Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allografting

Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib

Abstract

The Janus-activated kinase 1 (JAK1) and JAK2 inhibitor ruxolitinib is effective in decreasing symptomatic splenomegaly and myelofibrosis (MF)-related symptoms. However, allogeneic hematopoietic cell transplantation (HCT) remains the only curative option. We evaluated the impact of ruxolitinib on the outcome after HCT. A cohort of 14 patients (median age 58 years) received a subsequent graft from related (n=3) and unrelated (n=11) donors after a median exposure of 6.5 months to ruxolitinib. At HCT, MF risk for survival according to the International Prognostic Scoring System was intermediate-2 or high risk in 86% of patients. Under ruxolitinib, MF-related symptoms were ameliorated in 10 (71.4%) patients and the palpable spleen reduced by a median of 41% in 7 (64%) of 11 patients with splenomegaly. Engraftment occurred in 13 (93%) patients. Acute GvHD grade-III occurred in 2 (14%) patients. Median follow-up was 9 months. Survival, EFS and treatment-related mortality were 78.6, 64 and 7%, respectively. Through the anti-JAK-mediated reduction in both cytokines and splenomegaly as well as improvement in performance status, ruxolitinib might improve outcome after allogeneic HCT in patients with MF. The downregulation of inflammatory cytokines might have a beneficial impact on graft failure and acute GvHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from the European LeukemiaNet. JCO 2011; 29: 761–770.

    Article  Google Scholar 

  2. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.

    Article  CAS  PubMed  Google Scholar 

  4. Horan JT, Logan BR, Agovi-Johnson MA, Lazarus HM, Bacigalupo AA, Ballen KK et al. Reducing the risk for transplantation-related mortality after allogeneic hematopoietic cell transplantation: how much progress has been made? JCO 2011; 29: 805–813.

    Article  Google Scholar 

  5. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009; 113: 2895–2901.

    Article  CAS  PubMed  Google Scholar 

  6. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115: 1703–1708.

    Article  CAS  PubMed  Google Scholar 

  7. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. JCO 2011; 29: 392–397.

    Article  Google Scholar 

  8. Dupriez B, Morel P, Demory JL, Lai JL, Simon M, Plantier I et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood 1996; 88: 1013–1018.

    CAS  PubMed  Google Scholar 

  9. Caramazza D, Begna KH, Gangat N, Vaidya R, Siragusa S, Van Dyke DL et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia 2011; 25: 82–88.

    Article  CAS  PubMed  Google Scholar 

  10. Lange T, Edelmann A, Siebolts U, Kahl R, Nehring C, Jaekel N et al. JAK2 p.V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica 2013; 98: 722–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bryant E, Martin PJ . Documentation of engraftment and charcterization of chimerism following hematopoietic cell transplantation. In: Blume KG, Forman SJ, Appelbaum FR (eds). Thomas' Hematopoietic Cell Transplantation. Malden, MA, USA: Blackwell Publishing, 2004, pp 234–243.

    Google Scholar 

  12. Tefferi A, Pardanani A . Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc 2011; 86: 1188–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta V, Hari P, Hoffman R . Allogeneic hematopoieticncell transplantation for myelofibrosis in the era of JAK inhibitors. Blood 2012; 120: 1367–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kroeger N, Holler E, Kobbe G, Bornhauser M, Schwerdtfeger R, Baurmann H et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 2009; 114: 5264–5270.

    Article  CAS  Google Scholar 

  15. Alchalby H, Yunus DR, Zabelina T, Kobbe G, Holler E, Bornhauser M et al. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol 2012; 157: 75–85.

    Article  PubMed  Google Scholar 

  16. Ballen KK, Shrestha S, Sobocinski KA, Zhang MJ, Bashey A, Bolwell BJ et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant 2010; 16: 358–367.

    Article  PubMed  Google Scholar 

  17. Bacigalupo A, Soraru M, Dominietto A, Pozzi S, Geroldi S, Van Lint MT et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donortype. Bone Marrow Transplant 2010; 45: 458–463.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta V, Kroeger N, Aschan J, Xu W, Leber B, Dalley C et al. A retrospective comparison of conventional intensity conditioning and reduced-intensity conditioning for allogeneic hematopoietic cell transplantation in myelofibrosis. Bone Marrow Transplant 2009; 44: 317–320.

    Article  CAS  PubMed  Google Scholar 

  19. Kerbauy DM, Gooley TA, Sale GE, Flowers ME, Doney KC, Georges GE et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant 2007; 13: 355–365.

    Article  PubMed  Google Scholar 

  20. Stewart WA, Pearce R, Kirkland KE, Bloor A, Thomson K, Apperley J et al. The role of allogeneic SCT in primary myelofibrosis: a British Society for Blood and Marrow Transplantation study. Bone Marrow Transplant 2010; 45: 1587–1593.

    Article  CAS  PubMed  Google Scholar 

  21. Kroeger N, Alchalby H, Klyuchnikov E, Badbaran A, Hildebrandt Y, Ayuk F et al. JAK2-V617F-triggered preemptive and salvage adoptive immunotherapy with donor-lymphocyte infusion in patients with myelofibrosis after allogeneic stem cell transplantation. Blood 2009; 113: 1866–1868.

    Article  CAS  Google Scholar 

  22. Ferrara JL, Levine JE, Reddy P, Holler E . Graft versus-host disease. Lancet 2009; 373: 1550–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scott BL, Gooley TA, Sorror ML, Rezvani AR, Linenberger ML, Grim J et al. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood 2012; 119: 2657–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M . Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood 2008; 112: 2199–2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ranjan A, Penninga E, Jelsig AM, Hasselbalch HC, Bjerrum OW . Inheritance of the chronic myeloproliferative neoplasms. A systematic review. Clin Genet 2013; 83: 99–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H K Al-Ali.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaekel, N., Behre, G., Behning, A. et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant 49, 179–184 (2014). https://doi.org/10.1038/bmt.2013.173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2013.173

Keywords

This article is cited by

Search

Quick links