Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Invariant natural killer T cells in hematopoietic stem cell transplantation: killer choice for natural suppression

Abstract

Invariant natural killer T cells (iNKTs) are innate-like lipid-reactive T lymphocytes that express an invariant T-cell receptor (TCR). Following engagement of the iTCR, iNKTs rapidly secrete copious amounts of Th1 and Th2 cytokines and promote the functions of several immune cells including NK, T, B and dendritic cells. Accordingly, iNKTs bridge the innate and adaptive immune responses and modulate susceptibility to autoimmunity, infection, allergy and cancer. Allogeneic hematopoietic stem cell transplantation (HSCT) is one of the most effective treatments for patients with hematologic malignancies. However, the beneficial graft versus leukemia (GvL) effect mediated by the conventional T cells contained within the allograft is often hampered by the concurrent occurrence of graft versus host disease (GvHD). Thus, developing strategies that can dissociate GvHD from GvL remain clinically challenging. Several preclinical and clinical studies demonstrate that iNKTs significantly attenuate GvHD without abrogating the GvL effect. Besides preserving the GvL activity of the donor graft, iNKTs themselves exert antitumor immune responses via direct and indirect mechanisms. Herein, we review the various mechanisms by which iNKTs provide antitumor immunity and discuss their roles in GvHD suppression. We also highlight the opportunities and obstacles in manipulating iNKTs for use in the cellular therapy of hematologic malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Godfrey DI, Stankovic S, Baxter AG . Raising the NKT cell family. Nat Immunol 2010; 11: 197–206.

    CAS  PubMed  Google Scholar 

  2. Godfrey DI, Berzins SP . Control points in NKT-cell development. Nat Rev Immunol 2007; 7: 505–518.

    CAS  PubMed  Google Scholar 

  3. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997; 278: 1626–1629.

    CAS  PubMed  Google Scholar 

  4. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L . NKT cells: what's in a name? Nat Rev Immunol 2004; 4: 231–237.

    CAS  PubMed  Google Scholar 

  5. Roy KC, Maricic I, Khurana A, Smith TR, Halder RC, Kumar V . Involvement of secretory and endosomal compartments in presentation of an exogenous self-glycolipid to type II NKT cells. J Immunol 2008; 180: 2942–2950.

    CAS  PubMed  Google Scholar 

  6. Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 2005; 202: 1279–1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M et al. NKT cells are phenotypically and functionally diverse. Eur J Immunol 1999; 29: 3768–3781.

    CAS  PubMed  Google Scholar 

  8. Gumperz JE, Miyake S, Yamamura T, Brenner MB . Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 2002; 195: 625–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee PT, Benlagha K, Teyton L, Bendelac A . Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 2002; 195: 637–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bendelac A, Savage PB, Teyton L . The biology of NKT cells. Annu Rev Immunol 2007; 25: 297–336.

    CAS  PubMed  Google Scholar 

  11. Das R, Sant'Angelo DB, Nichols KE . Transcriptional control of invariant NKT cell development. Immunol Rev 2010; 238: 195–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsuda JL, Zhang Q, Ndonye R, Richardson SK, Howell AR, Gapin L . T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood 2006; 107: 2797–2805.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Borowski C, Bendelac A . Signaling for NKT cell development: the SAP-FynT connection. J Exp Med 2005; 201: 833–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrara JL, Reddy P . Pathophysiology of graft-versus-host disease. Semin Hematol 2006; 43: 3–10.

    CAS  PubMed  Google Scholar 

  15. Zeng D, Lewis D, Dejbakhsh-Jones S, Lan F, Garcia-Ojeda M, Sibley R et al. Bone marrow NK1.1(-) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med 1999; 189: 1073–1081.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lan F, Zeng D, Higuchi M, Huie P, Higgins JP, Strober S . Predominance of NK1.1+TCR alpha beta+ or DX5+TCR alpha beta+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: "natural suppressor" cells. J Immunol 2001; 167: 2087–2096.

    CAS  PubMed  Google Scholar 

  17. Haraguchi K, Takahashi T, Matsumoto A, Asai T, Kanda Y, Kurokawa M et al. Host-residual invariant NK T cells attenuate graft-versus-host immunity. J Immunol 2005; 175: 1320–1328.

    CAS  PubMed  Google Scholar 

  18. Pillai AB, George TI, Dutt S, Strober S . Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 2009; 113: 4458–4467.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pillai AB, George TI, Dutt S, Teo P, Strober S . Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol 2007; 178: 6242–6251.

    CAS  PubMed  Google Scholar 

  20. Leveson-Gower DB, Olson JA, Sega EI, Luong RH, Baker J, Zeiser R et al. Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood 2011; 117: 3220–3229.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schneidawind D, Baker J, Pierini A, Buechele C, Luong RH, Meyer EH et al. Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality. Blood 2015; 125: 3491–3500.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneidawind D, Pierini A, Alvarez M, Pan Y, Baker J, Buechele C et al. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells. Blood 2014; 124: 3320–3328.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Terabe M, Berzofsky JA . The role of NKT cells in tumor immunity. Adv Cancer Res 2008; 101: 277–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Terabe M, Berzofsky JA . The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother 2014; 63: 199–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Swann JB, Uldrich AP, van Dommelen S, Sharkey J, Murray WK, Godfrey DI et al. Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 2009; 113: 6382–6385.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 2000; 191: 661–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Crowe NY, Smyth MJ, Godfrey DI . A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 2002; 196: 119–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakagawa R, Motoki K, Nakamura H, Ueno H, Iijima R, Yamauchi A et al. Antitumor activity of alpha-galactosylceramide, KRN7000, in mice with EL-4 hepatic metastasis and its cytokine production. Oncol Res 1998; 10: 561–568.

    CAS  PubMed  Google Scholar 

  29. Nakagawa R, Motoki K, Ueno H, Iijima R, Nakamura H, Kobayashi E et al. Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res 1998; 58: 1202–1207.

    CAS  PubMed  Google Scholar 

  30. Hayakawa Y, Rovero S, Forni G, Smyth MJ . Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA 2003; 100: 9464–9469.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bellone M, Ceccon M, Grioni M, Jachetti E, Calcinotto A, Napolitano A et al. iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS ONE 2010; 5: e8646.

    PubMed  PubMed Central  Google Scholar 

  32. O'Konek JJ, Illarionov P, Khursigara DS, Ambrosino E, Izhak L, Castillo BF 2nd et al. Mouse and human iNKT cell agonist beta-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 2011; 121: 683–694.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR . Type I NKT cells protect (and type II NKT cells suppress) the host's innate antitumor immune response to a B-cell lymphoma. Blood 2008; 111: 5637–5645.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuling H, Ruijing X, Li L, Xiang J, Rui Z, Yujuan W et al. EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res 2009; 69: 7935–7944.

    PubMed  Google Scholar 

  35. Watarai H, Fujii S, Yamada D, Rybouchkin A, Sakata S, Nagata Y et al. Murine induced pluripotent stem cells can be derived from and differentiate into natural killer T cells. J Clin Invest 2010; 120: 2610–2618.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB et al. Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol 2001; 167: 4046–4050.

    CAS  PubMed  Google Scholar 

  37. Molling JW, Kolgen W, van der Vliet HJ, Boomsma MF, Kruizenga H, Smorenburg CH et al. Peripheral blood IFN-gamma-secreting Valpha24+Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer 2005; 116: 87–93.

    CAS  PubMed  Google Scholar 

  38. Yoneda K, Morii T, Nieda M, Tsukaguchi N, Amano I, Tanaka H et al. The peripheral blood Valpha24+ NKT cell numbers decrease in patients with haematopoietic malignancy. Leuk Res 2005; 29: 147–152.

    CAS  PubMed  Google Scholar 

  39. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 2003; 197: 1667–1676.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Metelitsa LS, Wu HW, Wang H, Yang Y, Warsi Z, Asgharzadeh S et al. Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med 2004; 199: 1213–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H et al. Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 2005; 11: 7322–7327.

    CAS  PubMed  Google Scholar 

  42. Schneiders FL, de Bruin RC, van den Eertwegh AJ, Scheper RJ, Leemans CR, Brakenhoff RH et al. Circulating invariant natural killer T-cell numbers predict outcome in head and neck squamous cell carcinoma: updated analysis with 10-year follow-up. J Clin Oncol 2012; 30: 567–570.

    PubMed  Google Scholar 

  43. Ambrosino E, Terabe M, Halder RC, Peng J, Takaku S, Miyake S et al. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 2007; 179: 5126–5136.

    CAS  PubMed  Google Scholar 

  44. Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y et al. A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 2005; 202: 1627–1633.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Smyth MJ, Crowe NY, Godfrey DI . NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 2001; 13: 459–463.

    CAS  PubMed  Google Scholar 

  46. Swann J, Crowe NY, Hayakawa Y, Godfrey DI, Smyth MJ . Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunol Cell Biol 2004; 82: 323–331.

    CAS  PubMed  Google Scholar 

  47. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM . Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 2003; 198: 267–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dao T, Mehal WZ, Crispe IN . IL-18 augments perforin-dependent cytotoxicity of liver NK-T cells. J Immunol 1998; 161: 2217–2222.

    CAS  PubMed  Google Scholar 

  49. Kawamura T, Takeda K, Mendiratta SK, Kawamura H, Van Kaer L, Yagita H et al. Critical role of NK1+ T cells in IL-12-induced immune responses in vivo. J Immunol 1998; 160: 16–19.

    CAS  PubMed  Google Scholar 

  50. Nieda M, Nicol A, Koezuka Y, Kikuchi A, Lapteva N, Tanaka Y et al. TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 2001; 97: 2067–2074.

    CAS  PubMed  Google Scholar 

  51. Wingender G, Krebs P, Beutler B, Kronenberg M . Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J Immunol 2010; 185: 2721–2729.

    CAS  PubMed  Google Scholar 

  52. Bassiri H, Das R, Guan P, Barrett DM, Brennan PJ, Banerjee PP et al. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo. Cancer Immunol Res 2014; 2: 59–69.

    CAS  PubMed  Google Scholar 

  53. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Sato H et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Valpha14 NKT cells. Proc Natl Acad Sci USA 1998; 95: 5690–5693.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N et al. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res 1999; 59: 5102–5105.

    CAS  PubMed  Google Scholar 

  55. Das R, Bassiri H, Guan P, Wiener S, Banerjee PP, Zhong MC et al. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. Blood 2013; 121: 3386–3395.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dellabona P, Casorati G, de Lalla C, Montagna D, Locatelli F . On the use of donor-derived iNKT cells for adoptive immunotherapy to prevent leukemia recurrence in pediatric recipients of HLA haploidentical HSCT for hematological malignancies. Clin Immunol 2011; 140: 152–159.

    CAS  PubMed  Google Scholar 

  57. Kuylenstierna C, Bjorkstrom NK, Andersson SK, Sahlstrom P, Bosnjak L, Paquin-Proulx D et al. NKG2D performs two functions in invariant NKT cells: direct TCR-independent activation of NK-like cytolysis and co-stimulation of activation by CD1d. Eur J Immunol 2011; 41: 1913–1923.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Song L, Asgharzadeh S, Salo J, Engell K, Wu HW, Sposto R et al. Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 2009; 119: 1524–1536.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu D, Song L, Wei J, Courtney AN, Gao X, Marinova E et al. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. J Clin Invest 2012; 122: 2221–2233.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation and cancer. Cell 2010; 140: 883–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. De Santo C, Salio M, Masri SH, Lee LY, Dong T, Speak AO et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 2008; 118: 4036–4048.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 2010; 11: 1039–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M et al. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 2002; 8: 3702–3709.

    CAS  PubMed  Google Scholar 

  64. Kunii N, Horiguchi S, Motohashi S, Yamamoto H, Ueno N, Yamamoto S et al. Combination therapy of in vitro-expanded natural killer T cells and alpha-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci 2009; 100: 1092–1098.

    CAS  PubMed  Google Scholar 

  65. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 2005; 201: 1503–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M et al. A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 2005; 11: 1910–1917.

    CAS  PubMed  Google Scholar 

  67. Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K et al. A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 2009; 182: 2492–2501.

    CAS  PubMed  Google Scholar 

  68. Berzofsky JA, Terabe M . The contrasting roles of NKT cells in tumor immunity. Curr Mol Med 2009; 9: 667–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stirnemann K, Romero JF, Baldi L, Robert B, Cesson V, Besra GS et al. Sustained activation and tumor targeting of NKT cells using a CD1d-anti-HER2-scFv fusion protein induce antitumor effects in mice. J Clin Invest 2008; 118: 994–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Heczey A, Liu D, Tian G, Courtney AN, Wei J, Marinova E et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 2014; 124: 2824–2833.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schneidawind D, Pierini A, Negrin RS . Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood 2013; 122: 3116–3121.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lan F, Zeng D, Higuchi M, Higgins JP, Strober S . Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant 2003; 9: 355–363.

    PubMed  Google Scholar 

  73. Ellison CA, Taniguchi M, Fischer JM, Hayglass KT, Gartner JG . Graft-versus-host disease in recipients of grafts from natural killer T cell-deficient (Jalpha281(-/-)) donors. Immunology 2006; 119: 338–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim JH, Choi EY, Chung DH . Donor bone marrow type II (non-Valpha14Jalpha18 CD1d-restricted) NKT cells suppress graft-versus-host disease by producing IFN-gamma and IL-4. J Immunol 2007; 179: 6579–6587.

    CAS  PubMed  Google Scholar 

  75. Wang D, Yu Y, Haarberg K, Fu J, Kaosaard K, Nagaraj S et al. Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice. Biol Blood Marrow Transplant 2013; 19: 692–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Negrin RS . Role of regulatory T cell populations in controlling graft versus host disease. Best Pract Res Clin Haematol 2011; 24: 453–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kohrt HE, Pillai AB, Lowsky R, Strober S . NKT cells, Treg, and their interactions in bone marrow transplantation. Eur J Immunol 2010; 40: 1862–1869.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lowsky R, Takahashi T, Liu YP, Dejbakhsh-Jones S, Grumet FC, Shizuru JA et al. Protective conditioning for acute graft-versus-host disease. N Engl J Med 2005; 353: 1321–1331.

    CAS  PubMed  Google Scholar 

  79. Kohrt HE, Turnbull BB, Heydari K, Shizuru JA, Laport GG, Miklos DB et al. TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood 2009; 114: 1099–1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Haraguchi K, Takahashi T, Hiruma K, Kanda Y, Tanaka Y, Ogawa S et al. Recovery of Valpha24+ NKT cells after hematopoietic stem cell transplantation. Bone Marrow Transplant 2004; 34: 595–602.

    CAS  PubMed  Google Scholar 

  81. Rubio MT, Moreira-Teixeira L, Bachy E, Bouillie M, Milpied P, Coman T et al. Early posttransplantation donor-derived invariant natural killer T-cell recovery predicts the occurrence of acute graft-versus-host disease and overall survival. Blood 2012; 120: 2144–2154.

    CAS  PubMed  Google Scholar 

  82. Chaidos A, Patterson S, Szydlo R, Chaudhry MS, Dazzi F, Kanfer E et al. Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Blood 2012; 119: 5030–5036.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. de Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME, Sangalli LM et al. Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4- subset dynamics and correlates with remission state. J Immunol 2011; 186: 4490–4499.

    CAS  PubMed  Google Scholar 

  84. Rogers PR, Matsumoto A, Naidenko O, Kronenberg M, Mikayama T, Kato S . Expansion of human Valpha24+ NKT cells by repeated stimulation with KRN7000. J Immunol Methods 2004; 285: 197–214.

    CAS  PubMed  Google Scholar 

  85. Watarai H, Nakagawa R, Omori-Miyake M, Dashtsoodol N, Taniguchi M . Methods for detection, isolation and culture of mouse and human invariant NKT cells. Nat Protoc 2008; 3: 70–78.

    CAS  PubMed  Google Scholar 

  86. van der Vliet HJ, Nishi N, Koezuka Y, von Blomberg BM, van den Eertwegh AJ, Porcelli SA et al. Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 2001; 247: 61–72.

    CAS  PubMed  Google Scholar 

  87. Beziat V, Nguyen S, Exley M, Achour A, Simon T, Chevallier P et al. Shaping of iNKT cell repertoire after unrelated cord blood transplantation. Clin Immunol 2010; 135: 364–373.

    CAS  PubMed  Google Scholar 

  88. Patterson S, Chaidos A, Neville DC, Poggi A, Butters TD, Roberts IA et al. Human invariant NKT cells display alloreactivity instructed by invariant TCR-CD1d interaction and killer Ig receptors. J Immunol 2008; 181: 3268–3276.

    CAS  PubMed  Google Scholar 

  89. Hashimoto D, Asakura S, Miyake S, Yamamura T, Van Kaer L, Liu C et al. Stimulation of host NKT cells by synthetic glycolipid regulates acute graft-versus-host disease by inducing Th2 polarization of donor T cells. J Immunol 2005; 174: 551–556.

    CAS  PubMed  Google Scholar 

  90. Kuwatani M, Ikarashi Y, Iizuka A, Kawakami C, Quinn G, Heike Y et al. Modulation of acute graft-versus-host disease and chimerism after adoptive transfer of in vitro-expanded invariant Valpha14 natural killer T cells. Immunol Lett 2006; 106: 82–90.

    CAS  PubMed  Google Scholar 

  91. Yang J, Gao L, Liu Y, Ren Y, Xie R, Fan H et al. Adoptive therapy by transfusing expanded donor murine natural killer T cells can suppress acute graft-versus-host disease in allogeneic bone marrow transplantation. Transfusion 2010; 50: 407–417.

    CAS  PubMed  Google Scholar 

  92. Kuns RD, Morris ES, Macdonald KP, Markey KA, Morris HM, Raffelt NC et al. Invariant natural killer T cell-natural killer cell interactions dictate transplantation outcome after alpha-galactosylceramide administration. Blood 2009; 113: 5999–6010.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tamura Y, Teng A, Nozawa R, Takamoto-Matsui Y, Ishii Y . Characterization of the immature dendritic cells and cytotoxic cells both expanded after activation of invariant NKT cells with alpha-galactosylceramide in vivo. Biochem Biophys Res Commun 2008; 369: 485–492.

    CAS  PubMed  Google Scholar 

  94. Ishii Y, Nozawa R, Takamoto-Matsui Y, Teng A, Katagiri-Matsumura H, Nishikawa H et al. Alpha-galactosylceramide-driven immunotherapy for allergy. Front Biosci 2008; 13: 6214–6228.

    CAS  PubMed  Google Scholar 

  95. Duramad O, Laysang A, Li J, Ishii Y, Namikawa R . Pharmacologic expansion of donor-derived, naturally occurring CD4(+)Foxp3(+) regulatory T cells reduces acute graft-versus-host disease lethality without abrogating the graft-versus-leukemia effect in murine models. Biol Blood Marrow Transplant 2011; 17: 1154–1168.

    CAS  PubMed  Google Scholar 

  96. MacDonald KP, Rowe V, Filippich C, Thomas R, Clouston AD, Welply JK et al. Donor pretreatment with progenipoietin-1 is superior to granulocyte colony-stimulating factor in preventing graft-versus-host disease after allogeneic stem cell transplantation. Blood 2003; 101: 2033–2042.

    CAS  PubMed  Google Scholar 

  97. Morris ES, MacDonald KP, Rowe V, Banovic T, Kuns RD, Don AL et al. NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest 2005; 115: 3093–3103.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang DH, Liu N, Klimek V, Hassoun H, Mazumder A, Nimer SD et al. Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood 2006; 108: 618–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kneppers E, van der Holt B, Kersten MJ, Zweegman S, Meijer E, Huls G et al. Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 trial. Blood 2011; 118: 2413–2419.

    CAS  PubMed  Google Scholar 

  100. Sockel K, Bornhaeuser M, Mischak-Weissinger E, Trenschel R, Wermke M, Unzicker C et al. Lenalidomide maintenance after allogeneic HSCT seems to trigger acute graft-versus-host disease in patients with high-risk myelodysplastic syndromes or acute myeloid leukemia and del(5q): results of the LENAMAINT trial. Haematologica 2012; 97: e34–e35.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Alex’s Lemonade Stand Foundation, SAS Foundation for Cancer Research and Foerderer Award (RD), and Clinical Immunology Society & Talecris Biotherapeutics (HB) and the National Institutes of Health (RD, HB, KEN). We thank Dr Hariharan Subramanian for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Das.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, P., Bassiri, H., Patel, N. et al. Invariant natural killer T cells in hematopoietic stem cell transplantation: killer choice for natural suppression. Bone Marrow Transplant 51, 629–637 (2016). https://doi.org/10.1038/bmt.2015.335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2015.335

This article is cited by

Search

Quick links