
Prophylactic treatment with the BH3 mimetic ABT-737
impedes Myc-driven lymphomagenesis in mice

PN Kelly1,2,3,4, S Grabow1,2,4, ARD Delbridge1,2, JM Adams*,1,2,5 and A Strasser*,1,2,5

As many oncogenic changes, such as Myc overexpression, promote apoptosis, the survival of emerging neoplastic clones may
often initially depend upon endogenous levels of particular pro-survival members of the Bcl-2 protein family. Pertinently, we
recently showed that in lymphoma-prone El-myc transgenic mice, which overexpress Myc in all B-lymphoid cells, endogenous
Bcl-xL is critical for the survival, as well as the expansion of preneoplastic B-lymphoid cells and the development of malignant
disease. This discovery raised the possibility that pharmacological blockade of Bcl-xL might impede Myc-driven lymphoma
development. Indeed, we report here that treatment of preleukaemic El-myc transgenic mice with the Bcl-2 homology (BH)3
mimetic drug ABT-737, which inhibits Bcl-xL, as well as Bcl-2 and Bcl-w, augmented apoptosis of preneoplastic B-lymphoid cells,
reduced their numbers and greatly prolonged lymphoma-free survival. These findings reveal that BH3 mimetic drugs may
provide a prophylactic strategy to prevent the development of certain tumours, particularly those driven by deregulated Myc
expression. Moreover, such treatment may help in the management of patients with hereditary cancer syndromes and perhaps
also in the prevention of tumour relapses.
Cell Death and Differentiation (2013) 20, 57–63; doi:10.1038/cdd.2012.92; published online 20 July 2012

Evasion of apoptosis is a prerequisite for the development of
most, possibly all, malignancies.1–3 Apoptosis is controlled
largely by opposing factions of the Bcl-2 family.4,5 The
members promoting cell survival include Bcl-2, Bcl-xL,
Bcl-w, Mcl-1 and A1, which all have four Bcl-2 homology
(BH) domains. Largely owing to their diverse expression
patterns, particular pro-survival Bcl-2 family members are
critical to sustain survival of specific cell types.6 One pro-
apoptotic faction includes Bax and Bak, which also bear four
BH domains and share extensive structural similarity with their
pro-survival relatives,6 and their activation is essential for the
pivotal step of mitochondrial outer membrane permeabilisa-
tion, which unleashes the caspase cascade that demolishes
the cell.4,7 The members of the more distantly related second
pro-apoptotic group, the so-called BH3-only proteins (e.g.
Bim, Puma, Bad), share with each other and the wider Bcl-2
family only the BH3 domain. The BH3-only proteins, which are
activated by diverse stress stimuli, including cytokine depriva-
tion and DNA damage, are essential to initiate apoptosis
signalling. They are thought to activate Bax and Bak either by
binding them directly (e.g. in the case of Bim, tBid and Puma)
or by liberating them from guardian pro-survival Bcl-2 relatives
or both ways.4,5,8

As recently reviewed,5 both genetic alterations in human
tumours and analysis of transgenic mice overexpressing Bcl-2
or a pro-survival homologue leave no doubt that these

proteins can contribute to neoplastic transformation. How-
ever, on its own, the tumorigenic impact of Bcl-2 is relatively
low,9,10 unless another oncogene, such as Myc, is coex-
pressed.11 As many of the mutations that initiate oncogenesis,
like those imposing Myc overexpression, disturb cell cycle
checkpoints and thereby render cells more sensitive to
apoptosis,12 we reasoned that emerging neoplastic clones
could be particularly dependent upon the endogenous levels
of certain Bcl-2 pro-survival proteins. We examined this
hypothesis using the well-studied lymphoma-prone Em-myc
transgenic mice, in which enforced Myc expression creates an
expanded pool of proliferating (preleukaemic) pro-B and pre-B
lymphocytes from which malignant clones emerge.13–15

To test the consequences of loss of Bcl-2 or Bcl-xL in these
mice, we circumvented the early postnatal or embryonic
lethality provoked, respectively, by loss of Bcl-216,17 or Bcl-
xL

18 by generating cohorts of chimaeric mice in which the
haemopoietic system had an Em-myc/bcl-2� /� , Em-myc/bcl-
x� /� or control genotype.19,20

Bcl-2 and Bcl-xL both proved critical for the survival of
preleukaemic Em-myc mature (sIgþ ) B cells, but only Bcl-xL

was required for the survival and accumulation of preleukae-
mic Em-myc pro-B and pre-B cells. Remarkably, whereas loss
of Bcl-2 affected neither the incidence nor rate of lymphoma
development,19 loss of Bcl-xL abrogated the lymphoma-
genesis.20 These observations are consistent with the notion
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that the pro-B and pre-B cell stages are critical for neoplastic
progression in this mouse lymphoma model, most likely due to
their high rate of proliferation and the genomic instability
caused by immunoglobulin gene rearrangement, which both
facilitate acquisition of mutations.21

Our demonstration that Bcl-xL was essential for the survival
of Myc-driven lymphoma-initiating cells while they acquire the
additional oncogenic lesions that propel neoplastic transfor-
mation raised the possibility that pharmacological blockade of
Bcl-xL might, similar to loss of the bcl-x gene,20 inhibit Myc-
induced lymphomagenesis. BH3 mimetics, synthetic com-
pounds that mimic the BH3-only proteins by engaging and
inhibiting one or more of the pro-survival proteins, are showing
great promise for cancer therapy,5,22,23 particularly in chronic
lymphocytic leukaemia,24 but their potential for preventing
cancer has not yet been explored. Here we demonstrate that
prophylactic treatment of preleukaemic Em-myc mice with the
BH3 mimetic ABT-737, which neutralises Bcl-xL, Bcl-2 and
Bcl-w but not Mcl-1 or A1,22,25 markedly delayed the onset
and greatly reduced the incidence of lymphoma development.

Results

To generate standardised cohorts of lymphoma-prone and
control animals, the haemopoietic system of lethally irradiated
C57BL/6-Ly5.1 mice was reconstituted with haemopoietic
stem/progenitor cells derived from the fetal liver of E14.5
Em-myc mice. Six weeks post reconstitution, the recipients
(hereafter called Em-myc mice) were treated with either a
single dose of ABT-737 (75 mg/kg body weight)22 or for 2
weeks with three doses per week to monitor short-term effects
on the preleukaemic B-lymphoid compartment (Figure 1).
Alternatively, mice were treated for an 8-week period (three
doses per week) to assess long-term effects on lymphoma-
genesis (Figure 1).

ABT-737 reduces the numbers of preleukaemic
B-lymphoid cells in El-myc mice. The enforced Myc
expression in Em-myc mice generates a several-fold eleva-
tion in preleukaemic pro-B and pre-B cell numbers in
haemopoietic tissues,15 but the elevated Myc also renders
these lymphocytes more susceptible to apoptotic stimuli,
such as growth factor deprivation.26 To assess whether ABT-
737 affected the preleukaemic abnormalities caused by Myc
overexpression, the reconstituted mice were injected six
times with either ABT-737 (75 mg/kg) or vehicle over a
2-week period (three doses per week) and their content of
preleukaemic B-lymphoid cells was determined by flow
cytometric analysis. Remarkably, Figure 2 shows that all
B-lymphoid subsets in the ABT-737-treatment cohort were
significantly decreased, compared with the vehicle-treated
animals, in both the bone marrow (*Ppro-B o0.05, ***Ppre-B

o0.001, **PsIgþ -B o0.01) and the spleen (*Ppro-B o0.05,
*Ppre-B o0.05, *PsIgþ -B o0.05).

The drop in preleukaemic B-lymphoid cells elicited by ABT-
737 almost certainly reflects increased apoptosis, because
TUNEL staining for DNA breaks, a hallmark of apoptosis,
revealed that Em-myc animals treated with a single dose of
ABT-737 contained significantly (**Po0.01) more apoptotic
cells in their bone marrow than vehicle-treated mice
(Figure 3).

Collectively, these results demonstrate that ABT-737
treatment causes a significant reduction in the preleukaemic
Myc overexpressing B-lymphoid cells within the whole animal
by increasing their propensity to undergo apoptosis.

ABT-737 substantially delays the onset and reduces the
incidence of Myc-driven lymphoma. Next, we investi-
gated whether the reduction in preleukaemic B-lymphoid
cells and their increased rate of apoptosis elicited by
ABT-737 treatment translated into a delay in Myc-induced
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Figure 1 Experimental strategy to assess the impact of ABT-737 on Em-myc-induced lymphoma development. C57BL/6-Ly5.1 mice reconstituted with Em-myc fetal liver-
derived stem/progenitor cells were treated from 6 weeks post reconstitution with ABT-737 (75 mg/kg – three times per week) for the periods indicated. Mice treated with a
single dose of ABT-737 were killed after 24 h and analysed for the induction of apoptosis in the bone marrow. Mice treated for 2 weeks were investigated for the impact of this
compound on the numbers of preleukaemic B-lymphoid cells in the bone marrow and spleen. Mice treated for 8 weeks with ABT-737 were examined for its impact on the rate
of onset and incidence of lymphoma
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lymphomagenesis. Six weeks post reconstitution, cohorts of
transgenic mice were treated three times a week for 8
consecutive weeks with ABT-737 (75 mg/kg) or vehicle
(Figure 1) and were then monitored for up to 18 months to
determine the impact of the drug on the incidence and rate of
lymphoma development. The vehicle-treated Em-myc mice
developed lymphoma as early as 9 weeks post reconstitution
and reached a tumour incidence of B80% by 60 weeks
(Figure 4). In striking contrast, all 15 ABT-737-treated
Em-myc mice remained tumour-free until 24 weeks post
reconstitution and only 2 of them (13.4%) succumbed to
lymphoma by 60 weeks (***Po0.001; Figure 4).

Notably, the only two lymphomas that arose in the drug-
treated arm developed 8 and 40 weeks after cessation of ABT-
737 treatment (Figure 4), and therefore both almost certainly
developed in the complete absence of the drug. Furthermore,
in these two lymphomas the expression of Bcl-2 family
members and sensitivity in culture to apoptotic stimuli closely
resembled that of conventional Em-myc lymphomas
(Figure 5). Hence, these lymphomas most likely represent
tumours that were initiated after ABT-737 blockade had
ceased.

Discussion

The now widely accepted concept that cells must evade
apoptosis to become malignant1–3,5 was engendered
by the discoveries that bcl-2, commonly translocated in
human follicular lymphoma, promotes cell survival27 and
that its overexpression in transgenic mice promotes
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Figure 2 ABT-737 reduced the numbers of preleukaemic Em-myc B-lymphoid
cells in vivo. The numbers of preleukaemic B-lymphoid cells in the bone marrow and
spleen of Em-myc reconstituted mice after six injections of ABT-737 or vehicle over a
period of 2 weeks (three doses per week) were determined by flow cytometric
analysis. Data represent mean±S.E.M., 4–5 mice per treatment group (*Po0.05,
**Po0.01, ***Po0.001)
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Figure 3 ABT-737-induced apoptosis of preleukaemic Em-myc B lymphoid cells
in vivo. TUNEL staining for DNA strand breaks to enumerate apoptotic
preleukaemic B-lymphoid cells in the bone marrow of Em-myc reconstituted mice
24 h after treatment with a single dose of ABT-737. (a) Data represent
mean±S.E.M., for at least five mice per treatment group. **Po0.01.
(b) Representative example of TUNEL analyses of the extent of apoptosis in
bone marrow sections of Em-myc reconstituted mice treated prophylactically with
ABT-737 or vehicle. Slides were counterstained with haematoxylin. As a control for
the TUNEL reaction, staining was performed without using the enzyme TdT
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Figure 4 ABT-737 prophylaxis delayed the onset and reduced the incidence of
Em-myc-induced lymphoma. Kaplan–Meier analysis of lymphoma-free survival
of mice treated for 8 weeks with ABT-737 (n¼ 15) versus vehicle-treated (n¼ 14)
Em-myc reconstituted mice (***Po0.001)
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lymphomagenesis.9–11,28 However, compared with the tumor-
igenesis driven by enforced expression of the Myc trans-
gene,14 overexpression of Bcl-2 alone causes only a low
incidence of tumours with long latency.9–11,28 Hence, we
surmise that the initial mutations leading to most cancers
enhance proliferation or self-renewal, and those impairing
apoptosis are selected later, for example, to counter the stress
imposed by disrupted cell cycle checkpoints. If so, the
emerging neoplastic clones must initially be sustained by
endogenous levels of expression of Bcl-2 pro-survival
proteins. Accordingly, Bcl-xL proved to be essential for the
emergence of Em-myc lymphomas.20

That discovery prompted us to test whether a BH3 mimetic
that can neutralise Bcl-xL could retard tumorigenesis, and
indeed, we show here that treatment with ABT-73722 provided
effective prophylaxis against Myc-induced lymphomagenesis.
We believe that its prophylactic effect can be ascribed largely
(possibly solely) to its ability to antagonise Bcl-xL and not its
other targets, Bcl-2 and Bcl-w.22 Bcl-w is probably not
important in this setting because it is only poorly expressed
in both normal lymphocytes29 and in Myc-overexpressing
preleukaemic pro-B and pre-B lymphoid cells,30 the cell types
from which the Em-myc lymphomas are thought to arise.13–15

Bcl-2 is ruled out as a significant target, because its complete
loss did not lower the numbers of the pro-B and pre-B cells
in preleukaemic Em-myc mice and did not notably impact
the onset or incidence of Em-myc lymphoma.19 In contrast,
both loss of Bcl-xL

20 and ABT-737 prophylaxis reduced
the numbers of Em-myc pre-B cells, rendered them sensitive
to apoptosis and potently inhibited Myc-induced lympho-
magenesis.

Notably, the only two mice treated prophylactically with
ABT-737 that developed lymphoma presented 8 and 40

weeks after ABT-737 treatment had ceased (Figure 4). As the
drug has a half-life in vivo of only about 18 h, these tumours
clearly arose from Myc-driven preleukaemic precursors that
acquired cooperating oncogenic lesions long after ABT-737
was gone. In other words, these two lymphomas most likely
arose de novo from preneoplastic Myc-driven lymphoid cells
rather than from transformed lymphoid cells that became
resistant to ABT-737. Consistent with this hypothesis, neither
of these two lymphomas displayed any overt abnormalities in
the expression of pro-survival or pro-apoptotic Bcl-2 family
members or behaviour in culture that might be expected if they
had undergone neoplastic progression under selective
pressure exerted by ABT-737, such as marked elevation in
Mcl-125 or resistance to apoptosis. These observations
indicate that several shorter intervals of ABT-737 prophylaxis
might inhibit Em-myc-induced lymphoma development even
more efficiently than the single-period treatment strategy that
we employed.

Overexpression of Myc increases expression of the pro-
apoptotic BH3-only Bcl-2 family members Bim and Puma,30,31

and loss of Bim or Puma markedly accelerates Em-myc-
induced lymphomagenesis.30–34 Hence, in the preleukaemic
pro-B and pre-B cells of Em-myc mice treated with ABT-737,
we surmise that the elevated levels of Bim and Puma elicited
by Myc overexpression overwhelm the pro-survival Bcl-2
proteins that this agent cannot inhibit, namely Mcl-1 and
possibly A1, and perhaps also directly activate Bax or Bak.
The resulting apoptosis is expected to reduce the target
population for transformation and also eliminate nascent
neoplastic clones.20 It will be interesting to test whether loss of
Bim, Puma or both of these BH3-only proteins will abrogate
the ability of ABT-737 to inhibit Myc-driven lymphoma
development.
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It is interesting to note that, although ABT-737 greatly
impedes the emergence of Myc-induced lymphomas
(Figure 4), the fully fledged pre-B/B-cell malignancies induced
solely by the Em-myc transgene are instead highly refractory to
treatment with ABT-737.35 The loss in sensitivity may be
because the malignant Em-myc lymphomas commonly have
acquired mutations that block function of p53 or ARF,36

impairing their ability to induce the key p53 pro-apoptotic
targets Puma and Noxa,37,38 which together with Bim are
critical for the killing of Em-myc lymphoma cells by chemother-
apeutic drugs that cause DNA damage.39 Alternatively, some
Em-myc lymphomas may be resistant to ABT-737 because they
have acquired mutations that increase the level of Mcl-1 or A1,
which ABT-737 does not inhibit. Mcl-1 levels can be augmented
by higher copy numbers of its gene,40 by loss of one of the E3
ubiquitin ligases that promote its proteasomal degradation,
such as the tumour suppressor FBW741 or conversely by
upregulation of one of its deubiquitinases, such as USP9x.42

Our findings indicate that drugs that target the expression or
activity of specific pro-survival Bcl-2 family members, such as
the BH3 mimetic ABT-73722 and the closely related com-
pound ABT-263,43 which is currently undergoing clinical trials,
may not only help to eliminate established cancers but may
also prevent the development of certain types of tumours by
unleashing the pro-apoptotic impetus of the oncogenic
changes they have sustained (e.g. enforced c-Myc expres-
sion). Hence, in principle, such drugs could contribute to the
management of individuals with hereditary predispositions to
malignancy, such as individuals bearing germline mutations in
BRCA1, BRCA2 or p53. With p53-deficient mice, a model for
the inherited human Li-Fraumeni syndrome, we recently
tested prophylaxis with ABT-737, although the relevant
Bcl-2 pro-survival target(s) for this condition is (are) unknown.
ABT-737 treatment did significantly delay lymphoma devel-
opment but only in the g-irradiated p53� /� mice.44 Perhaps in
p53 heterozygous individuals, a BH3 mimetic targeting Mcl-1
or A1 would have a more marked prophylactic effect. In any
case, our present results strongly suggest that BH3 mimetics
could have a prophylactic role in certain familial cancer
syndromes, particularly those in which deregulated Myc
expression contributes to neoplastic progression.

With certain types of malignancies, BH3 mimetics might
also have a prophylactic role in reducing the frequency of
recurrences. In human acute B-lymphoblastic leukaemias,
which derive from cells of the same stage as those yielding the
Em-myc lymphomas, genome-wide comparisons of paired
primary and relapse samples suggest that relapses often
arise from distinct minor subclones present at diagnosis but
lacking some of the mutations present in the predominant
diagnostic clone.45,46 Conceivably, some recurrences arise
from clones that, like the preneoplastic Myc-driven pro-B/pre-B
lymphocytes, still rely initially upon endogenous levels of
particular pro-survival proteins. If so, prophylactic use of a BH3
mimetic could prevent the re-emergence of malignant clones.

A concern for prophylactic use of a BH3 mimetic is the
possibility of unacceptable toxicities in some normal cells.
However, the only recognised toxicity so far identified in
clinical trials with ABT-263 is an acute thrombocytopenia,24

produced by its on-target inhibition of Bcl-xL, the level of which
controls platelet lifespan.47 Fortunately, as the drop in

platelets is transient, dose dependent and reduced during
chronic treatment,47 the thrombocytopenia can be largely
managed by dose and scheduling. Whether other adverse
effects would arise on prolonged prophylactic treatment
remains to be determined by clinical trial.

Another issue for the prophylactic use of BH3 mimetics
would be whether they compromise defence against
infections by damaging the immune system. For example,
ABT-737 treatment of mice reduces certain lymphoid popula-
tions and some newly arising immune responses but not those
already established.48 However, the impact on immunity will
depend greatly upon the specificity of the BH3 mimetic. For
example, conditional deletion of bcl-x in antigen-activated B
cells of mice had no effect on the development of germinal
centre or memory B cells and little on plasma cells, whereas
deletion of mcl-1 essentially abolished all three populations.49

Hence, a BH3 mimetic that targets Bcl-xL would not be
expected to compromise immunity unacceptably and could
have prophylactic potential.

Materials and Methods
Mice. Experiments with mice were conducted according to the guidelines of the
Walter and Eliza Hall Institute Animal Ethics Committee. Em-myc transgenic mice
have been described earlier.13,14 The strain had been backcrossed to the C57BL/
6-Ly5.2 genetic background for 430 generations.

Haemopoietic stem cell reconstitution and prophylactic treat-
ment of preleukaemic mice with ABT-737. Em-myc E14.5 (Ly5.2)
embryos were generated by mating Em-myc transgenic males with (wt) C57BL/6-
Ly5.2 females. The day when the vaginal plug was detected was deemed
embryonic day 0.5. Embryos from timed matings were harvested at E14.5 and
genotyped by PCR on tail-derived DNA. Immediately before injection, single cell
suspensions were prepared from fetal livers and B2� 106 cells injected into the
tail vein of lethally irradiated (2� 5.5 Gy at 3 h interval) C57BL/6-Ly5.1 mice. Mice
were maintained on neomycin sulphate-supplemented drinking water for 14 days
post irradiation to prevent infection. Six weeks post reconstitution, the recipients
were treated either once with ABT-737 (75 mg/kg body weight) or vehicle, or
treated with ABT-737 for 2 or 8 week (75 mg/kg, three times per week; see the
scheme in Figure 1).

Lymphoma monitoring and statistical analysis. Reconstituted mice
that had been treated with ABT-737 or vehicle were monitored daily for signs of
lymphoma development. Tumour-free survival was defined as the time from lethal
irradiation and haemopoietic reconstitution with fetal liver cells to the time the
animal was deemed ill by an experienced animal technician. To verify that mice
used for preleukaemic analysis lacked malignant cells, 1� 106 of their bone
marrow and/or spleen cells were transplanted into non-irradiated histocompatible
recipient mice, which were then monitored for 90 days for the development of any
tumour. Kaplan–Meier curves were constructed using GraphPad Prism (version
5.0; GraphPad Software Inc., La Jolla, CA, USA), and statistical analysis
performed using a Log-rank (Mantel-Cox) test.

Analysis of the haemopoietic system of reconstituted mice
treated with ABT-737 or vehicle. Bone marrow (both femora), spleen and
lymph nodes (combined mesenteric, inguinal and axillary) were harvested from the
reconstituted mice that had been treated with one dose of ABT-737 or vehicle. Single
cell suspensions were prepared and total cell numbers determined by trypan blue
staining and counting in a haemocytometer as described earlier.50 Absolute numbers
in each cellular compartment were calculated by multiplying the percentage of a cell
type (as determined by fluorescence-activated cell sorting (FACS) analysis) by the
total organ cellularity. Donor-derived cell numbers were calculated by multiplying the
percentage of donor-derived (Ly5.2þ ) cells by the total organ cellularity. Peripheral
blood was harvested via retro-orbital bleed or at the time of killing by cardiac puncture
and collected into heparinized vessels. The numbers of total white blood cells were
determined by using an Advia 120 blood analyser equipped with a mouse analysis
software module (Bayer/Siemens, Deerfield, IL, USA).
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Immunofluorescent staining, flow cytometric analysis and cell
sorting. Before FACS-based immuno-phenotyping, peripheral blood was
depleted of red blood cells by incubation (2� 5 min) at 4 1C with red cell lysis
buffer (56 mM NH4Cl, 0.1 mM EDTA, 12 mM NaHCO3, pH 7.3). To prevent
non-specific antibody binding, cells were incubated in the presence of 2.4G2
(anti-FcgRII) antibody plus 2% normal rat serum. Host (Ly5.1þ ) and donor-
derived (Ly5.2þ ) cells were discriminated by staining with anti-Ly5.1 (A201.1) and
anti-Ly5.2 (5.450.15.2) monoclonal antibodies. Preleukaemic pro-B (B220þ

c-KitþsIgM�sIgD� ), pre-B (B220þ c-Kit� sIgM� sIgD� ) and sIgþ (B220þ

c-Kit-sIgMþ sIgDþ ) B-lymphoid populations were purified by FACS sorting by
staining with monoclonal antibodies to: B220 (RA3-6B2), c-Kit (ACK2 or ACK4),
IgM (5.1 or 333.12) and IgD (11-26C). Antibodies were produced in our laboratory
and conjugated to biotin, fluorescein isothiocyanate (FITC, both from Molecular
Probes, Inc., Eugene, OR, USA), cyanine 5 (Cy5, Amersham Biosciences,
Piscataway, NJ, USA), R-phycoerythin (R-PE) or allophycocyanin (APC, both from
Prozyme, Hayward, CA, USA) according to the manufacturers’ instructions.
Biotinylated antibodies were detected by secondary staining with FITC-, PE- or
Tricolor-coupled streptavidin (Caltag Laboratories, Carlsbad, CA, USA). Dead
cells were excluded by staining with propidium iodide (PI, 2 mg/ml). Purification of
B-lymphoid subpopulations was performed by multi-parameter FACS sorting
using a MoFlo (DAKO Cytomation Ltd, Ely, Cambridgeshire, UK) or DiVa
(BD Biosciences, San Jose, CA, USA) high-speed flow cytometer.

Cell culture and cell survival analysis. Em-myc pre-B or B-lymphoma
cells were cultured in a humidified incubator (10% CO2) at 37 1C in flat bottom 96-
well microtitre plates at 2–5� 104 cells/100ml (per time point) in the high-glucose
version of Dulbecco’s modified Eagle’s medium supplemented with 250 mM
L-asparagine, 50mM 2-mercaptoethanol and 10% heat-inactivated fetal calf serum
(FCS, JRH Biosciences Pty Ltd, Melbourne, VIC, Australia). Cells were cultured in
simple medium (no added growth factors) to assess the effects of cytokine
deprivation. Cells were harvested after 4 h and the viability determined by staining
with PI and FITC-conjugated annexin-V followed by flow cytometric analysis using
a FACScan analyser (BD Biosciences).

TUNEL analysis on bone marrow. Sternum specimens were collected in
80% Histochoice for histological analysis. Sections for TUNEL analysis were de-
paraffinised, treated with proteinase K (20 mg/ml for 10 min at room temperature)
and endogenous peroxidases blocked by incubation in 10% hydrogen peroxide in
methanol for 5 min at room temperature. They were then incubated with 0.6 U/ml
terminal deoxynucleotidyl transferase (Promega, Madison, WI, USA), 20 mM biotin-
16-dUTP (Roche, Castle Hill, NSW, Australia), 1 mM CoCl2 (Sigma-Aldrich Pty,
Sydney, NSW, Australia) in terminal transferase buffer (Promega) for 1 h at 37 1C,
followed by blocking with 2% FCS (FCS, JRH Biosciences) in PBS for 10 min at
room temperature. The blocking solution was then removed and Vectorstain ABC
(Vector Laboratories, Burlingame, CA, USA) reagents applied according to
the manufacturer’s instructions. Sections were stained using DAB reagent (Vector
Laboratories) according to the manufacturer’s instructions. Finally, sections were
counterstained with haematoxylin.
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