penicillin/streptomycin, 160 U/ml collagenase type | (Sigma)
and 1.25 U/ml dispase grade | (Roche, West Sussex, UK). Tissue pieces were
incubated in proteolytic enzymes for 24 h before they were dissociated by trituration
with a narrowed Pasteur pipette. Cell suspension was added to a 50-ml Falcon tube.
Cells were collected and resuspended in proliferation medium: DMEM with 10%
FCS, 500 U/ml Pen/Strep, 0.5uM forskolin (Tocris, Abingdon, UK), 2.5 pg/ml
Amphotericin B, 10 nM b1-heregulin (R&D System, Abingdon, UK) and 2.5 pg/ml
insulin (Sigma). Cells were seeded into 96-well plates (Greiner Bio-one,
Stonehouse, UK), coated with 1 mg/ml poly-L-lysine (Sigma) and 4 ug/ml natural
mouse laminin (Life Technologies, Paisley, UK), at a density of 3000 cells/well.
Proliferation medium was changed every 3—4 days and cells were passaged when
confluent.

Cell viability assay

ATP assays: Cell survival was determined with the Cell Titer-Glo Luminescent
cell viability Assay kit (Promega) to measure ATP levels according to the
manufacture’s instruction. Briefly, 100 uI of Cell Titer-Glo reagent was added to the
culture medium. Cells were placed on a shaker for 5min and then incubated at
room temperature for 10 min. The SPECTRA Max M5 reader (Molecular Devices,
Workingham, UK) was used for Luminescent reading.

MTT assays: For the MTT viability assay, 10 ul of a 12mM MTT stock solution
(Invitrogen) was added to the culture medium and incubated at 37°C for 4 h.
Medium was replaced with 100 x| DMSO and placed on a plate shaker for 10 min.
Absorbance was read at 562nm and a reference measurement at 650 nm.
Readings were performed with the TECAN GENios V4.62-07/01 microplate reader
(Tecan, Reading, UK) with XFLUOR4 Version V 4.51 software (Tecan).

Cytotoxicity assay. Cytotoxicity was measured using the Promega CytoTox-
Fluor Cytotoxicity Assay kit as per the manufacturers’ instructions. Briefly, 10 ul of
reagent was added to the culture medium and then incubated at 37°C for 3 h. Plates
were put on a shaker for 5min before fluorescence was measured at 485nme,/
535nmg, with the TECAN GENios V4.62-07/01 microplate reader with XFLUOR4
Version V 4.51 software.

GFP-mRFP-LC3 assay. Hela cells stably expressing GFP-RFP-LC3 were
treated with ART at the indicated concentrations. After 24 h, cells were fixed in 2%
PFA for 5 min. Cellomics (Arrayscan VTI) was used to score green and red vesicles.
Green vesicles are considered to be autophagosomes and red vesicles are
considered to be both autophagosomes and autolysosomes. The number of
autolysosomes was achieved by subtracting the number of green vesicles from that
of the red vesicles.

Analysis of autophagosomes/vesicles. In experiments requiring a
precise assessment of vesicle number, the number of vesicles per cell in GFP-
positive cells was determined. Approximately 100 cells per sample were counted for
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triplicate samples, as described previously.3® All coverslips were scored with the
observer blinded to the identity of the slides.

Immunocytochemistry. After transfection, cells were fixed with 4%
paraformadehyde for 10 min after washing with phosphate-buffered saline (PBS)
twice. The fixed cells were washed three times in PBS, then permeablized with
0.5% Triton in PBS for 10 min. Cells were blocked in blocking buffer (1% BSA, 1%
heat inactivated goat serum in PBS) for 30 min at room temperature. Primary
antibodies were incubated with cells overnight at 4°C. The secondary antibody was
incubated for 30 min after washing three times (10 min, each). Cells were washed
three times (10 min, each) after incubation with secondary antibodies, then mounted
with DAPI (3 p.g/ml). Images were acquired on a Zeiss LSM710 META microscope
(63x1.4NA planapochnomat oil immersion) (Carl Zeiss, Welwyn Garden City, UK).

qRT-PCR analysis. RT4 cells were treated as indicated and RNA was isolated
using TRIzol reagent following the manufacturer's instructions (Invitrogen). For
gPCR analysis, Tug RNA was reverse transcribed (Applied Biosystems, Paisley, UK)
using the procedure of 25°C (10 min), 37°C (120 min) and 85°C (5min). The
resulting cDNA templates were subjected to qPCR using LightCycler 480 DNA
SYBR Green | Master kit (Roche) with LightCycler 480 Il system (Roche). GAPDH
was used as a control to normalize the data. RIP1 primers (0.5 uM): 5'-AATA
GTTCTCGTGTTCAGATTGGA-3' (forward) and 5'-AGTGTTGGTTGGTGGTTGT-3'
(reverse) (Sigma); GAPDH primers (0.5 uM): 5’-ATCACTGCCACCCAGAAGAC-3'
(forward) and 5'-CAGTGAGCTTCCCGTTCAG-3’ (reverse) (Microsynth, Balgach,
Switzerland).

Statistics. T-test was used and P-values were determined by unconditional
logistical regression analysis by using the general loglinear option of SPSS 9.1
software (SPSS, Chicago, IL, USA) (**P<0.001; *P<0.01; *P<0.05; NS, not
significant).
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