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control of anti-apoptotic proteins PEA-15 and survivin
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Integrin α5β1 expression is correlated with a worse prognosis in high-grade glioma. We previously unraveled a negative crosstalk
between integrin α5β1 and p53 pathway, which was proposed to be part of the resistance of glioblastoma to chemotherapies. The
restoration of p53 tumor-suppressor function is under intensive investigations for cancer therapy. However, p53-dependent
apoptosis is not always achieved by p53-reactivating compounds such as Nutlin-3a, although full transcriptional activity of p53
could be obtained. Here we investigated whether integrin α5β1 functional inhibition or repression could sensitize glioma cells to
Nutlin-3a-induced p53-dependent apoptosis. We discovered that α5β1 integrin-specific blocking antibodies or small RGD-like
antagonists in association with Nutlin-3a triggered a caspase (Casp) 8/Casp 3-dependent strong apoptosis in glioma cells
expressing a functional p53. We deciphered the molecular mechanisms involved and we showed the crucial role of two
anti-apoptotic proteins, phosphoprotein enriched in astrocytes 15 (PEA-15) and survivin in glioma cell apoptotic outcome. PEA-15
is under α5β1 integrin/AKT (protein kinase B) control and survivin is a p53-repressed target. Moreover, interconnections between
integrin and p53 pathways were revealed. Indeed PEA-15 repression by specific small-interfering RNA (siRNA)-activated
p53 pathway to repress survivin and conversely survivin repression by specific siRNA decreased α5β1 integrin expression. This
pro-apoptotic loop could be generalized to several glioma cell lines, whatever their p53 status, inasmuch PEA-15 and survivin
protein levels were decreased. Our findings identify a novel mechanism whereby inhibition of α5β1 integrin and activation of p53
modulates two anti-apoptotic proteins crucially involved in the apoptotic answer of glioma cells. Importantly, our results suggest
that high-grade glioma expressing high level of α5β1 integrin may benefit from associated therapies including integrin antagonists
and repressors of survivin expression.
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In recent years, integrins have attracted increasing interest for
their potential to act as tumor therapeutic targets.1,2 First
recognized as adhesion molecules to the extracellular matrix
(ECM), it is now acknowledged that they act as receptors
regulating intracellular signaling and cellular responses.3

Integrins are αβ protein heterodimers whose association
defines the specificity for ECM components. Regulating
crosstalks between cells and their microenvironment, integ-
rins are relevant in key aspects of tumors. Depending on the
tumor type, the expression of specific integrins differs between
tumoral tissues and their corresponding healthy tissues. For
example, α5β1 and αvβ3/β5 integrin overexpression on neo-
vessels during tumor angiogenic switch led to the proposition

of new anti-angiogenic therapies.4 In tumor cells, integrins
impact on proliferation/survival, therapy resistances and tumor
recurrence. α5β1 integrin has emerged recently and has been
shown to participate in aggressiveness of solid tumors 5-9 as
reviewed in Schaffner et al.10 High expression of α5 integrin is
associated with a decrease in patient overall survival, making
α5β1 integrin an important factor in resistance to therapies.
Numerous preclinical data support the ability of integrin
antagonists to disrupt integrin signaling pathways leading to
inhibition of angiogenesis and/or tumor growth but also to
sensitization toward therapies.
Glioblastomas (GBM) or WHO grade 4 astrocytoma are the

most refractory brain tumors to conventional/targeted therapies.
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The prognosis of GBM patients remains worse and has
not improved since the approbation of the Stupp protocol.11

Even if new strategies hadappeared promising, relapsesmostly
occurred because of innate and acquired therapy resistances.
GBM recapitulate the fundamental hallmarks of cancer.12 All
of these hallmarks can be modulated by the ECM and its
sensing receptors such as integrins.13 Despite some negative
outcome with αvβ3 integrin antagonist in GBM treatment,14

integrins remain pertinent targets for anticancer agents in view
of their implications in various aspects of cancer progression.
To move forward with integrins as therapeutic targets, more
fundamental views of the crucial effects they may modulate
must be obtained.
The tumor-suppressor p53 is implicated in tumor growth

suppression, as well as in induction of apoptosis. As the
guardian of the genome, its transcriptional activity governs
genes implicated in cell cycle arrest, apoptosis but also DNA
repair, metabolism.15 About 50% of cancers express a mutant
functionally affected p53 protein.16,17 In GBM, integrated
genomic analysis identified subtypes differing in their p53
status.18 Even if p53 appears as one of the most frequently
mutated gene in GBM,19 a window of wild-type p53 activation
is possibly a therapeutic solution for a non-negligible number
of GBM. Several ways for reactivation of p53 are currently
under study in preclinical and clinical trials focusing mainly on
the inhibition of the interactions between p53 and its negative
regulator human double minute 2 (HDM2).20,21 The conse-
quences of p53 activation in tumor cells are variable ranging
from cell cycle arrest/senescence and/or apoptosis and the
balance between these outcomes determines the tumor
regression in a tumor type-dependent way.22,23 As apoptosis
may be preferred over cell cycle arrest/senescence upon p53
reactivation, it is crucial to determine the factors implicated in
p53-triggered apoptosis.
Along with others, we demonstrated that p53-induced

activation either by genotoxic drugs24 or by inhibitors of
HDM2 such as Nutlin-3a-triggered 25 senescence rather than
apoptosis in GBM. We characterized a negative crosstalk
between α5β1 integrin and p53wt implicated in temozolomide
(TMZ) resistance.8 Antagonists of α5β1 integrin pushed
TMZ-treated cells from senescence toward apoptosis while
modulating the p53 pathway.24 Nutlin-3a, by inhibiting
p53-HDM2 interaction, induced a huge increase in p53 activity
but also decreased the expression level of α5 integrin in p53wt
GBM or colon cancer cells.8,26 Here, we investigated the
potential benefit of targeting GBM with antagonists of α5β1
integrin and Nutlin-3a. We demonstrated the crucial role of two
anti-apoptotic proteins, phosphoprotein enriched in astrocytes
15 (PEA-15) and survivin, in the apoptotic outcome of this dual
targeting therapy.

Results

Inhibition of α5β1 integrin sensitizes p53wt glioma cells
to Nutlin-3a. We demonstrated that α5β1 integrin interferes
with the p53 pathway and that Nutlin-3a (10 μM) represses
the α5 integrin subunit through the activation of p53.8,24 We
wondered whether α5 integrin repression would sensitize
glioma cells to Nutlin-3a. We treated U87MG cells

overexpressing (U87MG-α5 high) or repressed (U87MG-α5
low) for α5 integrin with different doses of Nutlin-3a and
evaluated their clonogenic potential. U87MG-α5 low cells were
more sensitive to Nutlin-3a compared with their α5 high
counterparts at all concentrations used (Figure 1a). In addition,
functional inhibition of α5β1 integrin with a specific
non-peptidic antagonist, compound 2/K34c,27 sensitized
U87MG-α5 high cells to Nutlin-3a (Figure 1b). Interestingly,
although each compound alone partially inhibited clonogenic
cell survival, their combination appeared more efficient
(Figure 1b). Trypan blue exclusion assays revealed that only
drug association had a clear cytotoxic effect (Figure 1c).
Accordingly, the amount of apoptotic cells was largely
increased by the combination, reaching 56±6% of the total
cell population as compared with 20±5 in K34c and 16±4% in
Nutlin-3a-treated cells (Figure 1d). Western blot analysis
showed cleaved poly ADP ribose polymerase (PARP) and
cleaved caspase (Casp) 3 only in the combination-treated cells
confirming a massive induction of apoptosis by this treatment
(Figure 1e). As expected, Nutlin-3a increased the p53 protein
stability and activity (phosphorylation at ser15; Figure 1e). This
increase was not associated with apoptotic markers. Although
K34c had no effect on p53 by itself, its association with Nutlin-
3a not only increased the p53 phosphorylation but also
induced apoptosis (Figure 1e). Similar results were obtained
in a primary GBM cell line (T20) with endogenous expression
of α5 integrin and a p53wt protein (Figure 7a, Supplementary
Figure S1a), although in this case Nutlin-3a had already an
effect that was increased by K34c.
We then treated U87MG-α5 high cells with integrin function

blocking antibodies (IIA1 for α5 integrin and 69.6.5 for αv
integrin). The specific anti-α5 integrin antibody was able, in
combination with Nutlin-3a, to induce a strong increase in
apoptotic markers (Figure 2a). RGD-like integrin small
antagonists27 (Supplementary Table 1) alone or in association
with Nutlin-3a were next evaluated. Data clearly demonstrated
that only antagonists with a high affinity for α5β1 integrin
(compound 1 and 2/K34c) were able to sensitize cells toward
apoptosis in contrast to compound 3 (high affinity for αv
integrins) (Figure 2b). The increase in apoptotic markers was
related to an increase in Casp 3 activity as only specific
antibodies or small molecules against α5 integrin had a
significant impact in association with Nutlin-3a (Figure 2c).
This increased Casp 3 activity obtained with α5β1 integrin
antagonists was lost in U87MG-α5 low cells (Figure 2d), which
already increased their basal level of active Casp 3 with a
further increase by Nutlin-3a (Figure 2e).
Thus, our data suggested that disabling the α5β1-triggered

survival pathways in association with the pharmacological
reactivation of p53 by Nutlin-3a is synthetic lethal in
glioma cells.

Integrin α5β1 antagonist inhibits the AKT/PEA-15/Casp 8
pathway to trigger apoptosis. We next investigated which
integrin signaling pathways may be inhibited by α5β1 integrin
antagonists to allow apoptosis during p53 reactivation. We
checked the implication of the phosphoinositide 3-kinase
(PI3K)/AKT (protein kinase B) survival pathway known to be
under integrin control.28 The amount of active AKT (pser473-
AKT) was higher in U87MG-α5 high cells compared with
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U87MG-α5 low cells. This activity is decreased by the α5β1
integrin antagonist K34c (Figure 3a) and further decreased by
Nutlin-3a (Figure 3b). Direct inhibition of AKT by MK-2206,
completely suppressed pser473-AKT, induced Casp 3 clea-
vage and Casp 3 activity, effects that were further increased by
the addition of Nutlin-3a (Supplementary Figure S2). In tumoral
cells including glioma, AKT controls the stability and the anti-
apoptotic function of the protein PED/PEA-15 by its phosphor-
ylation on ser116.29,30 We explored the effect of K34c on PED/
PEA-15 expression and phosphorylation in U87MG-α5 high
cells. Both were decreased by K34c but not affected by Nutlin-
3a (Figure 3c). The role of PEA-15 in the cell apoptosis was
further investigated by the use of specific small-interfering RNA
(siRNA). After depletion of PEA-15 and Nutlin-3a treatment,
Casp 3 cleavage and activity looked like the one obtained by
the association of K34c and Nutlin-3a (Figure 3d). Similar
results were obtained in the primary GBM cell line, T20

(Supplementary Figure S1b). Inversely, overexpression of
PEA-15 by transfection with a pcDNA-PEA-15 vector com-
pletely inhibited the induction of apoptosis triggered by the

co-treatment (Figure 3e).
Integrin-mediated death and/or anoikis have been linked to

the activation of Casp 8 (Marcon et al.31) and PEA-15 is known
to bind to Casp 8 and to block apoptosis through its
inhibition.32 We evaluated Casp 8 activation by western blot
in U87MG-α5 high cells treated by K34c, Nutlin-3a or both.
Enhanced cleaved Casp 8 was detected only in cells treated
with both drugs (Figure 3f). Interestingly, the Casp 3 activity
was completely blocked by cell preincubation with the specific
Casp 8 inhibitor (Z-IETD-fmk) before treatments (Figure 3g).
In addition, inhibition of cell proliferation by the co-treatment
(K34c and Nutlin-3a) was equally reversed by preincubation of
the cells with an inhibitor of Casp 3 (z-DEVD-fmk) or the
inhibitor of Casp 8 (Figure 3h).
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Integrin α5 and p53 crosstalk in glioma apoptosis
G Renner et al

642

Cell Death and Differentiation



Taken together, our data suggest that sensitization to
Nutlin-3a pro-apoptotic effect by α5β1 integrin antagonists is
linked to the inhibition of an integrin/AKT/PEA-15/Casp 8
signaling pathway in U87MG-α5 high cells.

Implication of p53 activation in the induction of
apoptosis. We next examined the p53-dependent factors
underlying the pro-apoptotic outcome. Transcription of p53
transcriptionally induced genes, fas (Figure 4a), bax,
noxa, p21 and hdm2 (Supplementary figure S3a), was
increased by Nutlin-3a confirming the activation of p53. The
α5β1 antagonist K34c alone was unable to change the level
of p53 targets and a significant increase over Nutlin-3a

effects was only obtained for bax and noxa (Supplementary
Figure S3a) pro-apoptotic targets but not fas (Figure 4a), p21
and hdm2 (Supplementary Figure S3a) when it was associated
with Nutlin-3a. However, FAS (Figure 4b) and B-cell lymphoma
2 (BCL2)-associated X protein (BAX) (Supplementary Figure
S3b) proteins were not increased by the co-treatment.
Similarly, p21 and HDM2 proteins were increased by
Nutlin-3a but not further increased by K34c (Supplementary
Figure S3b). It is already known that p53 also has the capability
to repress oncogenic/anti-apoptotic factors,33 which is crucial
to elicit p53-dependent robust apoptosis.34 Three repressible
p53-target genes, birc5 (baculoviral inhibitor of apoptosis
protein (IAP) repeat containing 5; Figure 4c), c-myc and bcl-2
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(Supplementary Figure S3c) were largely decreased at the
mRNA level after Nutlin-3a treatment but only birc5 was
further decreased by the addition of K34c (Figure 4c
and Supplementary Figure S3c). At the protein level, survivin
encoded by birc5 gene (Figure 4d) and bcl-2 (Supplementary
Figure S3d) appeared significantly downregulated by
the combo treatment as compared with Nutlin-3a alone. As a
confirmation of a role of p53-dependent survivin decrease in
the induction of apoptosis, depletion of survivin by specific
siRNA in U87MG-α5 high cells led to a slight increase in
cleaved Parp/Casp 3 and Casp 3 activity but addition of K34c
significantly further increased these effects to the level of
K34c/Nutlin-3a co-treatment (Figure 4e). Similar results were
obtained in the primary GBM cell line, T20 (Supplementary
Figure S1c). Inversely, overexpression of survivin in U87MG-α5
high cells led to a complete inhibition of Parp/Casp 3 cleavage
and Casp 3 activation, further confirming its anti-apoptotic
role (Figure 4f).
Data indicated that p53 was highly activated by Nutlin-3a in

U87MG cells as several known target genes were transcrip-
tionally increased or decreased as were their corresponding
proteins. This p53 activation alone did not allow a full
pro-apoptotic program. When α5β1 integrin pathway was
concomitantly blocked by K34c, pro-apoptotic targets were
increased at the mRNA level but not at the protein level.
However, the anti-apoptotic birc5 gene and the corresponding
protein survivin were both further decreased by the combina-
tion treatment. Taken together, data thus suggested that
repression of two anti-apoptotic proteins is crucial for induction
of apoptosis in glioma cells expressing high level of α5 integrin.
PEA-15 is mainly under the control of the α5β1 integrin and
repressed by a specific integrin antagonist and survivin is
mainly repressed by Nutlin-dependent p53 activation.

α5β1 integrin and p53 pathways crosstalk through
PEA-15 and survivin. We reasoned that PEA-15 may be
one of the links between α5β1 integrin and p53 pathways.
Interestingly, similarly to the depletion of α5 integrin,8

depletion of PEA-15 in U87MG-α5 high cells stabilized
and activated p53 (Figure 5a). Addition of Nutlin-3a to
siPEA-15 cells significantly enhanced the p53 expression/
phosphorylation compared with control si-nt cells (Figure 5a).

PEA-15-depleted cells exhibited an enhanced basal level of
fas and a decreased level of birc5, bcl-2 and c-myc mRNA
again in a similar manner than depletion of α5 integrin
(Figure 5b). Interestingly, p53 stabilization/activation by
PEA-15 depletion were of the same order of magnitude than
those obtained with TMZ alone but association of both
treatment did not enhance the genotoxic activation of p53
(Figure 5a) suggesting that the mode of activation of p53 has
an impact on the cell answer. As PEA-15 depletion led to an
accumulation of p53 protein, modulation of HDM2 is possibly
implicated. In fact, si-PEA-15 decreased significantly HDM2
protein level (Figure 5c) and PEA-15 overexpression
increased it (Figure 5d). As the transcription of hdm2 was
not affected by PEA-15 (Figure 5b), we studied the regulation
of HDM2 on a posttranscriptional level. The half-life of HDM2
was clearly enhanced by PEA-15 overexpression in U87MG-
α5 high cells (Figure 5d).
Data thus confirmed that PEA-15 linked integrin and p53

pathways, presumably by regulating the p53–HDM2 interac-
tion. These results also show that the decrease of α5 integrin
or PEA-15 expression levels mostly affected known p53-
repressed target genes supporting their role in p53-dependent
robust apoptosis. In LNZ308 cells (p53KO), repression of
PEA-15 did not affect birc5 or bcl-2 mRNA levels confirming
the p53 pathway implication (Supplementary Figure S4).
We showed elsewhere that, by activating p53, Nutlin-3a

inhibited the expression of α5 integrin, which in turn
makes cells more susceptible to death.8,26 Previous works
suggested that survivin positively regulates the α5 integrin
expression.35,36 We therefore investigated if survivin depletion
may affect α5 integrin expression in glioma cells. In U87MG-α5
high cells, Nutlin-3a treatment or survivin depletion led to a
decrease in α5 integrin expression level (Figure 6a), which was
further significantly and dose dependently enhanced by K34c
(Figure 6b). Survivin repression affected both α5 integrinmRNA
and protein level, although survivin overexpression only
increased the protein level (Figure 6c). Thus, transcriptional
and posttranscriptional regulation of α5 integrin expression may
be driven by survivin. In fact, the half-life of α5 integrin was
increased by overexpression of survivin in U87MG-α5 high cells
(Figure 6d). In addition, the decrease in α5 integrin expression
by survivin repression and inhibition of the integrin was a

Figure 3 Integrin α5β1 antagonist inhibits the AKT/PEA-15/Casp 8/Casp 3 pathway to trigger apoptosis. (a) Expression of α5 integrin modulates the activity of AKT.
Comparison of p-AKTser473 and AKTexpression levels by western blot in U87MG-α5 high and U87MG-α5 low cells without/with K34c (20 μM) after 12-h treatment. Histograms
represent the mean±S.E.M. (n= 3) of p-AKTser473 protein normalized to the loading control GAPDH as compared with non-treated control U87MG-α5 high cells. (b) Inhibition
of AKT activity by K34c (20 μM), Nutlin-3a (1 and 5 μM) or both together in U87MG-α5 high cells. Cells were analyzed by immunoblots for active AKT (p-AKTser473) and
p-GSKβser9 (as a substrate of AKT) in the different conditions. Graphs represent the mean± S.E.M. (n= 3) of protein expression levels normalized to the loading control GAPDH
and compared with the solvent-treated control cells. (c) PEA-15 protein is under the control of α5 integrin. Cells treated as in b were analyzed by immunoblots for PEA-15 and
p-PEA15ser116. Graphs represent the mean± S.E.M. (n= 3) of protein expression levels normalized to the loading control GAPDH and compared with the solvent-treated
control cells. (d and e) PEA-15 is involved in the control of apoptosis. (d) U87MG-α5 high cells were transduced with non-targeting siRNA control (si-nt) or specific for PEA-15
(si-PEA-15) during 24 h and treated with K34c (20 μM), Nutlin-3a (5 μM) or both for 12 h. Apoptotic markers (cleaved PARP and Casp 3) and PEA-15 expression levels were
analyzed by immunoblots. Histograms represent the Casp 3 activity (cleavage of z-DEVD-AMC) in similar conditions and compared with solvent-treated si-nt U87MG-α5 high
cells. Mean± S.E.M. of three independent experiments. (e) U87MG-α5 high cells were transiently transfected with pcDNA empty vector or pcDNA-PEA-15 vector. After 24 h, cells
were treated with K34c (20 μM), Nutlin-3a (5 μM) or both during 12 h and cell lysates analyzed by immunoblots for apoptotic markers and for PEA-15 expression levels.
Histograms represent the Casp 3 activity (cleavage of z-DEVD-AMC) in similar conditions and compared with solvent-treated U87MG-α5 high cells. Mean± S.E.M. of three
independent experiments. (f-h) Casp 8 is implicated in apoptosis. (f) Immunoblot analysis of Casp 8 (CL, cleaved; FL, full length) in U87MG-α5 high cells treated during 12 h with
K34c (20 μM), Nutlin-3a (5 μM) or both. (g) Casp 3 activity (cleavage of z-DEVD-AMC) without or with cell pre-treatment (1 h) with z-IETD-fmk (50 μM), a specific inhibitor of Casp
8. (h) Proliferation of U87MG-α5 high cells treated with K34c and Nutlin-3a without or with pre-treatment with a Casp 3 inhibitor (z-DEVD-fmk – 50 μM) or a Casp 8 inhibitor
(z-IETD-fmk – 50 μM). Data are reported as fold increase in live cells at 24-, 48- and 72-h treatment as compared with plated live cells at time 0. Histograms represent the
mean± S.E.M. of three independent experiments. For all panels: mean± S.E.M. with *Po0.05, **Po0.01, ***Po0.001; NS, nonsignificant
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general phenomenon in glioma cells (Figure 6e).
Results uncovered two convergent and interconnected

pathways, controlling glioma cell apoptosis and implicating
α5β1/PEA-15 loop, which modulates the p53 pathway and the
p53/survivin loop modulating α5β1 integrin pathway.

Repression of PEA-15 and survivin is synthetic lethal in
glioma cells. We next looked for a potential relationship
between α5β1 integrin, PEA-15, survivin expression levels
and p53 status in different glioma cell lines, two patient-
derived primary GBM cell lines (T17 and T20) and two GBM

stem-like cells (NCH644 and NCH421k). No significant
relationships could be recorded between α5 expression and
PEA-15 or survivin expression in basal culture conditions
(Figure 7a, left). Interestingly, α5 integrin expression was
higher in p53wt cells but inversely survivin was statistically
more expressed in cells with a mutant p53 (Figure 7a, right).
Data are in line with those we obtained recently in a cohort of
patient biopsies indicating that α5 integrin mRNA level is high
in p53wt tumors8 suggesting that it participates to the
functional inhibition of p53 pathway in glioma. An enhanced
level of survivin in p53 mutant cells fits pertinently with its
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negative control by a functional p53. PEA-15 did not correlate
with any p53 status. To further explore the relationship
between PEA-15 and α5 integrin, we compared U87MG and
U373MG control cells with their respective counterparts
overexpressing the α5 subunit. It appeared (Figure 7b) that
expression of phosphoPEA-15 and PEA-15 is related to the
expression of α5 integrin in both cell lines. Thus, data
suggested that under conditions where α5 integrin is highly
expressed (in recurrent tumors, for example, DeLay et al.37),
PEA-15 may be considered as an anti-apoptotic factor.
Based on these results, we questioned the pertinence of

PEA-15 and survivin as targets for pro-apoptotic signaling in
other glioma cell lines. We evaluated the effects of Nutlin-3a
with/without K34c in U373MG-α5 high cells (mutant p53). In
these cells, Nutlin-3a, K34c or both did not inhibit proliferation
(Figure 7c) and did not induce apoptosis (Figure 7d and
Supplementary Figure S5b). K34c decreased the expression
of PEA-15 but Nutlin-3a did not decrease survivin as
expected. However, PARP and Casp 3 were cleaved with
survivin siRNA in association with K34c (Figure 7e).
In similar experimental conditions, Nutlin-3a, K34c or both

had no effect on LNZ308 (p53KO) proliferation and apoptosis
(Figures 7f and g and Supplementary Figure S5c). Neither
survivin (due to the absence of p53) nor PEA-15 (due to a low
expression of α5 integrin – Supplementary Figure S5a)
expression levels were modulated by Nutlin-3a or K34c,
respectively (Figure 7g). In these cells, repression of both
survivin and PEA-15 by specific siRNAs recapitulated cell
apoptosis (Figure 7h).
These results add evidences that only repression of both

anti-apoptotic proteins together triggers apoptosis in glioma
cells. In p53 mutant/KO cells, Nutlin-3a is unable to repress
survivin, which may be overpassed by survivin-specific
siRNA. K34c did not affect PEA-15 expression in α5
low-expressing cells, which may be overpassed by PEA-15-
specific siRNA. Data thus confirm the implication of PEA-15
and survivin as major factors in glioma resistance to apoptosis
and suggest a synthetic lethal interaction between them.

Discussion

GBM are highly resistant to apoptosis even if they express a
functional p53 protein. To achieve successful anticancer
therapy, it is primordial to characterize pathways hindering
the apoptotic answer in the context of p53 activation.
We demonstrated a negative crosstalk between α5β1
integrin and p53 pathways in glioma, which was confirmed in
this study. According to our new data, two main conclusions
are proposed: (1) the inhibition of α5β1 integrin oncogenic
pathways sensitizes glioma cells to p53-reactivation-
dependent apoptotic cues, and (2) interconnected anti-
apoptotic pathways depending on two proteins, PEA-15 and
survivin, may explain glioma resistance to apoptosis. These
two proteins may be interesting therapeutic targets for pro-
apoptotic strategies in high-grade glioma.
PEA-15 is a multifunctional protein known (1) to modulate

α5β1 integrin activity,38 (2) to be included in the α5β1
adhesome39 and (3) to bind to Fas-associated protein with
death domain (FADD) and/or Casp 8 in the apoptotic
death-inducing signaling complex.32 PEA-15 can be

phosphorylated on ser116 by AKT and on ser104 by protein
kinase C leading to different functional implications.40 In fact,
unphosphorylated PEA-15 acts as a tumor suppressor by
sequestering extracellular signal-regulated kinase in the
cytoplasm and thus inhibits proliferation. In tumoral cells
with an exacerbated AKT signaling, phosphorylated-PEA-15
switches from tumor suppressor to tumor promoter by
interfering with FADD/Casp 8 and apoptosis. A tumor-
suppressor role of PEA-15 was proposed in brain tumors
based on its decreased expression at the mRNA and protein
level in GBM compared with low-grade astrocytomawith 50%
of GBM nevertheless having high PEA-15 expression.41,42

Interestingly, expression of pser116-PEA-15 was confined in
specific intratumoral area with the strongest immunoreactiv-
ity in perinecrotic area.43 Our preliminary results indicated
that α5 integrin could also be localized in these particular
area in GBM specimens (data not shown). Although
suspected to be inversely regulated during tumor progres-
sion, PEA-15 has been involved in therapy resistances in
tumors including glioma.30,32,44–46 However, no relationship
between PEA-15 and the p53 pathway has been described to
date. Our data demonstrated that PEA-15 has an impact on
p53 stability/activity and is essential to inhibit p53-induced
apoptosis. Interestingly, PEA-15 overexpression increased
HDM2 protein stability, an effect presumably involved in the
inhibition of p53. We cannot exclude that PEA-15 acts
through other mechanisms. We showed that PEA-15 mainly
impacted on the p53-dependent repression of anti-apoptotic/
survival genes, which was shown to be dependent of
mitogen-activated protein kinase (MAPK)/c-Jun N-terminal
kinase (JNK).33 Indeed, PEA-15 is able to inhibit JNK and
p38 MAPK47 and its repression may activate the JNK/p53
pathway. Elucidation of the fine tuning of p53 activity by
PEA-15 deserves, however, further studies.
Survivin, which belongs to the IAP family, is relevant in

GBM48 and has been correlated with malignant astrocytic
tumors.49,50 Survivin participates to glioma radio- and
chemotherapy resistance50–52 and a selective inhibitor of
survivin, YM155, is currently under clinical trials.53–55 Beside
the p53-dependent transcriptional control of survivin, other
pathways including the PI3K/AKTor the integrin-linked kinase
pathway driven by tyrosine kinase receptors or integrins51,50,56

have been implicated in its regulation. Survivin is thus
confirmed as a pertinent therapeutic target in GBM and
strategies aiming to decrease its expression should be
considered. In line with its capability to modulate
the α5 integrin expression, repression of survivin will be
particularly relevant in high-grade glioma overexpressing
α5 integrin.
The restoration of p53 tumor-suppressor function is

increasingly considered as an attractive therapeutic strategy
for hematological and solid tumors. Several small inhibitors of
HDM2-p53 complex are proposed and some already entered
clinical trials. Nutlin-3a was the lead compound in the field57

but few data addressed its effects in GBM. Here, we show that
it activated p53-dependent transcription of pro-apoptotic
targets but also repressed anti-apoptotic genes confirming
other works25 without inducing full apoptosis in glioma cells
overexpressing the α5β1 integrin. Repression of anti-apopto-
tic/survival genes in addition with induction of pro-apoptotic
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targetswas shown to critically control the apoptotic outcome of
RITA-treated cancer cells.34,58-60 In glioma cells, we found
that Nutlin-3a behaved as shown previously for RITA regarding
the p53 transcriptional repression activity.34 However, high
expression of α5β1 integrin conferred another anti-apoptotic
signaling, which we identified to be in part supported by
PEA-15.We propose that this integrin may be integrated in the
growing list of molecular determinants of the p53 tumor-
suppressor activity.61–63

Response to chemotherapy may be hindered by p53-
mediated cell cycle arrest or senescence.64,65 As shown here,
functional inhibition of the α5β1 integrin may represent a new

way to sensitize glioma cells to the p53-dependent pro-
apoptotic effect of Nutlin-3a. Importantly, data shown here
stress the important contribution of two anti-apoptotic proteins,
PEA-15 and survivin, in the control of apoptosis. Inhibition of
integrin/PEA-15 loop sustains the p53 activation loop, which in
turn activates a negative feedback loop through survivin
(Figure 8). Robust apoptosis is uniquely obtained by the
combined repression of both proteins, whatever the cell p53
status. Our results may have clinical implications in the context
of p53-reactivating drugs/radio-chemotherapies and integrin-
dependent antitumoral strategies. We identified new interact-
ing signaling pathways, which may be exploited in glioma but
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Figure 4 Implication of the p53 pathway in cell apoptotic outcome. (a–d) U87MG-α5 high cells were treated during 12 h with K34c (20 μM), Nutlin-3a (5 μM) or both. Cells in
(a) and (c) were analyzed for mRNA (normalized toGAPDH) of fas and birc5, respectively. (b and d) representative western blots of FAS and survivin, respectively, are shown and
histograms represent the mean±S.E.M. of three separate experiments with GAPDH as the reference loading control. (e and f) Survivin is implicated in the control of apoptosis.
(e) U87MG-α5 high cells were transduced with non-targeting siRNA control (si-nt) or specific for survivin (si-survivin) during 24 h and treated with K34c (20 μM) for 12 h.
(f) U87MG-α5 high cells were transfected with the pcDNA control vector (ctrl) or with the pcDNA-survivin vector (survivin) during 24 h and treated with the indicated drugs for 12 h.
Apoptotic markers (cleaved PARP and Casp 3) and survivin expression levels were analyzed by immunoblots. Histograms represent the Casp 3 activity (cleavage of z-DEVD-
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also in other solid tumors depending on the oncogenic activity

of the α5β1 integrin. According to our results, a potential

survival advantage for sub-population of patients with glioma

expressing high level of the α5β1 integrin may be obtained

through the association of α5β1 integrin antagonists with

drugs able to repress survivin.
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Materials and Methods
Cell lines and compounds. U87MG, U373MG and T98G cells were
obtained from ATCC (Molsheim, France) and EACC (Saint Quentin Fallavier,
France), respectively. LN443, LN229, LN18, LNZ308 and LN319 cells were kindly
provided by Pr M Hegi (Lausanne, Switzerland). SF767 and SF763 were kindly
provided by Dr. V Rigot (Marseille, France). All the cell lines were cultured in
standard medium as described elsewhere.8 Glioma stem cells NCH421k and
NCH644 were kindly provided by Dr. C Herold-Mende (Heidelberg, Germany) and
maintained in neurosphere culture medium.66 Early passage (o10) patient-derived
GBM culture T17 and T20 were obtained from human GBM biopsies and used to
confirm the data obtained with long-term established cell lines. The p53 status of all
cell lines (as indicated in Ishii et al.67) was confirmed by Next Generation
Sequencing on a MiSeq Illumina platform using a TruSeq Custom Amplicon library
targeting tumor protein p53 exons 5–11 at a minimum of 500X coverage per sample
and by western blot analysis of p53 expression. Accordingly, T17 and T20 primary
GBM express a wild-type p53 and NCH421k and NCH644 GBM stem cells
expressed both a mutant p53.
U87MG- and U373MG-α5 high and low cells were obtained as described

elsewhere.8 The U87MG cell line was genetically manipulated to stably overexpress
(U87MG-α5 high cells – by transfecting a pcDNA3.1 plasmid containing the human
α5 integrin gene, provided by Dr. Ruoshlati, La Jolla, CA, USA) or to stably repress
the α5 integrin subunit (U87MG-α5 low cells – by transfecting a pSM2 plasmid coding
for a short-hairpin RNA targeting the α5 mRNA, OpenBiosystems, Huntsville, AL,
USA). After selection, transfected cells were subcloned to obtain homogenous cell
populations. Similarly, U373MG cells stably overexpressing the α5 integrin subunit
(U373-α5 high cells) were used in this work. Small non-peptidic integrin antagonists
have been described elsewhere27,68 (structures, affinities and related publications are
given in Supplementary table 1). Briefly, compound 1 and 2/K34c were synthesized
on solid support and specifically targets the integrin α5β1, whereas compound 3 was
synthesized in solution and shows selectivity for αvβ3. The biological activities of
these small non-peptidic integrin antagonists were determined in a competitive solid-
phase integrin binding assay.
Integrin α5 and αv blocking antibodies were, respectively, IIA1 (BD Biosciences,

Le Pont de Claix, France) and 69.6.5.69 MK-2206 was from CliniSciences (Nanterre,
France), Z-IETD-fmk and Z-DEVD-fmk from BD Biosciences and Nutlin-3a from
Cayman (Interchim, Montluçon, France).

Cell viability and clonogenic assays. Cell viability was determined by
Trypan blue exclusion method. Cells were plated (100 000 cells per well) into six-
well plates and treated for 24, 48 or 72 h with solvent or drugs in 2% FBS containing
medium. Viable cells were counted with the TC20 cell counter (Bio-Rad, Marnes
La Coquette, France).

Colony formation assay was performed as previously described.8 Cells were
plated (500 cells per well) into six-well culture plates and treated for 72 h with specific
drugs or solvents in 2% FBS containing medium. Medium was thereafter renewed
with fresh 10% FBS containing medium and cells allowed to grow further for 10 days.
Colonies were fixed and stained with crystal violet/ethanol (0.1%, w/v) and counted.
The surviving fraction was determined by the ratio of cells surviving to a specific drug
treatment relative to their solvent-treated counterparts.

Western blotting. Proteins were separated on precast gradient 4-20% SDS-
PAGE gels (Bio-Rad) and transferred to PVDF membrane (GE Healthcare, Velizy,
France). Membranes were probed with primary antibodies against α5 integrin
(HI04), FAS, HDM2, BCL2, p21 (Santa Cruz, Heidelberg, Deutschland), p53 (BD
Biosciences), GAPDH, PEA15pser116, BAX, c-MYC (Millipore, Molsheim, France).
p53pser15, AKT, AKTpser473, GSK3βser9, cleaved Casp 3, Casp 8, PARP,
survivin, PEA-15 and PEA15pser116 antibodies were from Cell Signaling (Ozyme,
Saint Quentin Yvelines, France). Immunological complexes were revealed with anti-
rabbit or anti-mouse IgG coupled peroxidase antibodies (Promega, Charbonnieres-
les-Bains, France) using chemoluminescence (ECL, Bio-Rad) and visualized with
Las4000 image analyzer (GE Healthcare). Quantification of non-saturated images
was performed with ImageJ software (National institutes of Health, Bethesda, MD,
USA). GAPDH was used as the loading control for all samples.

Apoptosis assays. Cells were stained with Annexin V–FITC and PI, and
evaluated for apoptosis by flow cytometry (FACS Calibur – Becton-Dickinson,
San Jose, CA, USA) as described elsewhere.8 Percentage of Annexin V-positive cells
(early and late apoptotic cells) was measured using the FlowJo analysis software
(Ashland, OR, USA).

Casp 3 activity was determined using a Casp 3 fluorimetric assay kit (Sigma-
Aldrich, Saint Quentin Fallavier, France) according to the manufacturer's instructions.
After 12-h cell treatments, cleavage of Ac-DEVD-AMC was assessed at 360/460 nm
using a Xenius XM plate reader (Safas, Monaco, UK). As specified in the figure
legends, cell permeable inhibitors of Casp 3 or 8 (z-DEVD-fmk or z-IETD-fmk, 50 μM)
were incubated 1 h before the cell treatments.

Cell transfections. Non-targeting siRNA (siGENOME Non-targeting siRNA
pool #2; si-nt) or specific siRNA for human PEA-15 (smart pool ON-TARGET plus
PEA-15 siRNA; siPEA-15) and BIRC5 (smart pool ON-TARGET plus birc5 siRNA;
sibirc5) were from Dharmacon (Courtaboeuf, France). The transfection reagent
jetPRIME was from Polyplus Transfection (Illkirch Graffenstaden, France).
Manufacturer's instructions were followed to transiently inhibit the protein expression
and transfection efficacy was verified by western blotting of protein of interest.

The pcDNA3.1 vector containing the PEA-15 gene was a kind gift from Dr.
Beguinot (Naples, Italy). Cells were transfected with 1 μg plasmid during 24 h in
Lipofectamine and transfection efficacy was verified by western blot. The pcDNA3.1
vector containing the survivin gene was a kind gift from Dr. Lemarie (Toulouse,
France). Cells were transfected with 1 μg plasmid during 24 h and transfection
efficacy was verified by western blot.

Real-time PCR analysis. RNA extracted with RNeasy minikit (Qiagen,
Courtaboeuf, France), according to the manufacturer protocol, was transcribed into
cDNA using the high capacity cDNA kit (Applied Biosystem, Saint Aubin, France).
Real-time quantitative PCR was performed using the StepOne Real-Time PCR
system (Applied Biosystem) (for primer sequences, see Supplementary Table 2).

Statistical analysis. Data are represented as the mean± S.E.M., and n is the
number of independent experiments. Statistical analyses were conducted using
the Student's t-test or the Mann–Whitney test with the GraphPad Prism program
(La Jolla, CA, USA). Po0.05 was considered significant.
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