
A matrix-assisted laser desorption ionization post-source
decay (MALDI-PSD) analysis of proteins released from
isolated liver mitochondria treated with recombinant
truncated Bid

G Van Loo1, H Demol2, M van Gurp1, B Hoorelbeke2,

P Schotte3, R Beyaert3, B Zhivotovsky4, K Gevaert2,

W Declercq1, J Vandekerckhove2 and P Vandenabeele*,1

1 Flanders Interuniversity Institute for Biotechnology and Ghent University,
Department of Molecular Biology, Unit of Molecular Signaling and Cell Death,
KL Ledeganckstraat 35, B-9000 Gent, Belgium

2 Flanders Interuniversity Institute for Biotechnology and Ghent University,
Department of Medical Protein Research, KL Ledeganckstraat 35, B-9000
Gent, Belgium

3 Flanders Interuniversity Institute for Biotechnology and Ghent University,
Department of Molecular Biology, Unit of Molecular Signal Transduction in
In¯ammation, KL Ledeganckstraat 35, B-9000 Gent, Belgium

4 Karolinska Institute, Institute of Environmental Medicine, Unit of Toxicology
and Neurotoxicology, Box 210, S-171 77 Stockholm, Sweden

* Corresponding author: P Vandenabeele, Flanders Interuniversity Institute for
Biotechnology and Ghent University, Department of Molecular Biology, Unit of
Molecular Signaling and Cell Death, KL Ledeganckstraat 35, B-9000 Gent,
Belgium. Tel: ++32 9 264 5131; Fax: ++32 9 264 5348;
E-mail: peter.vandenabeele@dmb.rug.ac.be

Received 1.7.01; revised 18.9.01; accepted 26.9.01
Edited by J-C Martinou

Abstract
A crucial event in the process of apoptosis is caspase-
dependent generation of truncated Bid (tBid), inducing release
of cytochrome c. In an in vitro reconstitution system we
combined purified recombinant tBid with isolated liver
mitochondria and identified the released proteins using a
proteomic matrix-assisted laser desorption ionization post-
source decay (MALDI-PSD) approach. In order to meet
physiological conditions, the concentration of tBid was chosen
such that it was unable to induce cytochrome c release in
mitochondriaderivedfromliver-specificBcl-2-transgenicmice.
Several mitochondrial proteins were identified to be released in
a tBid-dependent way, among which cytochrome c, DIABLO/
Smac, adenylate kinase 2, acyl-CoA-binding protein, endonu-
clease G, polypyrimidine tract-binding protein, a type-I RNA
helicase, a WD-40 repeat-containing protein and the serine
protease Omi. Western blotting confirmed the absence of
adenylate kinase 3, a matrix mitochondrial protein. These
results demonstrate that a physiologically relevant concentra-
tion of tBid is sufficient to induce release of particular
intermembrane mitochondrial proteins belonging to a broad
molecular-mass range.
Cell Death and Differentiation (2002) 9, 301 ± 308. DOI: 10.1038/
sj/cdd/4400966
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Introduction

It has become clear that mitochondria play a central role in the
process of cell death. These organelles are targets for
proapoptotic and antiapoptotic pathways. Mitochondria parti-
cipate in the apoptotic process by releasing factors that
modulate the activation of caspases. In this respect, release
of cytochrome c is required for formation of the Apaf-1/
procaspase-9 apoptosome complex in the presence of
(d)ATP.1,2 The recently identified DIABLO/Smac unlatches
the inhibitory activity of XIAP on caspase-3, caspase-7 and
caspase-9,3 ± 8 favoring execution of the apoptotic pathway.
Also during necrotic cell death, mitochondria are involved in
the production of reactive oxygen species,9 but no release of
cytochrome c has been observed.10

Many different apoptogenic stimuli impinge on the
specific proteolysis of Bid, a proapoptotic BH3-only member
of the Bcl-2 family.11 Bid is proteolytically cleaved by
caspase-8, generating 15-kDa truncated Bid (tBid),12,13 by
granzyme B, leading to 14-kDa tBid,14 ± 16 or by lysosomal
proteases.17 In the prototype CD95 (Fas) apoptotic path-
way, ligand binding induces formation of a death-inducing
signaling complex, consisting of the Fas-associated death
domain protein and procaspase-8.18 The molecular link
between these receptor-mediated events and mitochondria
is provided by caspase-8-mediated proteolysis of Bid.12,13

tBid translocates to the mitochondria and induces cyto-
chrome c release, a process involving the proapoptotic Bcl-
2 members Bax and Bak.19 ± 22 Bid-deficient mice are
resistant to anti-Fas-induced hepatocyte apoptosis,23 which
emphasizes the importance of this death domain receptor/
mitochondrial connection. In such hepatocytes, anti-Fas-
induced mitochondrial dysfunction is delayed, no cyto-
chrome c is released and activation of downstream effector
caspases is reduced. Antiapoptotic Bcl-2 and Bcl-XL

proteins do not block cleavage and relocalization of tBid,
but can prevent tBid-induced cytochrome c release.24,25

Although cytochrome c is the best characterized protein
released by mitochondria, other apoptotic proteins translo-
cating to the cytosol of dying cells have been identified and
have been shown to influence phenomena associated with
apoptosis, such as apoptosis-inducing factor,26 DIABLO/
Smac3,5 and some mitochondrial caspases.27,28 To address
the question whether tBid is able to induce the release of
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such proteins, we used an in vitro reconstitution system in
which isolated mouse liver mitochondria were treated with
purified recombinant 15-kDa tBid. The tBid concentration
used was such that no cytochrome c was released in the
mitochondria from Bcl-2-transgenic mice. Subsequently,
proteins released in a tBid-dependent way from mitochon-
dria were identified by matrix-assisted laser desorption
ionization (MALDI) mass spectrometry (MS).

Results

To address the question whether tBid is able to induce
release of proteins other than cytochrome c, we set up a
comparative experiment in which isolated liver mitochondria
were exposed/unexposed to recombinant 15-kDa tBid. In
order to use a relevant concentration of tBid, we determined
the amount of tBid at which cytochrome c release is blocked
by overexpression of Bcl-2. To that end, mitochondria of a
Bcl-2 transgene, placed under control of the hepatocyte-
specific a1-antitrypsin gene promoter,29 were exposed to a
serial dilution of recombinant tBid. The release of cytochrome
c induced by 6.7 nM (10 ng/100 ml) of recombinant tBid was
completely abrogated in liver mitochondria from Bcl-2-
transgenic mice (Figure 1A). To determine whether the
mitochondrial inner membrane was damaged, we checked
for the presence of AK2 and AK3. AK2, an intermembrane
mitochondrial protein, was shown to be released from
mitochondria during the apoptotic process30,31 while AK3 is
located exclusively in the mitochondrial matrix32 and resides
there during the process of apoptosis.33 As shown in Figure
1B, AK2 was specifically released with tBid, whereas AK3
could not be detected in the mitochondrial supernatant. This
suggests that only intermembrane proteins had been
released under the conditions used, that the inner mitochon-
drial membrane had not been damaged and that the matrix
had remained intact.

To identify new mitochondrial proteins released with
tBid, a large-scale preparation of isolated liver mitochon-

dria was exposed, or not, to recombinant tBid. For
purification purposes the resulting supernatant was
separated on 15% SDS ± PAGE gels (for low-molecular
mass proteins) or 8% SDS ± PAGE gels (for high-
molecular mass proteins). Coomassie brilliant blue staining
profiles revealed the presence of several tBid-inducible
protein bands as compared to untreated controls (Figure
2). Differentially stained protein bands were excised from
the gel containing the mitochondrial proteins released by
tBid, together with the corresponding bands of the control
lane. All excised proteins were in-gel digested using
trypsin; a small fraction of the peptide mixture was used
for MALDI-MS peptide mass fingerprinting. Since the
proteins were separated only by their molecular mass,
almost every excised protein band contained multiple
proteins, which prevented unambiguous identification by
peptide mass maps. Therefore the remainder of the
peptide mixture was separated by reverse-phase HPLC,
after which fractionated peptides were analyzed by MALDI-
MS. First, all the peptides present in the protein band
excised from the control lane were analyzed and used as
a negative control. Next, the peptides from the tBid-
dependent released protein band were analyzed (Figure
3A,B). Peptides that were solely present in the latter
sample or were clearly dominant, were chosen for further
sequence analysis by MALDI post-source decay (PSD)
(Figure 3C). As an example, MALDI-PSD analysis of the
protein sample identifying the serine protease Omi is
shown (Figure 3).

Figure 1 (A) tBid-induced cytochrome c release is blocked in Bcl-2-
overexpressing mitochondria. Recombinant tBid was incubated with 40 mg
protein equivalent of liver mitochondria from control and liver-specific Bcl-2-
transgenic mice. Supernatants were separated and subjected to 15% SDS ±
PAGE, followed by Western blotting using an anti-cytochrome c antibody. Ten
ng of tBid (corresponding to 6.7 nM) was sufficient to trigger release of
cytochrome c in control mitochondria, but no longer in Bcl-2 mitochondria. (B)
tBid induces release of AK2, but not of AK3. tBid was incubated with a protein
equivalent of 40 mg purified mitochondria. Supernatants were separated from
the mitochondrial pellets by centrifugation. The supernatant and pellet
fractions were subjected to 15% SDS ± PAGE, followed by immunoblotting
with anti-AK2 antiserum. The same blots were stripped and analyzed for AK3
presence using an AK3-specific antibody

Figure 2 Coomassie brilliant blue staining profiles of tBid-induced
mitochondrial supernatants isolated by centrifugation. Differential protein
bands (separated by 8% and 15% SDS ± PAGE) between controls (lanes 1)
and tBid-induced supernatants (lanes 2) were excised and sequenced
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Using this approach, we identified proteins that were
released in a recombinant tBid-dependent way and which
were not present in the supernatant of untreated mitochon-
dria (Table 1). They include proven apoptogenic proteins
such as cytochrome c and DIABLO/Smac.3,5 We also
detected AK2, a protein without clear function in apopto-
sis,30,31 and a number of proteins from a list of
mitochondrial factors released by atractyloside in vitro,
such as glutamate dehydrogenase, methylmalonate semi-
aldehyde dehydrogenase, coproporphyrinogen III oxidase,
fatty acid-binding protein and acyl-CoA-binding protein.34

The functional impact of these proteins on apoptosis is
unknown.

Identified was also endonuclease G, previously sug-
gested to play a role in mitochondrial DNA replication,35,36

and recently found to be released from the mitochondria
during apoptosis, where it might be involved in caspase-

independent DNA degradation.37 ± 39 Endonuclease G
seems to be one of the proteins most abundantly released,
as can be appreciated from the 15% Coomassie brilliant
blue gel (Table 1 and Figure 2).

Besides these known proteins some new factors were
identified: a type-I RNA helicase, polypyrimidine tract-
binding protein, the serine protease Omi, a WD-40
repeat-containing protein, actin-related protein 2/3 complex
subunit 4 and translocase of inner mitochondrial membrane
TIMM13b. Endoplasmin (also called GRP94), the major
glycoprotein of the endoplasmic reticulum (ER), was
identified as a tBid-released protein, probably due to a
minor contamination of the mitochondrial cell fraction with
the ER. This observation suggests that tBid has, besides its
major activity on mitochondria, an additional effect on the
ER, or that endoplasmin has a dual localization in the ER
and the mitochondria.

Figure 3 MALDI-MS identification of the Omi protein released by tBid. Protein band 6 and its control (Figure 2) were digested using trypsin. The peptide mixture
generated was separated by reverse phase-HPLC. Shown are MALDI-MS spectra of peptides present in the HPLC fraction from protein digests in negative control
(A) and tBid-released (B) proteins. (C) MALDI-PSD analysis of the peptide with a mass of 1089.65 Da present in the spectrum of B permitted to identify the
sequence NH2-AVPAPPPTSPR-COOH of the mouse Omi protein. This was further verified by manually checking the PSD spectrum for the presence of other tryptic
peptide fragments, cumulatively covering approximately 23% of the amino acid sequence of the Omi protein (data not shown)
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In most cases the difference between tBid-treated and
untreated mitochondria led to the identification, in qualita-
tive terms, of extra proteins in the treated condition.
However, some protein bands showed a stronger staining
in the control sample as compared to the tBid condition
(Figure 2). Also in this case, we excised the band of similar
height in the lane of tBid-treated mitochondria. The protein
identification procedure used in this study is not able to
document quantitative differences between protein mix-
tures. To this end, differential techniques that use stable
isotope incorporation into peptides should have been
employed.40,41 Nevertheless, MALDI-MS analysis of these
protein bands did not reveal qualitative differences for these
more intensely stained proteins in the case of supernatant
from untreated mitochondria. Hence it is possible that a
tBid-dependent release of proteases (such as Omi) partially
degrades proteins in the mitochondrial supernatant, result-
ing in a lesser protein content.

Discussion

Although cytochrome c is the best known and best
documented mitochondrial protein released during apoptosis,
the mitochondria still contain other apoptogenic factors, such
as DIABLO/Smac,3,5 apoptosis-inducing factor26,42 and
mitochondrial caspases.27,28 To address the question
whether tBid is able to induce the release of such proteins,
we set up a comparative experiment in which isolated liver
mitochondria were subjected to a relevant concentration of
tBid, viz a concentration of tBid at which cytochrome c release
is blocked by overexpression of Bcl-2. A proteome analysis
was performed on the supernatant of isolated mitochondria
(either untreated or treated with recombinant tBid) to
determine any tBid-dependent release of proteins. Except
for apoptosis-inducing factor and mitochondrial caspases,
most mitochondrial proteins already described as being
released during apoptosis were identified by our approach.
Among the proteins released from the mitochondria during the
apoptotic process we identified cytochrome c, DIABLO/Smac
and AK2, as well as some proteins previously reported to be
present in the supernatant of atractyloside-treated isolated
mitochondria. The latter include glutamate dehydrogenase,
methylmalonate semialdehyde dehydrogenase, copropor-
phyrinogen III oxidase, fatty acid-binding protein and acyl-
CoA-binding protein.34 Glutamate dehydrogenase and copro-
porphyrinogen III oxidase are implicated in oxidative deami-
nation and heme biosynthesis, respectively. Methylmalonate
semialdehyde dehydrogenase is involved in breakdown of
branched amino acids. Fatty acid-binding protein binds free
fatty acids and may be implicated in intracellular lipid
transport. Acyl-CoA-binding protein, the endogenous ligand
of the mitochondrial benzodiazepine receptor, is involved in
acetyl-CoA ester transport and was reported to cause opening
of the permeability transition pore after ligation with its
receptor, thus favoring apoptosis.43 ± 45 Furthermore, we
identified the translocase of the inner mitochondrial mem-
brane TIMM13b, a protein implicated in protein import from
the cytoplasm to the mitochondrial inner membrane. Another
member of this family, the X-linked deafness-dystonia protein
(also called TIMM8a),46 has already been described as beingT
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released from the intermembrane mitochondrial space after
treatment with atractyloside.34 Also the recently published
proapoptotic DNAse endonuclease G, probably involved in
caspase-independent DNA degradation, was clearly identi-
fied.37 ± 39

We also identified a few new proteins released from
tBid-treated mitochondria, some of which may modulate
apoptotic pathways. An interesting finding is tBid-mediated
release of Omi (also named HtrA2), a serine protease
homologous to the bacterial heat shock endoprotease HtrA.
Omi contains a mitochondrial localization signal47 and was
suggested to play a role in the degradation of aberrantly
folded proteins during cellular stress caused by reactive
oxygen species, toxins or ischemia/reperfusion.48,49 As tBid
induces release of Omi from mitochondria, it is conceivable
that its protease activity, once translocated to the cytosol,
may regulate apoptotic proteolytic cascades or may
proteolyze some substrates implicated in apoptosis.
Although caspases, a family of cysteine proteases, are
the main players in the apoptotic process, other non-
caspase proteases have been described as being involved
in apoptosis, including cathepsins, calpains, serine pro-
teases and the proteasome complex.50

Another interesting tBid-released protein that may
modulate apoptotic pathways, is the polypyrimidine tract-
binding (PTB) protein. Little is known about the precise
function of this protein, but it was recently recognized as an
important player in alternative splicing regulation.51 In the
context of apoptosis, the PTB protein was shown to bind
downstream of the alternative exon 9 of caspase-2, thus
preventing inclusion of the alternative exon 9.52 Caspase-
2L is derived from the skipping of alternative exon 9 and
can induce cell death in a variety of cells,53,54 whereas
caspase-2S is a truncated version of the protein due to
inclusion of exon 9 (containing a premature termination
codon). Since overexpression of caspase-2S prevents
apoptotic cell death,53,55 release of the PTB protein might
favor formation of the proapoptotic caspase-2L form. Most
likely, the PTB protein is also involved in the splice
regulation of other, possibly apoptosis-related, proteins.

A third potentially interesting protein identified is a WD-40
repeat-containing protein. Although the function of the protein
is essentially unknown,56 WD-40 repeats are present in the
C-terminal regulatory domain of Apaf-1. They were shown to
be involved in self-association of Apaf-1 and regulation of
caspase-9 activation.57 ± 59 WD-40 repeats are present in a
variety of proteins with diverse functions and have been
proposed to play a regulatory role.60

Also Arp2/3 complex subunit 4 (known as p20-Arc) was
identified. The Arp2/3 protein complex is implicated in the
control of actin polymerization. The complex consists of
seven subunits including the actin-related proteins Arp2
and Arp3, and five others referred to as p41-Arc, p34-Arc,
p21-Arc, p20-Arc and p16-Arc.61 Recent observations
support a role for the Arp2/3 complex and/or actin
polymerization in the movement of organelles in eukaryotic
cells and yeast.62,63 Although the precise localization of the
different components is unknown, Arp2/3 complex subunits
colocalize with the mitochondria in intact yeast.63 Thus it is
possible that the Arp2/3 complex subunit 4 identified here

plays a role in cytoskeletal rearrangements and/or
mitochondrial changes in the ultrastructural organization
during the process of apoptosis.64

Finally, we also found the type-I RNA helicase Upf1 as
being released under influence of tBid. Upf1 is involved in
regulation of translation by operating in the nonsense-
mediated decay of mRNA.65,66 It is remarkable that our
protein analysis revealed two large proteins, viz. 123-kDa
type-I RNA helicase and 93-kDa endoplasmin. In fact, the
maximum protein size for mitochondrially released proteins
is considered to be approximately *80 kDa.34 However, it
is not clear if this release is associated with an action of
tBid on the mitochondria, since Upf1 is associated with
polyribosomes or resides in the cytosol, depending on its
phosphorylation status.67 Endoplasmin (also called
GRP94), a hsp90 member of glucose-regulated proteins,
was described as a chaperone associated with the ER.68

Endoplasmin has been reported to have antiapoptotic
properties and to be a proteolytic target for calpains during
etoposide-induced apoptosis.69 Although a mitochondria-
associated localization of these two proteins cannot be
excluded, their presence in the supernatant of tBid-treated
mitochondria may reflect a contamination of the isolated
mitochondria with the ER; this may also imply that tBid has
targets other than mitochondria. In this respect, Bcl-2 was
also shown to localize to the ER.70,71

As expected, most of the proteins identified have been
reported to have a mitochondrial subcellular localization.
Moreover, Western blotting revealed that the release of
proteins is most probably confined to the intermembrane
space, since AK2 (but not the soluble matrix protein AK3)
was shown to be present in the supernatant of tBid-treated
mitochondria. Although glutamate dehydrogenase and
methylmalonate semialdehyde dehydrogenase are matrix
proteins, part of the proteins may be localized in the
intermembrane space of the mitochondria. The same might
be true for endonuclease G, which plays a role in
mitochondrial DNA replication36, favoring the idea of matrix
localization. Alternatively, one cannot exclude the possibility
that matrix proteins are released from the mitochondria
under certain conditions.

Our in vitro study clearly shows that a proteome analysis
by MALDI-MS and PSD is a powerful tool to study the
release of mitochondrial proteins under conditions of
apoptotic signaling. Besides known apoptogenic mitochon-
drial proteins, some new potentially apoptogenic proteins
were identified. Further investigation into the involvement of
these proteins in the apoptotic process will permit to
understand the function of their mitochondrial release, also
under other pathophysiological conditions in which mito-
chondrial dysfunction occurs, such as senescence.

Materials and Methods

Isolation of murine liver mitochondria

C57BL/6 wild-type and Bcl-2-transgenic mice (kindly provided by Dr. I
Rodriguez, Laboratory of Vertebrate Neurobiology, The Rockefeller
University, New York, NY, USA)29 were used at the age of 7 ± 12
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weeks. Transgenic offspring were identified by PCR using Bcl-2-
specific primers. Livers of wild-type and Bcl-2-transgenic mice were
homogenized in homogenization buffer (5 mM KH2PO4 pH 7.4, 0.3 M
sucrose, 1 mM EGTA, 5 mM 3-(N-morpholino)propanesulfonic acid).
Mitochondria were purified as described previously39,72 and
resuspended in cell-free system buffer (10 mM HEPES-NaOH
pH 7.4, 220 mM mannitol, 68 mM sucrose, 2 mM NaCl, 2.5 mM
KH2PO4, 0.5 mM EGTA, 2 mM MgCl2, 5 mM pyruvate, 0.1 mM PMSF,
and 1 mM dithiothreitol), kept on ice and used within 1 h of
preparation.

Analysis of tBid-induced release of mitochondrial
proteins

Mitochondria equivalent to 40 mg of liver protein were incubated at
378C in 100 ml cell-free system buffer for 20 min with a serial dilution of
recombinant tBid. Supernatants were separated from mitochondria by
centrifugation at 20 000 6g for 10 min at 48C. 1/5 of supernatant was
subjected to 15% SDS ± PAGE, followed by Western blotting.
Antibodies used for Western blots were anti-cytochrome c (clone
7H8.2C12; PharMingen, San Diego, CA, USA), anti-AK2 and anti-AK3
(kindly provided by Dr. T Noma, Department of Biochemistry,
Yamaguchi University School of Medicine, Yamaguchi, Japan). Blots
were visualized with the chemiluminescence NEN Renaissance
method (Du Pont, Wilmington, DE, USA) after incubation of
membranes with secondary antibodies coupled to horseradish
peroxidase (Amersham Pharmacia Biotech, UK).

Protein and peptide preparation procedure

In order to identify released proteins by MS, a mitochondrial equivalent
of one liver was prepared (corresponding to approximately 1 mg
protein) and incubated with 170 nM purified tBid for 20 min at 378C
(500 ng tBid/200 ml of mitochondria equivalent to 1000 mg of liver
protein). Supernatant was prepared by 20 000 6g centrifugation for
10 min at 48C and submitted to 15% SDS ± PAGE analysis.
Coomassie brilliant blue-stained bands corresponding to tBid-induced
mitochondrial protein release were excised and transferred to
individually wrapped Eppendorf tubes. Corresponding gel slices of a
parallel run lane of proteins spontaneously released or dissociated
from unstimulated mitochondria were used as negative controls. Gel
slices were digested using trypsin, as described previously.73 After
digestion, supernatant containing tryptic peptides was removed from
the gel pieces and acidified using 1 ml formic acid. A small fraction
(10%) of this mixture was concentrated on Poros 50 R2 beads (Roche
Molecular Biochemicals, Basel, Switzerland) and used for MALDI-MS
peptide mass-fingerprint analysis as previously described.74 Since the
excised gel bands contained multiple proteins, no unambiguous
protein identification was possible by solely using the obtained tryptic
peptide mass maps. Therefore the remainder of the peptide mixture
was loaded on a 1650 mm Vydac C18-column (The Separations
Group, Hesperia, CA, USA); peptides were separated by reverse
phase-HPLC using an acetonitrile gradient. Eluting peptides were
automatically collected in an aqueous solution containing a small
number of Poros 50 R2 beads.73 These fractions were completely
dried in a centrifugal vacuum concentrator and stored at 7208C for
further analysis by MALDI-MS.

MALDI-MS protein identi®cation

All MALDI-MS experiments were performed on a Bruker Reflex III
MALDI-TOF mass spectrometer (Bruker Daltonik, Bremen, Ger-
many). The peptides present in each reverse phase-HPLC fraction

were first scanned in reflectron mode; peptides that were clearly
enriched as compared to the negative control sample were further
selected for MALDI-PSD analysis. The peptide fragmentation
spectra obtained were automatically used for protein identification
in a nonredundant protein database using MASCOT algorithm
(http://www.matrixscience.com).
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