Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition

SD Patterson¹, CS Spahr¹, E Daugas², SA Susin², T Irinopoulou³, C Koehler⁴ and G Kroemer^{*,2}

- ¹ Amgen Inc., Mammalian Genomics, Amgen Center, Thousand Oaks, California 91320, USA
- ² Centre National de la Recherche Scientifique, ERS1984, 19 rue Guy Môquet, F-94801 Villejuif, France
- ³ INSERM U430, Hôpital Broussais, 14 rue Didot; F-75014 Paris, France
- ⁴ Department of Chemistry and Biochemistry, Box 951569, University of California, Los Angeles, California 90095, USA
- * Corresponding author: G Kroemer, 19 rue Guy Môquet, B.P. 8, F-94801 Villejuif, France. Tel: 33-1-49 58 35 13; Fax: 33-1-49 58 35 09; E-mail:kroemer@infobiogen.fr

Received 25.10.99; revised 12.11.99; accepted 12.11.99 Edited by R Knight

Abstract

Mitochondrial membrane permeabilization is a rate-limiting step of cell death. This process is, at least in part, mediated by opening of the permeability transition pore complex (PTPC) Several soluble proteins from the mitochondrial intermembrane space and matrix are involved in the activation of catabolic hydrolases including caspases and nucleases. We therefore investigated the composition of a mixture of proteins released from purified mitochondria upon PTPC opening. This mixture was subjected to a novel proteomics/mass spectrometric approach designed to identify a maximum of peptides. Peptides from a total of 79 known proteins or genes were identified. In addition, 21 matches with expressed sequence tags (EST) were obtained. Among the known proteins, several may have indirect or direct pro-apoptotic properties. Thus endozepine, a ligand of the peripheral benzodiazepin receptor (whose occupation may facilitate mitochondrial membrane permeabilization), was found among the released proteins. Several proteins involved in protein import were also released, namely the so-called X-linked deafness dystonia protein (DDP) and the glucose regulated protein 75 (grb75), meaning that protein import may become irreversibly disrupted in mitochondria of apoptotic cells. In addition, a number of catabolic enzymes are detected: arginase 1 (which degrades arginine), sulfite oxidase (which degrades sulfur amino acids), and epoxide hydrolase. Although the functional impact of each of these proteins on apoptosis remains elusive, the present data bank of mitochondrial proteins released upon PTPC opening should help further elucidation of the death process. Cell Death and Differentiation (2000) 7, 137–144.

Keywords: apoptosis; cytochrome c; mitochondria; permeability transition; mass spectrometry; proteomics

Abbreviations: AIF, apoptosis inducing factor; ANT, adenine nucleotide translocator; DDP, X-linked deafness dystonia protein; MS, mass spectrometry; PTPC, permeability transition pore complex; SIMPs, soluble intermembrane space proteins; VDAC, voltage dependent anion channel

Introduction

Apoptosis is (almost) uniformly accompanied by an increase in mitochondrial membrane permeability,^{1,2} that is triggered by an ever increasing number of different pro-apoptotic effectors, including caspases,3,4 pro-apoptotic members of the Bcl-2/Bax family,5-7 lipid second messengers such as ganglioside GD3,8 Ca2+, or pro-oxidants.9-11 The permeabilization of the inner membrane is partial, allowing for the free diffusion of solutes of up to 1500 Da and may be reversible.^{1,2} In contrast, permeabilization of the outer membrane is complete, culminating in the release of soluble intermembrane space proteins (SIMPs). The mechanism accounting for membrane permeabilization is a matter of debate. At least in some models, it involves proteins of the permeability transition pore complex (PTPC) whose most abundant components, the voltage dependent anion channel (VDAC) and the adenine nucleotide translocator (ANT), interact with pro- and anti-apoptotic members of the Bcl-2/Bax family.^{6,12} How SIMPs are released from mitochondria is not understood. According to one hypothesis, the liberation of SIMPs may result from ANT-mediated inner membrane permeabilization^{6,13} with consequent matrix swelling and physical disruption of the outer membrane.¹⁴ However, it has also been suggested that VDAC may form a protein-permeable conduit.1

Irrespective of the exact mode of outer membrane permeabilization, it appears that the release of SIMPs occurs in a non-selective fashion and indistinguishably affects relatively small proteins such as cytochrome c (14.5 kDa),¹⁵ as well as larger proteins such as the adenylate kinase-2 (50 kDa),^{16,17} apoptosis inducing factor (AIF, 57 kDa),^{18,19} and mitochondrial caspases (up to 50 kDa).20,21 Several among these SIMPs are highly apoptogenic, thus providing a molecular link between mitochondrial dysfunction and the activation of catabolic hydrolases. Thus, cytochrome c and hsp 10 (which translocate into the cytosol) participate in the activation of caspases within the apoptosome,15,22 whereas AIF (which translocates into the nucleus) activates endonucleases and may account for caspase-independent large scale chromatin condensation.19,23

Intrigued by the fact that several mitochondrial proteins are involved in the apoptotic process, we decided to investigate the composition of a mixture of proteins released from purified mitochondria upon PTPC opening. This mixture was subjected to a novel mass spectrometric approach designed to identify as many peptides as possible.^{24–26} Here we report the identification of 97 mitochondrial proteins, some of which may contribute to the cell death cascade.

Results and Discussion

Creation of a protein data base

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was employed to investigate the peptide composition of trypsin-digested supernatants, obtained from mouse liver mitochondria treated with the PTPC-opening agent atractyloside. This supernatant contained multiple proteins with a maximum size of ~ 80 kDa (Figure 1) and clearly differed in its composition from other submitochondrial fractions. Thus, when compared to the intermembrane space fraction of proteins, a lower content of proteins with a molecular mass greater than 80 kDa and a clear bias in favor of smaller proteins was found (Figure 1). The LC-MS/MS technology was applied either to the unfractionated peptide mixture or to a batch of peptides that had been enriched based on their cysteine content, as detailed in Materials and Methods. Proteins were identified by correlation of their peptide sequence with an uninterpreted MS/MS spectrum. Obvious contaminants (trypsin and 15 peptides corresponding to 10 different ribosomal proteins) were excluded from the pool of proteins which are listed in Table 1. Peptides corresponding to a total of 79 known proteins or genes were identified. In addition, 21 matches with expressed sequence tags (EST) were obtained. Of note, several SIMPs that are known to be released from mouse liver mitochondria exposed to atractyloside (such as AIF or caspases 2 and 9)^{19,20} were not detected, indicating that this protein data base must be regarded as incomplete. These proteins are most likely at levels at or below that of the contaminants (ribosomal proteins) identified in the sample.

As to be expected, most of the proteins whose subcellular localization has been previously assessed are mitochondrial proteins. A lysosomal contamination might be suggested by the detection of cathepsin B.

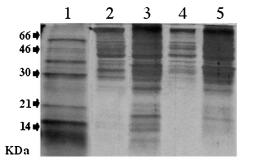


Figure 1 Silver staining profiles of the supernatant of atractyloside treated mouse liver mitochondria as well as submitochondrial fractions. Lane 1: supernatant of atractyloside-treated mitochondria (5 mM, 30 min). Lane 2: Inner membrane proteins. Lane 3: intermembrane proteins. Lane 4: outer membrane. Lane 5: matrix

However, cathepsin B has been previously found in the supernatant of atractyloside treated mitochondria,²⁷ and this may indicate that some of this protease is actually imported into mitochondria and/or associates with mitochondria. Several proteins which are normally considered as peroxisomal were also detected. Again, it is possible that this is due to a minor contamination of mitochondria with peroxisomes. Alternatively, it may be indicative of a dual (peroxisomal plus mitochondrial) localization of such proteins, which has been observed.²⁸⁻³⁰ A large number of proteins that are classified as matrix proteins were identified. This may constitute a fraction of proteins that are being imported (through the intermembrane space) or, alternatively, suggest that some mitochondria (partially?) lose the integrity of the inner mitochondrial membrane.^{22,31} In accord with this latter possibility, mitochondria treated with the PTPC activator Bax release the matrix protein aspartate aminotransferase³² and some translocation of the matrix protein hsp60 into the cytosol has been reported to occur in cells undergoing apoptosis.²² The release of hsp60, however, is not detectable by immunofluorescence staining, indicating that it only affects a minor fraction of the pool of hsp60.22,31 We have verified the subcellular localization of two proteins found in the data base, namely X-linked deafness dystonia protein (DDP, which is an intermembrane protein) and SOD2 (which is a matrix protein). As to be expected from their submitochondrial localization, DDP distributed from mitochondria (counterstained with the matrix protein hsp60) to the cytosol when apoptosis was induced (Figure 2A). In contrast, SOD2 remained mitochondrial (Figure 2B), meaning that only a minority of SOD2, if any, was liberated from mitochondria following apoptosis induction.

Concluding remarks

The data contained in Table 1 confirm the non-selective nature of mitochondrial membrane permeabilization. In addition to known apoptogenic SIMPs, a number of different proteins which might have some impact on cell death were identified. Thus acyl-CoA binding protein (diazepam binding inhibitor, also called endozepine) and a putative analogue (corresponding to EST AA930535) were found in the mitochondrial supernatant. We and others have found in the past that ligation of the mitochondrial benzodiazepine receptor (whose endogenous ligand is acyl-CoA binding protein) causes PT pore opening and favors apoptosis. $^{33-36}$ It is tempting to speculate that endozepine released from mitochondria undergoing PT may affect other mitochondria. Several proteins involved in protein import were also released, namely the so-called X-linked deafness dystonia protein (DDP)³⁷ and the glucose regulated protein 75 (grb75). This may imply that protein import becomes disrupted in mitochondria, making the outer membrane damage irreversible. Moreover, grb75 has been reported to interact with p53.38 The mass spectrometric data indicate that several antioxidant enzymes were released from

Table 1	Mass	spectrometric	identification	of	mitochondrial p	oroteins
---------	------	---------------	----------------	----	-----------------	----------

Accession Code	Protein description	Species	Localization of mature protein	Peptide or No. of peptides*	Occurrences
64433	10 kd heat shock protein, mitochondrial (hsp10)	mouse	intermembrane	6	14
64591	2,4-dienoyl-CoA reductase, mitochondrial precursor (ec 1.3.1.34)	rat	mitoch.	2	2
42125	3,2-trans-enoyl-CoA isomerase, mitochondrial pre- cursor (ec 5.3.3.8)-	mouse	matrix	VLVETEG- PAGVAVMK	1
/64336	3-ketoacyl-CoA thiolase mitochondrial (ec 2.3.1.16)	mouse	matrix	12	21
21775	3-ketoacyl-CoA thiolase peroxisomal a precursor (ec 2.3.1.16)	rat	peroxisome	6	13
07871	(ec 2.3.1.10) 3-ketoacyl-CoA thiolase peroxisomal b precursor (ec 2.3.1.16)	rat	matrix	15	25
20029	78 kd glucose regulated protein precursor (grp 78)	mouse	matrix	2	2
17764	acetyl-CoA acetyltransferase precursor, mitochon- drial (ec 2.3.1.9)	rat	matrix	7	15
99798	aconitate hydratase, mitochondrial precursor (ec 4.2.1.3)	human	mitoch.	2	2
51174	acyl-CoA dehydrogenase, long-chain specific pre- cursor (ec 1.3.99.13)	mouse	mitoch.	CIGAIAM- TEPGAG- SDLQGVR	1
31786	acyl-CoA-binding protein (diazepam binding inhibi- tor) (endozepine)	mouse	mitoch.	2	2
07872	acyl-CoA oxidase, peroxisomal (ec 1.3.3.6)	rat	mitoch.	2	2
54819	adenylate kinase isoenzyme 2, mitochondrial (ec 2.7.4.3)	human	intermembrane	5	7
46656 F027730	adrenodoxin precursor (adrenal ferredoxin) alanine:glyoxylate aminotransferase	mouse mouse	matrix mitoch.	LGCQVCLTK VIHHTTPVT-	2 1
021130	alarime.giyoxylate ammotiansierase	mouse	peroxisomes	SLYCLR	1
47738	aldehyde dehydrogenase, mitochondrial precursor (ec 1.2.1.3)	mouse	matrix	9	10
49419	antiquitin (ec 1.2.1)	human		GSDCGIVNV- NIPTSGAEIG- GAFG	1
061176	arginase 1 (ec 3.5.3.1)	mouse	mitoch.	6	7
16460	argininosuccinate synthase (ec 6.3.4.5)	mouse	cytosol	FELTCYSLAP- QIK	2
05202	aspartate aminotransferase, mitochondrial precur- sor (ec 2.6.1.1)	mouse	matrix	7	8
06185	ATP synthase e chain, mitochondrial (ec 3.6.1.34)	mouse	inner membrane	ELAEAQDD- SILK	1
F033381	betaine homocysteine methyl transferase	mouse	cytosol	7	7
07756	carbamoyl-phosphate synthase (ammonia) mito- chondrial precursor (ec 6.3.4.16)	rat	matrix	33	45
24270	catalase (ec 1.11.1.6)	mouse	peroxisomes	24	48
10605	cathepsin b precursor (ec 3.4.22.1) (cathepsin b1)	mouse	lysosomes	EQWSNCP- TIGQIR	1
90725	caveolae-associated protein mRNA; high-density lipoprotein binding protein	rat	caveolae	LVGEIM- QETGTR	1
F004591	copper transport protein Atox1 (ATOX1)	mouse		VCID-	1
				SEHSSDTL- LATLNK	
36552	coproporphyrinogen iii oxidase precursor (ec1.3.3.3.) (coproporphyrinogenase)	mouse	mitoch.	2	2
00009	cytochrome c	mouse	intermembrane	6	11
01205	dihydrolipoamide succinyltransferase (ec 2.3.1.61)	rat .	inner membrane maxrix	GLVVPVIR	1
79910	dimethylglycine dehydrogenase like protein	rat	matrix	GAQVIEN- CAVTGIR	1
13803	electron transfer flavoprotein alpha-subunit precur- sor	rat	inner membrane	15	29
04720	elongation factor 1-alpha 2 (ef-1-alpha-2)	human	cytoskeleton, cytosol	iggigtvp- Vgr	1
' 30084	enoyl-CoA hydratase, mitochondrial precursor (ec 4.2.1.17)	human	mitoch.	3	3

(Continued)

Table 1 (Continued)

Accession Code	Protein Description	Species	Localization of mature protein	Peptide of No. of peptides	Occurrences
A472254	enoyl-CoA: hydratase-3-hydroxyacyl-CoA dehydro-	mouse	mitoch.	LGILDVVVK	1
R472204	genase bifunctional enzyme (similar to GB:L07077)	mouse	peroxisome	LGILDVVVK	I
51660	estradiol 17 beta-dehydrogenase 4 (ec 1.1.1.62)	mouse		2	2
12710	fatty acid-binding protein, liver (l-fabp) (14 kd selenium-binding protein)	mouse	mitoch. cytosol	4	6
00884	fructose-bisphophate aldolase b (ec 4.1.2.13)	rat		5	9
26443	glutamate dehydrogenase precursor (ec 1.4.1.3)	mouse	matrix	6	8
11352	glutathione peroxidase (ec 1.11.1.9) (gshpx-1)	mouse	mitoch.,cytosol peroxisome	2	2
23434	glycine cleavage system h protein precursor	human	mitoch.	SCYEDGWLIK	1
29411	gtp:amp phosphotransferase mitochondrial (ec 2.7.4.10)	rat	mitoch.	AYEAQ- TEPVLQYYQK	1
34931	heat shock 70 kd protein 1-hom (hsp70 hom)	human		TTPSYVAFTD- TER	2
52760	heat-responsive protein 12	mouse		APAAIGPYS- QAVQVDR	2
00341	high density lipiprotein binding protein (hdl-binding protein)	human		2	3
38060	hydroxymethylglutaryl-CoA lyase precursor (ec 4.1.3.4)	mouse	mitoch. peroxisomes	EVSVFGAV- SELFTR	1
54869	Hydroxymethylglutaryl-CoA synthase, mitochondrial precursor (4.1.3.5)	mouse	mitoch.	2	2
12007	isovaleryI-CoA dehydrogenase precursor (ec 1.3.99.10)	rat	matrix	2	3
189644	keratin K5	rat	cytoskeleton	SLDLDSII- AEVK	1
61281	lysozyme homolog AT 2, bone	rat		NTDGSTDY- GILQINSR	1
/11382	ma86g01.r1 Soares mouse p3NMF19. W11382 Frame +3	mouse		VTHLSTLQV- GSLSVK	1
08249	malate dehydrogenase, mitochondrial precursor [acylating] (ec 1.2.1.27)	mouse	matrix	12	16
02253	methylmalonate-semialdehyde dehydrogenase pre- cursor [acylating] (ec 1.2.1.27)	rat	mitoch.	3	3
19226	mitochondrial matrix protein p1 precursor (p60 lymphocyte protein)	mouse	matrix	16	27
38646	mitochondrial stress-70 protein precursor (75 kd glucose regulated protein)	human	mitoch.	7	10
20108	mitochondrial thioredoxin-dependent peroxide re- ductase precursor	mouse	mitoch.	GLFIIDPN- GVVK	1
32020	nonspecific lipid-transfer protein precursor (sterol carrier protein 2)	mouse	mitoch. peroxisome	15	45
15531	nucleoside diphosphate kinase a (ec 2.7.4.6)	human	matrix nuclear	4	5
11725	ornithine carbamolyltransferase precursor (ec 2.1.3.3)	mouse	mitoch.	4	4
05092	peptidyl-prolyl cis-trans isomerase a (ec 5.2.1.8) (cycophilin A)	human	cytosol	HTGPGILSMA- NAGPNTNGS- QFFICTAK	1
F006688	peroxisomal acyl-CoA oxidase	mouse	peroxisome	2	2
29341	polyadenylate-binding protein 1 (poly(a) binding protein 1)	mouse	cytosol	6	7
09103	protein 1) protein disulfide isomerase precursor (pdi) (ec 5.3.4.1) (prolyl 4-hydroxylase	mouse	ER	VDATEES- DLAQQYGVR	1
99029	putative peroxisomal antioxidant enzyme (liver tissue 2d-page spot 2d-0014iv)	mouse	peroxisome	2	2
05920	pyruvate carboxylase precursor (ec 6.4.1.1)	mouse	matrix	2	2
09139	serine-pyruvate aminotransferase, mitochondrial percursor (ec 2.6.1.51)	rat	mitoch	LLLGPGSN- LAPR	1
34914	soluble epoxide hydrolase (ec 3.3.2.3) (epoxide hydrotase)	mouse	cytosol, perox. mitoch.	2	2

(Continued)

140

Table 1 (Continued)

Accession Code	Protein Description	Species	Localization of mature protein	Peptide of No. of peptides	Occurrences
-13086	succinyl-CoA ligase, alpha-chain precursor (ec	rat	mitoch.	2	3
07116	6.2.1.4) sulfite oxidase precursor (ec 1.8.3.1)	rat	intermembrane	LCDVLA-	2
07895	superoxide dismutase [mn] precursor (ec 1.15.1.1)	rat	matrix	QAGHR GDVTTQVAL-	1
			mainx	QPALK	
10639	thioredoxin	mouse		2	2
06830 52196	thioredoxin peroxidase 2 thiosulfate sulfurtransferase (ec 2.8.1.1) (rhoda- nese)	human mouse	matrix	4 5	10 6
25688	uricase (ec 1.7.3.3)	mouse	peroxisomes	2	2
F086630	VAMP-associated protein A	rat		3	3
166035 1663509	X-linked deafness dystonia protein (DDP) uk33g02.y1, Sugano mouse kidney mkia Frame+2	human mouse	intermembrane	4 MSGGSLIPSP- NQQALSPQP- SR	6 1
F066751	ES/130 mRNA, complete cds; similar to 180K ribosome receptor and cardiac morphogenesis	human		3	4
135434	protein ES/130 EST105154 Rat PC-12 cells, untre H35434 Frame +3	rat		AGIVQDEVQ- PPGLK	2
V08097	mb39c09.r1 Soares mouse p3NMF19. W08097 Frame +1	mouse		2	2
V07953	mb45g02.r1 Soares mouse p3NMF19. W07953 Frame +2	mouse		AVATLQ- GEGLSVT- GIVCHVGK	1
/29591	mc08a08.r1 Soares mouse p3NMF19. W29591 Frame +1	mouse		RDPVDTDDT-	2
62507	md72e10.r1 Soares mouse embryo N W62507 Frame +1	mouse		GTPEQPCGF- SNAVVQILR	1
V66688	me26a03.r1 Soares mouse embryo N W66688 Frame +1	mouse		3	6
V97106	mf90a04.r1 Soares mouse embryo N W97106 Frame +3	mouse		ASQQDFE- NALNQVK	1
A008039	mg71f09.r1 Soares mouse embryo AA008039 Frame +2	mouse		FDSNVSGQS- SFGTSPAAD- NIEK	2
A004027	mg80g01.r1 Soares mouse embryo AA004027 Frame +2	mouse		VQIAVANA- QELLQR	1
A109583	ml97h06.r1 Stratagene mouse ki AA109583 Frame +3	mouse		FLYTVPNGN- NPTGNS- LTGDR	1
A109917	mp49h11.r1 Barstead MPLRB1 Mus AA109917 Frame +3	mouse		NHLPVPNLD- PHTYR	1
A222445	y 18g05.r1 Barstead mouse hear AA222445 Frame +2	mouse		IPNQFQGSP- PTPSDESVK	2
A254902	mz78f08.r1 Soares mouse NML My AA254902 Frame +1	mouse		NQEAMGAF- QEFPQ- VEACR	1
A939535	vsbob01.r1, similar to SW: ENDR_BOVIN POT106 Endozepine related protein precursor	mouse		2	2
V42142	similar to PIR:S16967 NADH dehydrogenase	mouse		2	2
/54192	similar to SW: YA94_SCHPO Q09783 Hypothetical 11.4 kD protein	mouse		CIGKPGGSL- DNSEQK	2
A261575	similar to WP:B0334.3A CE02934 Oxalyl0CoA decarboxylase	mouse		TPEELQHSLR	1
A002289	similar to WP:C16C10.11 CE01491	mouse		QFLECAQNQ- SDVK	2
20248	yn56g04.r1 Homo sapiens cDNA clo H20248 Frame +1	human		LLADPT- GAFGK	1
OTALS:	Total # proteins/genes= 97 # Known proteins/genes= 76 # EST matches= 21			298	255

*Peptide sequences are listed when only one set of mass spectroscopic data matched the corresponding data bank entry. In the case of more than one match, their number is specified

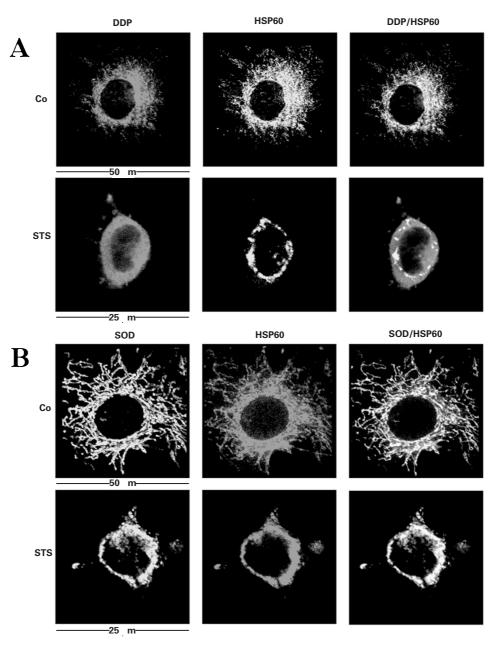


Figure 2 Subcellular distribution of DDP and SOD2 in cells undergoing apoptosis. Cells cultured in the absence (Co.) or presence of the apoptosis inducer STS were stained with antibodies specific for DDP (A) or SOD2 (B) and counterstained for the mitochondral matrix protein Hsp60. Note that the overlap between DDP and Hsp60 dependent fluorescence found in normal cells is largely abolished in apoptotic cells. In contrast, this overlap persists for SOD2 and Hsp60, even after induction of apoptosis

mitochondria. This applies to glutathione peroxidase, thioredoxin, thioredoxin peroxidase, and perhaps a fraction of manganese-dependent superoxide dismutase (SOD2), suggesting a relative deprotection of mitochondrial membranes from oxidative reactions. Accordingly, an enhanced local generation of superoxide anion and the oxidation of mitochondrial cardiolipin has been found to occur shortly after mitochondrial membrane permeabilization in intact cells.³⁹ Finally, a number of catabolic enzymes are detected in the SIMPs fraction: arginase 1

(which degrades arginine), sulfite oxidase (which degrades sulfur amino acids), and epoxide hydrolase. Such enzymes might deplete essential metabolites, thereby decreasing anabolic reactions and/or affecting energy metabolism.

The evaluation of each of these proteins in the context of apoptosis remains elusive. However, the data base of mitochondrial proteins contained in this article should prove useful for further investigation of cell death mechanisms.

Materials and Methods

Preparation of protein samples

Mitochondria (1 mg protein/ml) were purified from mouse liver on a Percoll gradient as previously described,⁴⁰ resuspended in CFS buffer (220 mM mannitol; 68 mM sucrose, 2 mM NaCl, 2.5 mM KH₂PO₄, 0.5 mM EGTA, 2 mM MgCl₂, 5 mM pyruvate, 0.1 mM phenylmethyl sulfonylfluoride, 1 μ g/ml leupeptin, 1 μ g/ml pepstatin A, 50 μ g/ml antipain, 10 μ g/ml chymopapain, 1 mM dithiotreitol, 10 mM HEPES-NaOH, pH 7.4) and incubated in the presence of atractyloside (5 mM, 30 min, RT), followed by centrifugation (7000 × g, 10 min, 4°C), recovery of the supernatant and ultracentrifugation (1.5 × 10⁵ × g, 1 h, 4°C). This sample was subjected to LC-MS/MS. In addition, submitochondrial fractions were purified by standard procedures⁴¹ and the samples were analyzed by SDS – PAGE (15%), followed by silver staining.

LC-MS/MS of unfractionated proteins

Forty μ g of protein was dried, resuspended in 500 μ L of 30 mM Tris-HCl, pH 7.0/8 M urea/10 mM dithiotreitol, and incubated for 30 min at 37°C. The sample was alkylated with 20 mM iodoacetamide for 30 min at room temperature in the dark, then buffer exchanged into 30 mM Tris-HCl, pH 7.0/2 M urea at 4°C using a Centricon YM-3 (3,000 MW cutoff, Amicon, Beverly, MA, USA). Digestion was initiated with the addition of 1.5 µg trypsin (Sequencing Grade, Boehringer Mannheim, Indianapolis, IN, USA) and incubated overnight at 37°C. The digest was acidified with 30 μ L 10% TFA. LC-MS/MS analysis was performed using a Hewlett Packard 1100 HPLC system (Hewlett-Packard, Palo Alto, CA, USA) connected on-line with a 1 : 1 splitter to a Finnigan LCQ iontrap mass spectrometer (Thermoquest, San Jose, CA, USA) as described.⁴² Peptides were separated on a C18 1.0×250 mm column (Vydac, Hesperia, CA, USA) using a flow rate of 60 µl/min, with the UV monitored at 215 nm. Solvent A was 0.1% formic acid/H₂O, and solvent B was 0.09% formic acid/H₂O/90% acetonitrile. The gradient consisted of 3% B isocratic for 15 min, a linear gradient to 60% B in 57 min, to 90%B in 15 min, isocratic at 90%B for 15 min, and then to 3% B in 5 min. To determine the amount to load for subsequent runs, an aliquot of the digest (~8 μ g) was analyzed using the 'triple play' feature for data-dependent ion selection and fragmentation (MS, zoom MS, MS/MS) with precursor ion selection over the mass range 400-2000 m/z. With the Finnigan Navigator software (Thermoguest, San Jose, CA, USA), an isotope exclusion width of 5 and a dynamic exclusion time of 1.0 min were utilized and a relative collision energy of 40 was set. The remaining digest (\sim 32 μ g) was aliquoted into three samples and analyzed as above but with different ion selection criteria. The ion selection criteria for the triple play utilized one of the mass ranges of 400-615, 585-815, and 785-2000 m/z for each analysis. Finnigan.RAW files were converted to .txt files, then fragment ion spectra were searched against non-redundant protein sequence and translations of EST databases.^{42,43} Potential peptide matches were visually confirmed.

Reversible cysteine biotinylation of peptide mixture

One-hundred-and-twenty μ g sample was vacuum concentrated and resuspended in 1 mL of 40 mM Tris-HCl/pH 7.0/8 M urea/10 mM dithiotreitol, then incubated for 30 min at 37°C. The sample was buffer exchanged into PBS/ 1 mM EDTA/ 2 M urea using a Centricon YM-3 (3000 MW cutoff) at 4°C. Fifty μ l of 4 mM EZ-Link TMBiotin-HPDP (Pierce, Rockford, IL, USA) in DMSO was added and the sample

incubated at room temperature for 90 min. To remove excess free Biotin-HPDP the sample was buffer exchanged again into PBS/1 mM EDTA/ 2 M urea, followed by trypsin digestion as above. An 1 mL Immobilized-Avidin column (Pierce, Rockford, IL, USA) was equilibrated with 5 ml PBS/1 mM EDTA. The biotinylated digest was applied to the column and incubated for 30 min at room temperature. The avidin column was washed with 10 mLPBS/1 mMEDTA (yielding the flowthrough fraction). Two mL of PBS/50 mM dithiotreitol was added to elute any bound peptides (yielding the bound fraction). Both the avidin flowthrough fraction and the avidin bound fraction were alkylated (using 10 and 100 mM iodoacetamide respectively) for 30 min at room temperature. The fractions were acidified with formic acid, desalted using an Oasis cartridge (Waters, Milford, MA, USA), vacuum concentrated, and then resuspended in 100 μ l 0.1% formic acid. LC-MS/MS analysis was performed using the above listed parameters but with a C18 0.05×150 mm column (MetaChem Technologies Inc., Torrance, CA, USA) and a flow rate of 25 μ l/min without splitting directly into the mass spectrometer. Four separate LC-MS/MS runs using separate narrow mass ranges for ion selection (400-575, 565-715, 685-970, and 935-2000 m/z) were used for the flowthrough fraction and the bound fraction was analyzed using the single broad mass range (400-2000 m/ z for ion selection. Spectra were handled as described above.

Immunofluorescence

Mouse embryonic fibroblasts were cultured in the absence or presence of the apoptosis inducer staurosporin (STS; 2 μ M, 4 h; Sigma). A rabbit antiserum generated against DDP ³⁷ was used (diluted 1/20) on paraformaldehyde (4% w:v) and picric acid-fixed (0.19% v:v) cells (cultured on 100 μ m cover slips; 18 mm Ø; Superior, Germany), and revealed with a goat anti-rabbit IgG conjugated to phycoerythrine (PE) (Southern Biotechnology, Birmingham, AL, USA). A sheep antiserum specific for SOD2 (Calbiochem, San Diego, CA, USA) was revealed by means of a rabbit anti-sheep IgG fluorescein isothiocyanate (FITC) conjugate (Southern Biotechnology). Cells were counterstained for the detection of hsp60 (mAb H4149 from Sigma, revealed by a goat antimouse IgG FITC or PE conjugate; Southern Biotechnology). Confocal microscopy was performed on a Leica TC-SP (Leica Microsystems, Heidelberg, Germany) equipped with an ArKr laser mounted on an inverted Leica DM IFBE microscope with a 63 × 1,32 NA oil objective.

Acknowledgements

This work has been supported by a special grant from the Ligue Nationale contre le Cancer as well as grants from ANRS and FRM (to G Kroemer), Assistance Publique-Hôpitaux de Paris and CANAM (contract 98006 to E Daugas).

References

- 1. Kroemer G (1997) Mitochondrial implication in apoptosis. Towards an endosymbiotic hypothesis of apoptosis evolution. Cell Death Differ. 4: 443 456
- Kroemer G, Dallaporta B and Resche-Rigon M (1998) The mitochondrial death/ life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60: 619–642
- Susin SA, Zamzami N, Castedo M, Daugas E, Wang H-G, Geley S, Fassy F, Reed J and Kroemer G (1997) The central executioner of apoptosis. Multiple links between protease activation and mitochondria in Fas/Apo-1/CD95- and ceramide-induced apoptosis. J. Exp. Med. 186: 25-37
- SSteemans M, Goossens V, Van de Craen M, Van Herreweghe F, Vancompernolle K, De Vos K, Vandenabeele P and Grooten J (1998) A caspase-activated factor (CAF) induces mitochondrial membrane depolarization and cytochrome crelease by a non-proteolytic mechanism. J. Exp. Med. 188: 2193–2198

- Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D and Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. U.S.A. 95: 4997–5002
- Marzo I, Brenner C, Zamzami N, Jürgensmeier J, Susin SA, Vieira HLA, Prévost M-C, Xie Z, Mutsiyama S, Reed JC and Kroemer G (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027 – 2031
- 7. Li H, Zhu H, Xu C and Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 4: 491–501
- Scorrano L, Petronilli V, Di Lisa F and Bernardi P (1999) Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J. Biol. Chem. 274: 22581–22585
- 9. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gómez-Monterrey I, Castedo M and Kroemer G (1996) Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183: 1533 – 1544
- Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M and Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184: 1331 – 1342
- Zamzami N, Marzo I, Susin SA, Brenner C, Larochette N, Marchetti P, Reed J, Kofler R and Kroemer G (1998) The thiol-crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16: 1055 – 1063
- Shimizu S, Narita M and Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483-487
- Brenner C, Cardiou H, Vieira HLA, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC and Kroemer G (1999) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene. In press.
- vander Heiden MG, Chandal NS, Williamson EK, Schumacker PT and Thompson CB (1997) Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627–637
- Liu XS, Kim CN, Yang J, Jemmerson R and Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C. Cell 86: 147–157
- Single B, Leist M and Nicotera P (1998) Simultaneous release of adenylate kinase and cytochrome c in cell death. Cell Death Differ. 5: 1001 – 1003
- Kohler C, Gahm A, Noma T, Nahazawa A, Orrenius S and Zhivotovsky B (1999) Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett. 447: 10 – 12
- Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M and Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184: 1331 – 1342
- Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM and Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor (AIF). Nature 397: 441–446
- Susin SA, Lorenzo HK, Zamzami N, Marzo I, Larochette N, Alzari PM and KroemerG (1999) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189: 381 – 394
- Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie ZH, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G and Reed JC (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. U.S.A. 96: 5752–5757
- Samali A, Cai J, Zhivotovsky B, Jones DP and Orrenius S (1999) Presence of a pre-apoptotic complex of procaspase-3, hsp60, and hsp10 in the mitochondrial fraction of Jurkat cells. EMBO J. 18: 2040–2048
- Lorenzo HK, Susin SA, Penninger J and Kroemer G (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 6: 516 – 524
- Mintz PS, Patterson SD, Neuwald AF, Spahr CS and Spector DL (1999) Purification and biochemical characterisation of interchromatin granule clusters. EMBO J. 18: 4308–4320
- Link AS, Eng J, Schielzts DM, Carack E, Mize GJ, Morris DR, Garvik BM and Yates III JR (1999) Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17: 676–682

- Patterson SD Using MS fragment-ion data to identify proteins from large sequence databases. In: *Proteomics, Integrating Protein-based tools and application for drug discovery.* L.M. Savage (ed.). International Business Communications, Inc.: Southborough pp. 127–135, 1998
- Vancompernolle K, Van Herrewghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P and Grooten J (1998) Atractylosideinduced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett. 6: 150–158
- Voilley N, Roduit R, Vicaretti R, Bonny C, Waeber G, Dyck JRB, Lopaschuk GD and Prentki M (1999) Cloning and expression of rat pancreatic beta-cell malonyl CoA decarboxylase. Biochem. J. 340: 213–217
- Ashmarina LI, Psheshetsky AV, Branda SS, Isaya G and Mitchell GA (1999) 3hydroxy-3-methylglutaryl coenzyme A lysase: targeting and processing in peroxisomes and mitochondria. J. Lipid. Res. 40: 70–75
- Danpure CJ (1997) Variable peroxisomal and mitochondrial targeting of alanine glyoxylate aminotransferase in mammalian evolution and disease. Bioessays 19: 317–326
- Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A and Nicholson DW (1999) Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 18: 2049–2056
- Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H and Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. U.S.A. 95: 14681 – 14686
- Marchetti P, Hirsch T, Zamzami N, Castedo M, Decaudin D, Susin SA, Masse B and Kroemer G (1996) Mitochondrial permeability transition triggers lymphocyte apoptosis. J. Immunol. 157: 4830–4836
- Hirsch T, Decaudin D, Susin SA, Marchetti P, Larochette N, Resche-Rigon M and Kroemer G (1998) PK11195, a ligand of the mitochondrial benzodiazepin receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp. Cell. Res. 241: 426–434
- Miccoli L, Poirson-Bichat F, Sureau F, Gonçalves RB, Bourgeois Y, Dutrillaux B, Poupon M-F and Oudard S (1998) Potentiation of Ionidamine and diazepam, two agents acting on mitochondria, in human glioblastoma treatment. J. Natl. Cancer Inst. 90: 1400 – 1406
- 36. Carthy CM, Granville DJ, Jiang HJ, Levy JG, Rudin CM, Thompson CB, McManus BM and Hunt DWC (1999) Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-XL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab. Invest. 79:953–965
- Koehler CM, Leuenberger D, Merchant S, Renold A, Junne T and Schatz G (1999) Human deafness dystonia syndrome is a mitochondrial disease. Proc. Natl. Acad. Sci. U.S.A. 96: 2141–2146
- Merrick BA, He CV, Witcher LL, Patterson RM, Reid JAJ, Pence Pawlowski PM and Selkirk JK (1996) HSP binding and mitochondrial localization of p53 protein in human HT1080 and mouse C3H10T1/2 cell lines. Biochim. Biophys. Acta 1297: 57–68
- Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B and Kroemer G (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J. Exp. Med. 182: 367–377
- 40. Susin SA, Larochette N, Geuskens M and Kroemer G (1999) Purification of mitochondria for apoptosis assays. Methods Enzymol. in press
- Pedersen PL, Grennawalt JW, Reynafarje B, Hullihen J, Decker GL, Soper JW and Bustamente E (1978) Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Meth. Cell Biol. 20: 411–481
- Courchesne PL, Jones MD, Robinson JH, Spahr CS, McCracken S, Bentley DL, Luethy R and Patterson SD (1998) Optimization of capillary chromatography ion trap mass spectrometry for identification of gel-separated proteins. Electrophoresis 19: 956–967
- 43. Courchesne PL, Luethy R and Patterson SD (1997) Comparison of in-gel and onmembrane digestion methods at low to sub-pmol level for subsequent peptide and fragmentation mass analysis uding matrix-assisted laser-desorption ionization mass spectrometry. Electrophoresis 18: 369–381