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Abstract
TNFR1/Fas engagement results in the cleavage of cytosolic
Bid to truncated Bid (tBid), which translocates to mitochon-
dria. We demonstrate that recombinant tBid induces in vitro
immediate destabilization of the mitochondrial bioenergetic
homeostasis. These alterations result in mild uncoupling of
mitochondrial state-4 respiration, associated with an inhibi-
tion the adenosine diphosphate (ADP)-stimulated respiration
and phosphorylation rate. tBid disruption of mitochondrial
homeostasis was inhibited in mitochondria overexpressing
Bcl-2 and Bcl-XL. The inhibition of state-3 respiration is
mediated by the reorganization of cardiolipin within the
mitochondrial membranes, which indirectly affects the
activity of the ADP/ATP translocator. Cardiolipin-deficient
yeast mitochondria did not exhibit any respiratory inhibition
by tBid, proving the absolute requirement for cardiolipin for
tBid binding and activity. In contrast, the wild-type yeast
mitochondria underwent a similar inhibition of ADP-stimu-
lated respiration associated with reduced ATP synthesis.
These events suggest that mitochondrial lipids rather than
proteins are the key determinants of tBid-induced destabiliza-
tion of mitochondrial bioenergetics.
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Introduction

During the past decade, it has become unequivocally clear
that most proapoptotic stimuli require a mitochondrial-
dependent step, involving disruption of mitochondrial bioe-
nergetics1,2 (and for reviews, see Kroemer et al.,3 Wang4 and
Newmeyer et al.5) and outer membrane permeabilization.6–8

Proapoptotic proteins of the Bcl-2 family regulate the path-
ways of apoptosis that induce the release of apoptogenic
factors from the mitochondrial intermembrane space9 such as
cytochrome c. Cytochrome c is normally involved in the
electron transfer from the bc1 complex (complex III) to
cytochrome oxidase (complex IV). Once released into the
cytosol, cytochrome c activates the caspase cascade by
inducing the oligomerization of a cytochrome c dATP/Apaf-1/
pro-caspase-9 complex named apoptosome.

Moreover, it was recently reported that changes of
mitochondrial physiology appeared during many apoptotic
pathways10 and could be induced by many pro- and
antiapoptotic factors. Although the ability of Bcl-Xl and
Bcl-2 to affect mitochondrial energy metabolism has
already been described,11,12 the mechanisms whereby
mitochondrial physiology changes control apoptosis remains
to be defined.

Bid is a widespread proapoptotic factor that belongs to a
subset of the Bcl-2 family, and possesses sequence
homology only within the conserved BH3 domain.13 Bid has
attracted increasing interest since it was identified as a
substrate of caspase 8, following the activation of death
receptors such as Fas. During apoptosis, cleavage near its
N-terminus by caspase-814,15 produces p15 tBid, the active
form of Bid, which can rapidly translocate to mitochondria and
trigger cytochrome c release.16 Truncated Bid (tBid) is 10-fold
more affine for Bcl-XL than full-length Bid and is also 100
times more effective in releasing cytochrome c from mito-
chondria.14
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It was also reported that tBid interacts with mitochondrial
contact sites by a specific interaction with cardiolipins17,18 and
is able to induce remodelling of the mitochondrial mem-
branes.19,20 The recent observation that tBid stimulates
unravelling of the mitochondrial cristae and enhances the
mobilization of cytochrome c19 indicates that the early events
affecting mitochondrial structure and function are linked to
the insertion of tBid into the mitochondrial membrane.19

Despite the increasing knowledge on the mechanisms of
tBid interaction with mitochondria, the consequences of this
interaction on mitochondrial bioenergetic properties have not
been elucidated.

The present study analyzes the consequences of tBid
interaction with mitochondrial contact sites, and the mechan-
ism by which tBid alters the bioenergetic properties of
mitochondria. Using mitochondria isolated from wild-type
cells, we demonstrated for the first time that tBid acts
independently of Bak and Bax to slightly increase state-4
respiration as a result of uncoupling. Moreover, tBid inhibited
ADP-stimulated respiration. Both these effects do not require
the BH3 domain of tBid in the first place. We also report that
Bcl-2 and Bcl-XL protect mitochondria from these changes via
direct interaction between their hydrophobic pocket and the
BH3 domain of tBid. We therefore showed that tBid inhibits
ADP-stimulated respiration by indirect inhibition of the activity
of the adenine nucleotide translocator (ANT), mediated by
cardiolipin reorganization into the mitochondrial inner mem-
brane.

We also proved in this paper that the absence of cardiolipin
(and consequently cardiolipin derivatives) in a cardiolipin-
synthase-deficient yeast consistant with our observations,
abolished subsequent effects of tBid. These results are based
on biophysical approaches, showing that cardiolipins are
required for tBid interaction with synthetic lipid monolayers.
We finally showed that tBid triggered cytochrome c release
from the mitochondrial intermembrane space in part by
transient mitochondrial permeability transition pore (PTP)
opening and also by a mitochondrial membrane permeabiliza-
tion insensitive to cyclosporine A (CSA). This mitochondrial
membrane permeabilization is probably due to membrane
rigidification linked to tBid/cardiolipin relationship primarily at
the contact sites with a subsequent action onto cardiolipin
reorganization throughout the whole inner mitochondrial
membrane.

These findings demonstrate that tBid plays a primary role in
the mitochondria-mediated apoptosis pathway by disturbing
mitochondrial bioenergetics. This may be a key event in
predisposing mitochondria to the synergistic effect of tBid with
Bax and Bak.

Results

Mitochondrial bioenergetics: basic properties

Throughout this work, we used Percoll-purified liver mito-
chondria from C57/Bl6 wild-type (WT) mice, transgenic mice
that overexpress Bcl-230 or Bcl-XL,31 and BAX�/� and BAK�/�

mice. First, we investigated the basic bioenergetic properties
of these mitochondria by monitoring succinate-oxidizing

mitochondria. In particular, the oxidation rate (Voxidation),
respiratory control (RC), ADP/O ratio, mitochondrial mem-
brane potential (DCm), and phosphorylation rate (Vphos.) were
analyzed as well as the basic conditions for PTP opening
(in terms of large amplitude swelling’ (Figure 1). Each
parameter was obtained from the simultaneous measure-
ment of oxygen consumption, TPPþ concentration and
pH. A typical trace control (control mitochondria) is
represented in Figure 2a. Figure 1a shows all steps of
oxidative phosphorylation via three blocks of reactions,
Voxidation, Vphosphorylation and proton leaks, linked by the
protonmotive force, the common thermodynamic inter-
mediate (Dp).35

Once added into the respiratory medium, the mitochondria
began to oxidize succinate and build up a membrane potential
by the proton-pumping activity of the respiratory complexes,
at a high value associated with state-4 respiration. The
addition of limited amounts of ADP (200 mM) induced
phosphorylation-coupled respiration (state-3 respiration) and
proton influx via the ATP synthase F0 channel, leading to
depolarization and a higher oxidative rate of around 71 nmol
O2/min/mg protein (Figure 1b). In the case of control
mitochondria, DCm in state 4 (DCm4) was around �174 mV.
The respiratory control ratio (RC), which corresponds
to the ratio of the respiratory rate of the phosphorylation
state ðVox3

Þ to unphosphorylation state ðVox4
Þ, reflects the

coupling of the mitochondria. Under our experimental
conditions (in the presence of succinate and AP5A, i.e.
P1,P5-di(adenosine-5’)pentaphosphate, an inhibitor of kinase
adenylate), the RC is normally over 4.5. The phosphorylation
yield, ADP/O, is around 1.5 for succinate-oxidizing mito-
chondria.

Despite showing similar RC and ADP/O, Bcl-2- or Bcl-XL-
displaying mitochondria exhibit a higher oxidation rate
associated with an increase in the phosphorylation rate
(Figure 1b). The ability of Bcl-2- or Bcl-XL-containing
mitochondria to phosphorylate ADP at a faster rate
may be linked to their enhanced capacity to exchange
ADP/ATP.37 Bcl-XL acts similarly during a metabolic arrest
induced by growth factor withdrawal.27 Under these condi-
tions, Bcl-XL may allow growth factor-deprived cells to
maintain sufficient ADP/ATP exchange to sustain coupled
respiration.

Moreover, Bcl-2 and Bcl-XL mitochondria are less sensitive
to Ca2þ -induced PTP opening as revealed by the increasing
dose of Ca2þ required to induce CsA-sensitive swelling
(Figure 1c). Our results are consistent with a previous report in
which Bcl-2 potentiates maximum calcium uptake capacity in
neuron-derived mitochondria.43 The calcium concentrations
required to induce swelling of liver mitochondria are similar to
those in neural cell mitochondria. The enhanced ability of
mitochondria from Bcl-2 and Bcl-XL-overexpressed cells to
sequester large quantities of Ca2þ without any profound
respiratory impairment provides a plausible explanation for
the mechanism by which Bcl-2 and Bcl-XL inhibit certain forms
of cell death.

On the other hand, the absence of Bax or Bak has no effect
on mitochondrial bioenergetics. Indeed, Bax�/� or Bakþ /þ

mitochondria exhibited bionergetic properties similar to
control WT mitochondria (Figure 1b).
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tBid disturbs mitochondrial bioenergetics: a
process independent of Bax and Bak but inhibited
by Bcl-2 and Bcl-XL

We determined the action of recombinant tBid on mitochon-
drial bioenergetic parameters by adding tBid in wild-type
succinate-oxidizing mitochondria after a first transition of
phosphorylation (Figure 2b). Adding 10 nM of tBid immedi-
ately induces a 14 mV decrease in DCm, associated with a
slight increase in the respiratory rate by approximately 3 nmol
O2/min/mg of mitochondrial protein (mild uncoupling). A lower

concentration of tBid (o1 nM) has no uncoupling capacity
(data not shown). The effect of tBid on state-3 respiration
parameters was determined. tBid induced an immediate
decrease in the state-3 respiratory rate by approximately
11 nmol O2/min/mg of mitochondrial protein, associated with a
decrease in the phosphorylation rate by around 63 nmole
ATP/min/mg of mitochondrial protein after the first ADP
addition. As shown in Figure 2b, tBid acted in a time-
dependent manner. The inhibition in state-3 respiration and
phosphorylation increased with time and marked 30%
inhibition after 10 min incubation with tBid (Figure 2b).
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Figure 1 Basic properties of control, Bcl-2, and Bcl-XL mitochondria. Oxidative phosphorylation in mouse liver mitochondria. The system shows all steps of the
oxidative phosphorylation via three sets of reactions that were tested in (a), and are connected by the common thermodynamic intermediate (Dp).41,42 (b) The table
summarizes the main characteristics of the mitochondria (control, Bcl-2, Bcl-XL, Baxþ /þ and Bax�/�) used for the studies. (c) Opening of the permeability transition
pore (PTP) by calcium, atractyloside, and ter-butyl hydroperoxide In C57/Bl6, Bcl-2 and Bcl-XL overexpressing mouse liver mitochondria are shown

Figure 2 Cleaved tBid inhibits ADP-stimulated oxygen respiration in mitochondria and is antagonized by Bcl-XL and BH3-only domain of tBid. Mitochondria (0.333 mg/
ml) were incubated with respiratory buffer alone (a), or when indicated with various amounts of recombinant Bid (tBid) that has been cleaved with recombinant active
caspase-8 (b) in a final volume of 3 ml. In (c), mitochondria from transgenic mice overexpressing Bcl-2 were used. (a) Recording of the oxidation rate (black line),
mitochondrial membrane potential (green line) and phosphorylation rate (blue line) in control mitochondria. The numbers along the trace give the oxidation rate in nmol
O2/min mg protein (black), the potential in mV (green), and the phosphorylation rate in nmole ATP/min/mg of mitochondrial protein (blue). The arrows along the trace
correspond to ADP 110 mM additions unless otherwise noted. The uncoupler mClCCP (10 mM) is added at the end of the trace. (b) tBid (10 nM) was added directly after a
first state-3/state-4 transition. Two subsequent ADP additions (110 mM) were performed, followed by an addition of 10 mM mClCCP. (c) Same as (a) with mitochondria
overexpressing Bcl-2. (d and e) Histograms presenting the Bcl-2 (d) and Bcl-XL (e) inhibition of state-3 respiration counteracted by preincubation with the BH-3-domain
peptide of tBid. Data presented were extracted from respiratory measurements with simultaneous recording of the mitochondrial membrane potential as shown in (a–c).
In both cases, tBid BH3 peptides are used at concentrations (1–5 mM) that did not cause apoptosis. (d) Oxidation rate in the presence of succinate of control BcP-2
mitochondria pretreated for 10 min with 10 nM tBid. ADP 110 mM was added after tBid addition into the closed glass vessel. (e) Same experiment in the presence of Bcl-
XL or Bcl-2 mitochondria. In (f), histograms of the oxidation rate in the presence of succinate of control mitochondria treated with 10 nM tBidG94E mutant IIIm, and with
Bcl-2 or Bcl-XL mitochondria are shown. (g) Same experiments in the presence of Bax- or Bak-deficient mitochondria. For all the histograms from (d) to (g), the oxidation
rate is normalized as the percentage of the maximal oxidation. The Vmax in the control mitochondria is of 7474 nmol/min/mg protein for c57/Bl6 mitochondria and of 8474
and 8575 nmol O2/min/mg O2 for the mitochondria purified from Bcl-XL and Bcl-2 transgenic mice, respectively, whereas it is of 7074 and 6975 for Bax�/� and Bak�/�

mitochondria respectively
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Inhibition of both ADP-stimulated respiration and phosphory-
lation rate also increased after a second ADP addition and
reached 60% inhibition after 30 min (not shown).

Three hypotheses could explain these inhibitions: (i) tBid
might inhibit the respiratory chain (generator of proton
gradient) but this hypothesis is inconsistent with the finding
that tBid has no effect on the mClCCP-uncoupled respiration
rate (Figure 2b), (ii) tBid may affect the machinery of
phosphorylation (consumer of proton gradient) or (iii) tBid
may cause increase in proton leaks by one way or another
leading to a decrease in proton gradient.

As shown in Figure 2c–e, tBid is unable to disrupt any
bioenergetic parameters (DCm, respiration and phosphoryla-
tion rate) in Bcl-2- and Bcl-XL-expressing mitochondria.
Indeed, Bcl-2 and Bcl-XL completely protect mitochon-
dria from tBid even after 10 min incubation. On the other
hand, injecting a noncytotoxic dose of tBid BH3 peptide
(1–5 mM) together with tBid completely restored the effect on
tBid in Bcl-2 and Bcl-XL mitochondria. The same results were
obtained using BH3 peptide derived from Bax or Bak (data
not shown).

Our results suggest that Bcl-2 and Bcl-XL protect mitochon-
dria from bioenergetic alterations through the interaction with
the BH3 domain of tBid. We therefore investigated the effects
of BH3 mutation on tBid-induced alterations of mitochondrial
physiology. To this end, we used the tBid mutant mIII
(tBidG94E), which is unable to interact with either proapopto-
tic (Bax and Bak) or antiapoptotic (Bcl-XL and Bcl-2) proteins.
Adding 10 nM of mutant tBid mIII inhibited ADP-stimulated
respiration to the same level in control mitochondria as tBid
(Figure 2f), suggesting that the interaction of tBid with other
apoptotic factors like Bax or Bak is not required for inhibition
of ADP-stimulated respiration.

Moreover, the effect of tBid mIII was maintained in Bcl-2
and Bcl-XL mitochondria and in mitochondria purified from
bax�/�and bak�/�mice (Figure 2g).

Taken together, these results show that tBid can disturb
mitochondrial bioenergetics independently of Bax and Bak at
least during the time of its primary action, and that Bcl-2 and
Bcl-XL protect mitochondria by interacting with the BH3
domain of tBid.

tBid and tBid IIIm localize at the mitochondrial
membrane level and induce a delayed
conformational change and oligomerization of Bak
in vitro

The treatment of Percoll-purified mitochondria with tBid and
the irreversible cross-linker BMH for 30 min revealed that the
BMH shifted Bak into distinct complexes of approximately
48 kDa (major species), and 72 kDa (minor species) and a
96 kDa band (not observed on these gels) (Figure 3a). These
shifted bands did not appear before 30 min incubation with
tBid or if the tbid IIIm was used instead of tBid, consistent with
the inability of tBid IIIm to interact with Bak.

Figure 3b (lower panel) demonstrated that tBid and tBid
IIIm colocalized to the mitochondrial compartment, whereas
tBid lacking the alpha helices H6 and H7 did not. The upper
panel corresponds to the fluorescence spectrum of EYFP

(empty vector) or CMXRos (mitochondrial membrane poten-
tial measurements).

tBid inhibits ADP-stimulated respiration as a result
of the inhibition of the ADP/ATP exchange

Mitochondria incubated with tBid (10 nM) (Figure 4a) or with
atractyloside for 45 min (Figure 4b) displayed a similar level of
inhibition of ADP-stimulated respiration, suggesting that
inhibition of the phosphorylation machinery (ANT in this case)
may be responsible for the tBid effect. The time required for
the insertion of tBid into the mitochondrial membrane and its
stabilization may explain why complete inhibition occurred
only after 45 min, although the initial action on the mitochon-
drial respiratory activity in the presence of ADP was
detectable almost immediately (3–5 min, Figure 2b). Incuba-
tion of mitochondria with exogenous cytochrome c did not
change mitochondrial respiration inhibition by tBid, therefore
demonstrating that the inhibition is not due to an early
cytochrome c release (Figure 4c).

We investigated the effect of tBid on ADP/ATP exchange in
control mitochondria and in purified mitoplasts in order to
exclude a possible involvement of the porin VDAC in this
process (Figure 4d, e). tBid and tBid IIIm caused a significant
reduction in ATP/ADP exchange in both control mitochondria
and mitoplasts (around 50%), demonstrating that tBid is able
to partially inhibit ADP/ATP exchange by inhibiting the ANT
(Figure 4e). This is associated with an increase in the Km for
ADP (decrease in affinity) and a decrease in the Vmax of the
ATP/ADP exchange (decrease in activity), characterizing an
inhibition known as mixed or noncompetitive. This suggests
that tBid affects both the ADP binding and the catalytic site of
the ANT translocator. Also, consistent with our previous
results,37 ATP/ADP exchange is increased by 40% in Bcl-2 or
Bcl-XL mitochondria (Figure 4e). Since components of the
outer mitochondrial membrane are not involved in this
process, these results suggest that tBid may have direct
access to the vicinity of the ANT, consolidating the hypothesis
that tBid is able to interact directly at the contact sites by
specific interaction with cardiolipin.17

tBid interacts specifically with cardiolipin and
stabilizes artificial lipid monolayer into
microdomains

To elucidate the role of cardiolipin in this process, we
determined the action of recombinant tBid in Dcrd1, a yeast
strain deficient in cardiolipin due to a disruption of CRD1, the
structural gene encoding cardiolipin synthase. First, we
compared mitochondrial function in the Dcrd1 mutant and
the isogenic wild type (Table 1). Dcrd1 mutant displayed a
slight decrease in the mitochondrial function. In fact, absence
of cardiolipin induced an increase in the oxidation rate in state
4 associated with a decrease in state 3, associated with
inhibition of ATP production, hence decreasing RC from 5.1 to
1.6. Nevertheless, the effect of tBid on the bioenergetic
functions of Dcrd1 mitochondria was studied.

Incubation of wild-type yeast mitochondria with tBid (20 nM)
for 20 min reduced the NADH-sustained state-3 respiration
from 650 to 470 nmol O2/min/mg protein (Figure 5a, b) and the
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phosphorylation rate from 866 to 716 nmol ATP/min mg of
mitochondrial protein. By analogy with liver mitochondria, tBid
acted in a time-dependent manner (Table 1). Indeed, after a
45-min incubation, ADP-stimulated respiration inhibition
increased by 76% coinciding with complete inhibition of ATP
production (Figure 5c). No effect on state-4 respiration was
obtained in yeast. Since yeast is deficient in proapoptotic
Bcl-2 family proteins, these results confirm our previous
observation that tBid is able to disturb mitochondrial
function independently of Bax and Bak. None of these
changes were observed in the cardiolipin null-mutant yeast
(Table 1 and Figure 5c) even after 45 min of incubation
with tBid.

We also asked whether cardiolipin was only required for
tBid binding or whether it was also involved in the inhibition of
ANT by tBid. Monolayers of zwitterionic PC and negatively
charged cardiolipin were spread at an initial surface pressure
of 20 mN/m. Injection of tBid beneath them resulted in a large
increase in surface pressure only in the presence of CL and as
a function of the amount of tBid injected into the subphase
(Figure 5d). Moreover, the increase in pressure was corre-
lated with the amount of cardiolipin in the monolayer. This
biophysical approach shows that cardiolipins are essential
for tBid binding. tBid is only inserted in the presence of
cardiolipins, and the binding efficiency is optimized when the
monolayer contains approximately 25% cardiolipin, which
corresponds to the natural composition of the mitochondrial
inner membrane.

We also investigated the consequences of tBid–cardiolipin
interaction on the phospholipid organization by epifluores-
cence microscopy. Figure 5e shows a set of images recorded
at different times following injection of tBid into the subphase
buffer. The pure cardiolipin monolayer gave a uniform
fluorescent liquid-expanded phase before tBid insertion
(t¼ 0). Once tBid was added, transition to the liquid-
condensed phase occurred, as indicated by the appearance
of dark probe-excluded domains. These domains had a
relatively homogeneous appearance after 15 min, and were
distributed uniformly throughout the visual field (Figure 5e).
Thus, tBid interacts specifically with cardiolipin and stabilizes
the artificial lipid monolayer into microdomains. Modification of
cardiolipin organization into microdomains at the mitochon-
drial level may affect the function of the proteins inserted into
such membranes (like ANT) and could thus lead to a decrease
in ADP/ATP translocator activity.
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level. (a) The IVT tBid and IVT tBid IIIm proteins were targeted to mitochondria.
Mitochondria were then treated with a DMSO control buffer or with 10 mM BMH
crosslinker. The pattern of crosslinked Bak was determined by an anti-bak
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Figure 4 tBid-inhibition of ADP-stimulated respiration and ADP/ATP exchange. (a) Effect of tBid on isolated mitochondria. Mitochondria (0.666 mg) were preincubated
with buffer alone (black line), or with 10 nM of recombinant tBid (hatched line) in a final volume of 150 ml respiratory medium. Succinate 5 mM and 110mM ADP were
added into the glass reaction vessel at the indicated time points. In (b), mitochondria were preincubated with atractyloside (50 mM final) prior to transfer into the glass
vessel (hatched line) and could be compared to the untreated sample (black line). The reaction was incubated for 10 min at 251C. In (c), mitochondria from mice liver
control treated with or without cytochrome c are shown. An amount of 80 mg of horse cytochrome c was added to the aliquots of 150ml reaction mixture containing
mitochondria with 10 nM tBid prior to adding the mixture into the glass vessel. In (d), the effect of tBid on isolated mitochondria is shown. Mitochondria from mouse liver
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Table 1 Respiratory characteristics of mitochondria from wild-type yeast and cardiolipin null-mutant yeast

Voxidation (nmol O2/minmg protein)

Yeast mitochondria State-3 State 4 RCRa Inhibition % (state 3)

Control (CL+)b 670745 13176 5.1 0
tBid (5 min)+ATPc 611738 13476 4.6 8.8
tBid (10 min)+ATP 528729 13976 3.8 21.2
tBid (20 min)+ATP 474715 14775 3.2 29.3
tBid (45 min)+ATP 15879 15276 1.04 76.5

Control (CL�) 480716 306712 1.6 0
tBid (20 min)+ATP 478716 302713 1.6 0

Mitochondria were preincubated with 200 mM ATP and 10 nM tBid. NADH, 1 mM; Pi, 10 mM. aRC, respiratory control (ratio of state-3 to state-4 respiration). Oxidation
rate in nmol O2/min mg protein. bCardiolipin present, CL+; cardiolipin absent, CL�. cATP 200mM added with 10 nM tBid during the preincubation.
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tBid released cytochrome c as a result of transient
openings of PTP
Finally, we investigated the effect of tBid on the permeability of
the outer membrane to cytochrome c. The release of
cytochrome c was measured under various conditions (Figure
6a–d). tBid released a maximal amount of cytochrome c after
a 60-min incubation, while atractyloside and mClCCP
(uncoupling agent) did not (Figure 6a). Moreover, even at
10-30 min, when there is an increased release of entrapped
calcein, a significant release of cytochrome c is not seen
(Figure 6c and d). This late event of cytochrome c release is
partly inhibited by CsA (Figure 6b), suggesting a partial
involvement of PTP in this process. Moreover, the tBid IIIm
mutant was also able to release cytochrome c to a similar
extent (Figure 6b and d). The BH3 domain appears not to be
involved in the long-lasting cytochrome c-releasing activity of
tBid.

It was reported that a low concentration of tBid (1 nmol/mg
protein) failed to induce swelling and immediate depolariza-

tion of mitochondria,19,38,39,44 whereas a small depolarization,
which requires a longer incubation time, was reported (i.e.,
60 min).19 We show in this report that a higher concentration of
tBid (10 nM) induced a small but significant depolarization
(5–10 mV) (Figure 2b) but not swelling (data not shown).
However, PTP opening can either be associated45 or not with
a drop in DCm and/or mitochondrial swelling.46

These transient openings can be measured by monitoring
the release of calcein trapped in the mitochondrial matrix.47

tBid increased the release of calcein from the matrix in a time-
dependent manner (Figure 6e), an event only partly inhibited
by the PTP pore inhibitors CsA and BA. Similar results were
obtained using the BH3 mutant, Bid IIIm (G94E) (Figure 6f),
whereas Bcl-2 and Bcl-XL mitochondria were both completely
insensitive to tBid. Bid IIIm (G94E) released calcein despite
the presence of Bcl-2 and Bcl-XL (Figure 6g), suggesting that
BH3 domain is not involved in the transient PTP opening
activity induced by tBid. The time-dependent increase in PTP
opening and closure induced by tBid are compatible with the
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cytochrome c release observed from 60-min incubation
(Figure 6a and b).

Concerning the possible involvement of the PTP in the tBid
effect, we tested the effects of CsA on the mitochondrial
respiration in the presence of tBid or tBid IIIm. No effect of

CsA either on the state-3 inhibition or on the slight increase in
state-4 respiration, which has been described (Figure 2b),
was observed (results not shown). We cannot exclude the
possibility that CsA may have a certain effect at 60 min. In our
conditions, CsA clearly inhibited 50–60% of calcein release
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Figure 6 Transient opening of the mitochondrial transition pore and release o f cytochrome c. In (a) and (b), measurement of cytochrome c released in the
mitochondrial supernatant in different conditions is shown. In (a), mitochondria were preincubated with buffer alone (lane 1), or with 10 nmol recombinant tBid (lane 2), or
with 5mM atractyloside (lane 4), or with 0.5% Triton X-100 (lane 5) in a final volume of 150ml respiratory medium. The reaction was incubated for 60 min at 251C. After
incubation, aliquots of 150 ml reaction mixture were added to 1.4850 ml of respiratory medium in a glass reaction vessel for measurements of oxygen utilization as
described in the Materials and Methods. At the indicated time points, 5 mM succinate and 110 mM ADP were added to the glass reaction vessel. In (b), mitochondria were
preincubated with buffer alone (lane 1), or with 10 nmol recombinant-cleaved tBid (lane 2), or with the Bid mutant G94E devoid of the BH3 domain (lane 3), or incubated
with tBid in presence of 1 mM CsA (lane 4) or with 0.5% Triton X-100 (lane 5). In (c) and (d), time course (on 60 min) of cytochrome c release versus calcein release in the
presence of 10 nM tBid and tBid IIIm, respectively, is shown. The gray zone represents the time where the cytochrome c release and the PTP pore is in a range of
importance; above this zone event if the calcein release is significant, the cytochrome c release does not reach a significant level. In (e), the effects of CsA (1 mM) and BA
(5 mM) on tBid-induced calcein release are shown. Mitochondria were incubated without (buffer, open circles) or with tBid (solid circles); BA (solid triangles) or CsA (red
stippled circles) were added in some cases. Mitochondria were preincubated with CsA or BA for 2 min. Data are the means of five independent experiments. An amount
of 5 nM tBid was used in all experiments. In (f), same as for (c), tBID IIIm (10 nM) (red stippled circles) with tBid is used (solid circles) as a control red stippled circles. CsA
inhibition of calcein release. In (g), influence of Bcl-2 and Bcl-XL on tBid and tBid IIIm-induced calcein release. Solid circles: tBid (10 nM) on Bcl-2 mitochondria; stippled
circles; Bcl-XL mitochondria. The effect of tBid IIIm (10 nM) on Bcl-2 (yellow closed circles) and Bcl-XL (yellow triangles) mitochondria is shown
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(Figure 6e and f), suggesting that another type of membrane
permeability, which is CsA-insensitive, should be taken into
account. Such permeability might be related to reorganization
of the mitochondrial membrane cardiolipin during its interac-
tion with tBid or tBid IIIm.

Discussion

Scorrano et al.19 recently demonstrated that tBid induces a
remodelling of mitochondrial structure in vitro leading to
unravelling of the cristae and exposure of cytochrome c. This
reorganization event does not require the BH3 domain of tBid
and is independent of Bak and slightly inhibited by CsA.

We show here for the first time that the binding of tBid to
mitochondrial membrane immediately perturbs mitochondrial
respiratory function. tBid is able to inhibit ADP-stimulated
respiration and phosphorylation rate, independently of Bak
and Bax, in mice and yeast mitochondria.

Our results, obtained with lipid monolayers, showed that
cardiolipins are essential for tBid binding and raised the
question as to how tBid interact with the contact sites, since
cardiolipins are located in the inner membrane. The remodel-
ling of the cristae19 and our results describing bioenergetics
mitochondrial perturbations, which take place in a similar time
scale, strongly suggest that tBid has an effect on the inner
membrane. Moreover, tBid may bind to the contact sites17,18

and disrupt the membrane curvature.20 At the contact sites,
cardiolipins and phosphatidylethanolamines adopt a hexa-
gonal HII configuration,21,22 so that over 45% of the endogenous
phospholipids at the contact sites can adopt a nonbilayer con-
figuration. It is evident that because of their unique chemical
structure and the relative polymorphic phase behavior,
cardiolipins have easy access to the outer mitochon-
drial membrane.23,24 Cardiolipins at the contact site might
be accessible to tBid. tBid may interact with contact sites
and induce the reorganization of phospholipids into micro-
domains (especially cardiolipin). Specific binding of cardiolipin
to the ADP/ATP translocator has already been reported and
the monitoring of reconstituted carrier activity has revealed
that this interaction is required for its activity.25,26 It is
conceivable that tBid indirectly influences the activity of ANT
by redistributing phospholipids.

The observed transient PTP opening induced by tBid
seems to be coordinated with remodelling of the cristae,
mobilization of cytochrome c stores from the cristae, and the
final release of cytochrome c due to permeabilization of the
outer membrane, three events partly inhibited by CsA and
BA.19

We demonstrated that tBid and tBid IIIm colocalized at the
mitochondrial membrane but while tBid interacts with Bak,
tBid IIIm did not.27 We also showed that the deletion of the
H6H7 alpha helices totally abolished both tBid and tBid IIIm
targeting to the mitochondria. The experiment using Bid IIIm
(G94E) and tBid BH3 provides the first evidence that the BH3
domain of tBid is involved neither in the disruption of
mitochondrial bioenergetics nor in cytochrome c release.

We believe that our results reinforce the recent discovery of
the changes in mitochondrial structure induced by tBid,19 an
observation made at the same time scale (15–20 min). These

results are in direct line with the observation that tBid induces
Bax and Bak oligomerization at the mitochondrial mem-
brane.28

Based on these observations, we propose a two-step model
(Figure 7) in which tBid plays a primary role in destabilizing
mitochondrial membrane structure and function. This function
of tBid relates to its ability to bind cardiolipin, and to enhance
the delocalization of Bax (or Bak) from the cytoplasm to the
mitochondrial membrane, their oligomerization, and conse-
quently contributes to the amplification of the mitochondrial
damage, which culminates with cytochrome c release.

Materials and Methods

Materials

All chemicals and supplies were obtained from Sigma (St. Louis, MO,
USA) unless otherwise stated. Full-length His-tagged mouse Bid, wild-type
and mutants, were purified as described by Desagher et al.29 We used
tBid stock solutions (1.9 mg/ml) diluted in nM dose in the respiratory buffer.
The buffer alone has no effect on mitochondrial parameters.

Peptides were synthesized on a Rainin Symphony synthesizer using a
standard SPPS (solid phase peptide synthesis) method (Novabiochem).15

Bid BH3 peptide was synthesized with the following sequence
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RNIARHLAQVGDSMDR and was used at nontoxic concentrations (less
than 5 mM). The toxicity of the Bid-BH3 peptide has been tested on purified
mitochondria bioenergetics with the same protocol as for tBid (see below).

Animals

Studies were performed on 6–12-week-old mice (control [C57/Bl6]) and
age- and sex-matched congenic mice expressing a Bcl-230 or Bcl-XL
transgene31 under the L-type pyruvate kinase gene promoter and on
Bax�/�and Bak�/� mice (kindly provided by CB Thompson and S
Korsmeyer, USA).

Purification of mouse liver mitochondria and
mitoplasts

Mice were killed by decapitation and their livers removed and placed in
cold medium H (pH 7.2) containing 0.3 M sucrose, 5 mM TES, 0.2 mM
EGTA, and 0.1% BSA (w/v). Mitochondria were isolated by classical
differential centrifugation to obtain a crude mitochondrial preparation.32

The crude mitochondria were layered on a Percoll gradient (10 min at
8500� g) consisting of three layers (18, 30 and 70% [v/v]) of Percoll in
medium H. Purified mitochondria were collected from the 30/70% interface
and washed with medium H. We used the same procedure for
mitochondria from Bcl-230 and Bcl-XL31 transgenic mice, and for bax�/�

and bak�/� mice.
Mitoplasts were generated by incubating fresh mitochondria in

hypotonic buffer (ratio 1 : 10 mitochondria/hypotonic buffer, v/v) in
20 mM HEPES, 1 mg/ml BSA (pH 7.4) for 20 min at 41C. The resulting
mitoplasts were separated by centrifugation (6800� g, 10 min, 41C) and
layered on top of a Percoll gradient (10 min at 8500� g) consisting of
three layers (18, 30 and 70% [v/v]) of Percoll. The functional mitoplasts
were recovered at the 30 : 70% interface.

Oxygen uptake, membrane potential, rate of
phosphorylation and large amplitude swelling

Purified mitochondria were resuspended in respiratory medium (R)
consisting of 100 mM KCl, 40 mM sucrose, 5 mM MgCl2, 10 mM TES,
10 mM KH2PO4 (pH 7.2), 1mM EGTA and 0.1% BSA. The mitochondrial
protein concentration used for measurement was 0.333 mg/ml (in a 3 ml
cuvette). The mitochondrial respiration rate (Vox) and membrane potential
(DCm) were monitored by the simultaneous use of a Clark-type electrode,
a tetraphenylphosphonium cation-sensitive electrode (TPPþ ) and a pH-
electrode, at 251C in medium R. Membrane potential was calculated
according to Kamo et al.33 and the TPPþ binding was corrected according
to Rottenberg.34 The phosphorylation rate was estimated from the Hþ

influx, estimated by pH changes, and each curve was calibrated with
increasing amounts of 0.1 N HCl.35 The swelling of mitochondria was
estimated from the decrease in absorbance measured at 520 nm in a Cary
50 spectrophotometer (Varian SA, Australia) in hypotonic swelling medium
S (250 mM sucrose, 5 mM Tris-MOPS, 0.3 mM KH2PO4, 0.5 mg/ml
oligomycin, 5 mM succinate and 2mM rotenone at pH 7.2). Inorganic
phosphate (250 mM) was added to ensure optimal succinate transport and
subsequent succinate dehydrogenase activity. Trace amounts of EGTA
(10 mM) ensured good experimental reproducibility without affecting the
pore opening. Mitochondria from control or transgenic mice were
incubated in medium S (0.33 mg/ml), treated with 5 mM atractyloside
(plus low concentrations of Ca2þ (100mM) for preconditioning), or ter-
butyl-hydroperoxide (50 mM), or calcium 300 mM.

In vitro assay of cytochrome c release and calcein
release

Purified mouse liver mitochondria were resuspended in medium R (pH
7.2). An amount of 5 ml of isolated mitochondria (stock concentration
25 mg/ml) was mixed by gentle stirring with the indicated amount of
proteins or compounds plus 4 ml of protease inhibitors cocktail (Sigma) in a
final volume of 50 ml medium S for 30 min at room temperature.
Mitochondria were then collected by centrifugation at 12 000� g for 5 min
at 41C and the supernatants were analyzed by 15% SDS-PAGE and using
a mouse monoclonal anti-cytochrome c antibody (Pharmingen, clone
7H8.2C12).

For calcein release, mitochondria suspended in respiration medium (R)
without BSA were loaded with 10 nM calcein-AM (Molecular Probes) for
20 min at room temperature in the dark. Following two washes, 0.5 mg/ml
calcein-loaded mitochondria were incubated in a calcein measurement
medium (125 mM KCl, 10 mM tris-MOPS (pH 7.4), 1 mM Pi, 5 mM
succinate, 10mM EGTA-Tris (pH 7.4), a concentration which does not
block the PTP opening but ensures reproductivity to the measurements)
and treated as described in the Figure 5. After the indicated time,
mitochondria were spun down. Calcein was measured in the spin down
supernatant in an LS-50B spectrofluorometer (Perkin-Elmer) with
excitation and emission wavelengths set at 48872.5 and 54272.5 nm,
respectively. Calcein release is reported as the percentage of the calcein
measured in the supernatant over the total (pellet þ supernatant).

ATP/ADP translocase activity in purified
mitochondria

Percoll-purified liver mitochondria (from female, 6–12-week-old C57/Bl6
mice and age- and sex-matched congenic mice) were suspended (10 mg
protein per 500ml) in 0.6 M mannitol, 0.2% BSA, 10 mM MOPS, and
0.1 mM EDTA (pH 6.8). For kinetic analyses of ADP/ATP exchange, we
modified the method developed by Pfaff et al.36 Purified mitochondria were
incubated with 15ml [2,8-3H] ATP (40 Ci/mmol) at 41C after a
preincubation of 45 min in the presence or absence of tBid. They were
then washed twice to eliminate free [2,8-3H] ATP. Exchange was initiated
by adding cold ADP (400 mM) and stopped after 10 s by adding 100 mM
atractyloside and centrifugation (6800� g, 10 min, 41C).37

Recombinant proteins and coimmunoprecipitation

IVT proteins were transcribed in vitro and translated as described by
Wei et al,38 whereas recombinant tBid or tBidIIIm were either purified
as described by Wei et al.38 or as described by Desagher et al.29

35S-labelled IVT proteins were incubated with Percoll-purified mouse
liver mitochondria for various periods of time (10–30 min) at 301C. The
mitochondria were then solubilized and incubated with anti-Bak antibody
for 1 h at 41C as described by Wei et al.38 The beads were then analyzed
by fluorography for bound proteins.

Yeast cell mitochondria

Wild-type yeast strain and the cardiolipin synthase-deficient strain
WKEN011A39 were grown aerobically at 281C in complete medium (1%
yeast extract, 0.12% ammonium sulfate, 0.1% potassium phosphate, 2%
DL-lactate, pH 5.2) until the mid-exponential growth phase. Cells were
harvested and mitochondria were isolated as described previously.40

Mitochondria were suspended at 0.17 mg/ml in 10 mM Tris-maleate buffer
(pH 6.8) containing 0.6 M mannitol and 2 mM EGTA. Respiration rates
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were measured at 281C in the presence of 5 mM potassium phosphate,
1 mM NADH and 50mM ADP (state 3). Mitochondria were preincubated
with tBid for the indicated time periods. ATP synthesis was measured in
the presence of 1 mM ADP with 1 mM NADH as substrate, and in the
presence of AP5A 13 mg/ml, an inhibitor of the adenylate kinase. Samples
(150ml) were removed at 0, 10, 20 and 30 s after adding ADP. Proteins
were precipitated by adding 50ml 7% perchloric acid in 50 mM EDTA and
the samples cleared by centrifugation. Aliquots (150 ml) of supernatant
were neutralized by adding 24ml 0.3 M MOPS/2 N KOH, and ATP was
measured with a luciferin/luciferase kit (Bio-orbit) in an LKB biolumino-
meter. Rates of ATP synthesis were calculated from linear regression
plots of ATP produced versus time.

Biophysical measurements on lipid monolayers

All monolayer experiments were carried out in Teflon dishes at 221C.
Monolayers of pure or mixed phospholipids were spread on a subphase
buffer (5 mM Tris-HCl, pH 7.5 and 150 mM NaCl) to give an initial surface
pressure of 20 mN/m. tBid was added to the stirred subphase. The
pressure changes were monitored until the increase in surface pressure
was maximal.

Epifluorescence observations were made with an Olympus-BX30
microscope. The fluorescent probe 1-palmitoyl-2{6[(7-nitro-2-1,3-benz-
oxadizol-4-yl)amino]dodecanoyl} phosphatidylglycerol (NBD-PG, purchased
from Avanti Polar Lipids Inc., USA) was excited at 470 nm using a mercury
lamp and its emission recorded at 530 nm. Mixtures were prepared from a
chloroform solution of DPPC containing the desired proportions of
cardiolipin and 0.5 mol% NBD-PG. This hydrophilic probe is excluded from
densely packed areas of lipid, providing contrast between lipid phases.

Microspectrofluorometric analysis

Microspectrofluorometric analysis was performed under epi-illumination
conditions by means of Zeiss UMSP 80 confocal microscope equipped
with an UV–visible argon laser and an optical multichannel analyzer (OMA
III with an IRY 1024/6B from Princeton Applied Research). The acquisition
system and data treatment were carried out with a Prism system (Jobin &
Yvon). The excitation was set at 488 nm and the spectra were recorded in
the 540–750 nm range. The size of the area where the spectra are
recorded is 0.8mm. The spectra of EYFP (empty vector from BD
Bioscience, USA, cytoplasmic) and of the mitochondrially localized
CMXRos (Chloromethyl-X-Rosamine, Molecular Probes, USA) are
presented in Figure 3b as references. CMXRos was added to the cells
at a final concentration of 20 nM (preincubation time 15 min at room
temperature).
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