Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transplant Toxicities

Transplant-associated thrombotic microangiopathy is an endothelial complication associated with refractoriness of acute GvHD

Abstract

There is increasing evidence that endothelial dysfunction is involved in refractoriness of acute GvHD (aGvHD). Here we investigated the hypothesis that another endothelial complication, transplant-associated thrombotic microangiopathy (TMA), contributes to the pathogenesis of aGvHD refractoriness. TMA was retrospectively assessed in 771 patients after allogeneic stem cell transplantation (alloSCT). Incidences of TMA and refractory aGvHD were correlated with biomarkers of endothelial damage obtained before alloSCT for patients receiving or not receiving statin-based endothelial prophylaxis (SEP). Diagnostic criteria for TMA and refractory aGvHD were met by 41 (5.3%) and 76 (10%) patients, respectively. TMA was overrepresented in patients with refractory aGvHD (45.0 vs 2.3% in all other patients, P<0.001). TMA independently increased mortality. Elevated pretransplant suppressor of tumorigenicity-2 and nitrates along with high-risk variants of the thrombomodulin gene were associated with increased risk of TMA. In contrast, SEP abolished the unfavorable outcome predicted by pretransplant biomarkers on TMA risk. Patients on SEP had a significantly lower risk of TMA (P=0.001) and refractory aGvHD (P=0.055) in a multivariate multistate model. Our data provide evidence that TMA contributes to the pathogenesis of aGvHD refractoriness. Patients with an increased TMA risk can be identified pretransplant and may benefit from pharmacological endothelium protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ferrara JL, Levine JE, Reddy P, Holler E . Graft-versus-host disease. Lancet 2009; 373: 1550–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Westin JR, Saliba RM, De Lima M, Alousi A, Hosing C, Qazilbash MH et al. Steroid-refractory acute GVHD: predictors and outcomes. Adv Hematol 2011; 2011: 601953.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Luft T, Dietrich S, Falk C, Conzelmann M, Hess M, Benner A et al. Steroid-refractory GVHD: T-cell attack within a vulnerable endothelial system. Blood 2011; 118: 1685–1692.

    Article  CAS  PubMed  Google Scholar 

  4. Dietrich S, Falk CS, Benner A, Karamustafa S, Hahn E, Andrulis M et al. Endothelial vulnerability and endothelial damage are associated with risk of graft-versus-host disease and response to steroid treatment. Biol Blood Marrow Transplant 2013; 19: 22–27.

    Article  CAS  PubMed  Google Scholar 

  5. Dietrich S, Okun JG, Schmidt K, Falk CS, Wagner AH, Karamustafa S et al. High pre-transplant serum nitrate levels predict risk of acute steroid-refractory graft-versus-host disease in the absence of statin therapy. Haematologica 2014; 99: 541–547.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rachakonda SP, Penack O, Dietrich S, Blau O, Blau IW, Radujkovic A et al. Single-nucleotide polymorphisms within the thrombomodulin gene (THBD) predict mortality in patients with graft-versus-host disease. J Clin Oncol 2014; 32: 3421–3427.

    Article  PubMed  Google Scholar 

  7. George JN, Li X, McMinn JR, Terrell DR, Vesely SK, Selby GB . Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome following allogeneic HPC transplantation: a diagnostic dilemma. Transfusion 2004; 44: 294–304.

    Article  PubMed  Google Scholar 

  8. Changsirikulchai S, Myerson D, Guthrie KA, McDonald GB, Alpers CE, Hingorani SR . Renal thrombotic microangiopathy after hematopoietic cell transplant: role of GVHD in pathogenesis. Clin J Am Soc Nephrol 2009; 4: 345–353.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jodele S, Laskin BL, Dandoy CE, Myers KC, El-Bietar J, Davies SM et al. A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev 2015; 29: 191–204.

    Article  PubMed  Google Scholar 

  10. Laskin BL, Goebel J, Davies SM, Jodele S . Small vessels, big trouble in the kidneys and beyond: hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Blood 2011; 118: 1452–1462.

    Article  CAS  PubMed  Google Scholar 

  11. Vander Lugt MT, Braun TM, Hanash S, Ritz J, Ho VT, Antin JH et al. ST2 as a marker for risk of therapy-resistant graft-versus-host disease and death. N Engl J Med 2013; 369: 529–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Demyanets S, Kaun C, Pentz R, Krychtiuk KA, Rauscher S, Pfaffenberger S et al. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol 2013; 60: 16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pascual-Figal DA, Januzzi JL . The biology of ST2: the International ST2 Consensus Panel. Am J Cardiol 2015; 115 (7 Suppl): 3B–7B.

    Article  CAS  PubMed  Google Scholar 

  14. Aldous SJ, Richards AM, Troughton R, Than M . ST2 has diagnostic and prognostic utility for all-cause mortality and heart failure in patients presenting to the emergency department with chest pain. J Card Fail 2012; 18: 304–310.

    Article  CAS  PubMed  Google Scholar 

  15. Reichenbach DK, Schwarze V, Matta BM, Tkachev V, Lieberknecht E, Liu Q et al. The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood 2015; 125: 3183–3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  PubMed  Google Scholar 

  17. Rovo A, Tichelli A, Late Effects Working Party of the European Group for B, Marrow T . Cardiovascular complications in long-term survivors after allogeneic hematopoietic stem cell transplantation. Semin Hematol 2012; 49: 25–34.

    Article  PubMed  Google Scholar 

  18. Cheuk DK, Chiang AK, Ha SY, Chan GC . Interventions for prophylaxis of hepatic veno-occlusive disease in people undergoing haematopoietic stem cell transplantation. Cochrane Database Syst Rev 2015; 5: CD009311.

    Google Scholar 

  19. Ho VT, Cutler C, Carter S, Martin P, Adams R, Horowitz M et al. Blood and marrow transplant clinical trials network toxicity committee consensus summary: thrombotic microangiopathy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2005; 11: 571–575.

    Article  PubMed  Google Scholar 

  20. Ruutu T, Barosi G, Benjamin RJ, Clark RE, George JN, Gratwohl A et al. Diagnostic criteria for hematopoietic stem cell transplant-associated microangiopathy: results of a consensus process by an International Working Group. Haematologica 2007; 92: 95–100.

    Article  PubMed  Google Scholar 

  21. National Kidney F. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39 (2 Suppl 1): S1–266.

    Google Scholar 

  22. Simon R, Makuch RW . A non-parametric graphical representation of the relationship between survival and the occurrence of an event: application to responder versus non-responder bias. Stat Med 1984; 3: 35–44.

    Article  CAS  PubMed  Google Scholar 

  23. Grambsch PM, Therneau TM, Fleming TR . Diagnostic plots to reveal functional form for covariates in multiplicative intensity models. Biometrics 1995; 51: 1469–1482.

    Article  CAS  PubMed  Google Scholar 

  24. Putter H, Fiocco M, Geskus RB . Tutorial in biostatistics: competing risks and multi-state models. Stat Med 2007; 26: 2389–2430.

    Article  CAS  PubMed  Google Scholar 

  25. Holländer N, Sauerbrei W, Schumacher M . Confidence intervals for the effect of a prognostic factor after selection of an 'optimal' cutpoint. Stat Med 2004; 23: 1701–1713.

    Article  PubMed  Google Scholar 

  26. Peyvandi F, Siboni SM, Lambertenghi Deliliers D, Lavoretano S, De Fazio N, Moroni B et al. Prospective study on the behaviour of the metalloprotease ADAMTS13 and of von Willebrand factor after bone marrow transplantation. Br J Haematol 2006; 134: 187–195.

    Article  CAS  PubMed  Google Scholar 

  27. Elsallabi O, Bhatt VR, Dhakal P, Foster KW, Tendulkar KK . Hematopoietic stem cell transplant-associated thrombotic microangiopathy. Clin Appl Thromb Hemost 2016; 22: 12–20.

    Article  CAS  PubMed  Google Scholar 

  28. Inamoto Y, Ito M, Suzuki R, Nishida T, Iida H, Kohno A et al. Clinicopathological manifestations and treatment of intestinal transplant-associated microangiopathy. Bone Marrow Transplant 2009; 44: 43–49.

    Article  CAS  PubMed  Google Scholar 

  29. Nishida T, Hamaguchi M, Hirabayashi N, Haneda M, Terakura S, Atsuta Y et al. Intestinal thrombotic microangiopathy after allogeneic bone marrow transplantation: a clinical imitator of acute enteric graft-versus-host disease. Bone Marrow Transplant 2004; 33: 1143–1150.

    Article  CAS  PubMed  Google Scholar 

  30. Chapin J, Shore T, Forsberg P, Desman G, Van Besien K, Laurence J . Hematopoietic transplant-associated thrombotic microangiopathy: case report and review of diagnosis and treatments. Clin Adv Hematol Oncol 2014; 12: 565–573.

    PubMed  Google Scholar 

  31. Batts ED, Lazarus HM . Diagnosis and treatment of transplantation-associated thrombotic microangiopathy: real progress or are we still waiting? Bone Marrow Transplant 2007; 40: 709–719.

    Article  CAS  PubMed  Google Scholar 

  32. Jodele S, Davies SM, Lane A, Khoury J, Dandoy C, Goebel J et al. Diagnostic and risk criteria for HSCT-associated thrombotic microangiopathy: a study in children and young adults. Blood 2014; 124: 645–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ito S, Barrett AJ . ST2: the biomarker at the heart of GVHD severity. Blood 2015; 125: 10–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N et al. IL-33 reduces the development of atherosclerosis. J Exp Med 2008; 205: 339–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sánchez-Más J, Lax A, Asensio-López Mdel C, Fernandez-Del Palacio MJ, Caballero L, Santarelli G et al. Modulation of IL-33/ST2 system in postinfarction heart failure: correlation with cardiac remodelling markers. Eur J Clin Invest 2014; 44: 643–651.

    Article  PubMed  Google Scholar 

  36. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem 2012; 58: 1673–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang TJ, Wollert KC, Larson MG, Coglianese E, McCabe EL, Cheng S et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation 2012; 126: 1596–1604.

    Article  CAS  PubMed  Google Scholar 

  38. Bartunek J, Delrue L, Van Durme F, Muller O, Casselman F, De Wiest B et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol 2008; 52: 2166–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ponce DM, Hilden P, Mumaw C, Devlin SM, Lubin M, Giralt S et al. High day 28 ST2 levels predict for acute graft-versus-host disease and transplant-related mortality after cord blood transplantation. Blood 2015; 125: 199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kwak B, Mulhaupt F, Myit S, Mach F . Statins as a newly recognized type of immunomodulator. Nat Med 2000; 6: 1399–1402.

    Article  CAS  PubMed  Google Scholar 

  41. Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E . Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1999; 100: 230–235.

    Article  CAS  PubMed  Google Scholar 

  42. Amuro H, Ito T, Miyamoto R, Sugimoto H, Torii Y, Son Y et al. Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, function as inhibitors of cellular and molecular components involved in type I interferon production. Arthritis Rheum 2010; 62: 2073–2085.

    CAS  PubMed  Google Scholar 

  43. Sato K, Nuki T, Gomita K, Weyand CM, Hagiwara N . Statins reduce endothelial cell apoptosis via inhibition of TRAIL expression on activated CD4 T cells in acute coronary syndrome. Atherosclerosis 2010; 213: 33–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang CY, Liu PY, Liao JK . Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med 2008; 14: 37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Casey RG, Joyce M, Roche-Nagle G, Chen G, Bouchier-Hayes D . Pravastatin modulates early diabetic nephropathy in an experimental model of diabetic renal disease. J Surg Res 2005; 123: 176–181.

    Article  CAS  PubMed  Google Scholar 

  46. Úriz M, Sáez E, Prieto J, Medina JF, Banales JM . Ursodeoxycholic acid is conjugated with taurine to promote secretin-stimulated biliary hydrocholeresis in the normal rat. PLoS ONE 2011; 6: e28717.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ruutu T, Juvonen E, Remberger M, Remes K, Volin L, Mattsson J et al. Improved survival with ursodeoxycholic acid prophylaxis in allogeneic stem cell transplantation: long-term follow-up of a randomized study. Biol Blood Marrow Transplant 2014; 20: 135–138.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michael Hess and Alexandra Hof for excellent technical assistance, Maria Gawlik for excellent study assistance, Claire Gustafson for the excellent linguistic review of the manuscript and the central laboratory of the University Hospital Heidelberg for measuring routine blood values.

Author contributions

M Zeisbrich, AR, KS, JB, AH, M Zeier and PD performed research and wrote the paper. NB and AB analyzed the data and wrote the paper. TL designed the study, performed research, analyzed the data and wrote the paper. M Zeisbrich designed this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Luft.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeisbrich, M., Becker, N., Benner, A. et al. Transplant-associated thrombotic microangiopathy is an endothelial complication associated with refractoriness of acute GvHD. Bone Marrow Transplant 52, 1399–1405 (2017). https://doi.org/10.1038/bmt.2017.119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2017.119

This article is cited by

Search

Quick links