Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche

Abstract

Umbilical cord blood transplantation (UCBT) in adults is limited by the small number of primitive hematopoietic stem cells (HSC) in each graft, resulting in delayed engraftment post transplant, and both short- and long-term infectious complications. Initial efforts to expand UCB progenitors ex vivo have resulted in expansion of mature rather than immature HSC, confounded by the inability to accurately and reliably measure long-term reconstituting cells. Ex vivo expansion of UCB HSC has failed to improve engraftment because of resulting defects that promote apoptosis, disrupt marrow homing and initiate cell cycling. Here we discuss the future of ex vivo expansion, which we suggest will include the isolation of immature hematopoietic progenitors on the basis of function rather than surface phenotype and will employ both cytokines and stroma to maintain and expand the stem cell niche. We suggest that ex vivo expansion could be enhanced by manipulating newly discovered signaling pathways (Notch, Wnt, bone morphogenetic protein 4 and Tie2/angiopoietin-1) and intracellular mediators (phosphatase and tensin homolog and glycogen synthase kinase-3) in a manner that promotes HSC expansion with less differentiation. Improved methods for ex vivo expansion will make UCBT available to more patients, decrease engraftment times and allow more rapid immune reconstitution post transplant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Barker JN, Krepski TP, DeFor TE, Davies SM, Wagner JE, Weisdorf DJ . Searching for unrelated donor hematopoietic stem cells: availability and speed of umbilical cord blood versus bone marrow. Biol Blood Marrow Transplant 2002; 8: 257–260.

    PubMed  Google Scholar 

  2. Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med 2004; 351: 2265–2275.

    Article  CAS  PubMed  Google Scholar 

  3. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med 2004; 351: 2276–2285.

    CAS  PubMed  Google Scholar 

  4. Gluckman E, Rocha V, Arcese W, Michel G, Sanz G, Chan KW et al. Factors associated with outcomes of unrelated cord blood transplant: guidelines for donor choice. Exp Hematol 2004; 32: 397–407.

    Article  CAS  PubMed  Google Scholar 

  5. Migliaccio AR, Adamson JW, Stevens CE, Dobrila NL, Carrier CM, Rubinstein P . Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 2000; 96: 2717–2722.

    CAS  PubMed  Google Scholar 

  6. Gluckman E, Koegler G, Rocha V . Human leukocyte antigen matching in cord blood transplantation. Semin Hematol 2005; 42: 85–90.

    CAS  PubMed  Google Scholar 

  7. Bornstein R, Flores AI, Montalban MA, del Rey MJ, de la Serna J, Gilsanz F . A modified cord blood collection method achieves sufficient cell levels for transplantation in most adult patients. Stem Cells 2005; 23: 324–334.

    PubMed  Google Scholar 

  8. Rubinstein P, Dobrila L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci USA 1995; 92: 10119–10122.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rice A, Flemming C, Case J, Stevenson J, Gaudry L, Vowels M . Comparative study of the in vitro behavior of cord blood subpopulations after short-term cytokine exposure. Bone Marrow Transplant 1999; 23: 211–220.

    CAS  PubMed  Google Scholar 

  10. Caldwell J, Palsson BO, Locey B, Emerson SG . Culture perfusion schedules influence the metabolic activity and granulocyte–macrophage colony-stimulating factor production rates of human bone marrow stromal cells. J Cell Physiol 1991; 147: 344–353.

    CAS  PubMed  Google Scholar 

  11. Schwartz RM, Emerson SG, Clarke MF, Palsson BO . In vitro myelopoiesis stimulated by rapid medium exchange and supplementation with hematopoietic growth factors. Blood 1991; 78: 3155–3161.

    CAS  PubMed  Google Scholar 

  12. Haylock DN, To LB, Dowse TL, Juttner CA, Simmons PJ . Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 1992; 80: 1405–1412.

    CAS  PubMed  Google Scholar 

  13. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997; 94: 5320–5325.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Conneally E, Cashman J, Petzer A, Eaves C . Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc Natl Acad Sci USA 1997; 94: 9836–9841.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Piacibello W, Sanavio F, Severino A, Dane A, Gammaitoni L, Fagioli F et al. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 1999; 93: 3736–3749.

    CAS  PubMed  Google Scholar 

  16. Dao MA, Hashino K, Kato I, Nolta JA . Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. Blood 1998; 92: 4612–4621.

    CAS  PubMed  Google Scholar 

  17. Stiff P, Chen B, Franklin W, Oldenberg D, Hsi E, Bayer R et al. Autologous transplantation of ex vivo expanded bone marrow cells grown from small aliquots after high-dose chemotherapy for breast cancer. Blood 2000; 95: 2169–2174.

    CAS  PubMed  Google Scholar 

  18. Lewis ID, Almeida-Porada G, Du J, Lemischka IR, Moore KA, Zanjani ED et al. Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. Blood 2001; 97: 3441–3449.

    CAS  PubMed  Google Scholar 

  19. McNiece I, Kubegov D, Kerzic P, Shpall EJ, Gross S . Increased expansion and differentiation of cord blood products using a two-step expansion culture. Exp Hematol 2000; 28: 1181–1186.

    CAS  PubMed  Google Scholar 

  20. DiGiusto DL, Lee R, Moon J, Moss K, O'Toole T, Voytovich A et al. Hematopoietic potential of cryopreserved and ex vivo manipulated umbilical cord blood progenitor cells evaluated in vitro and in vivo. Blood 1996; 87: 1261–1271.

    CAS  PubMed  Google Scholar 

  21. Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 2002; 8: 368–376.

    PubMed  Google Scholar 

  22. Pecora AL, Stiff P, Jennis A, Goldberg S, Rosenbluth R, Price P et al. Prompt and durable engraftment in two older adult patients with high risk chronic myelogenous leukemia (CML) using ex vivo expanded and unmanipulated unrelated umbilical cord blood. Bone Marrow Transplant 2000; 25: 797–799.

    CAS  PubMed  Google Scholar 

  23. Koller MR, Manchel I, Maher RJ, Goltry KL, Armstrong RD, Smith AK . Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant 1998; 21: 653–663.

    CAS  PubMed  Google Scholar 

  24. Jaroscak J, Goltry K, Smith A, Waters-Pick B, Martin PL, Driscoll TA et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood 2003; 101: 5061–5067.

    CAS  PubMed  Google Scholar 

  25. Holyoake TL, Alcorn MJ, Richmond L, Farrell E, Pearson C, Green R et al. CD34 positive PBPC expanded ex vivo may not provide durable engraftment following myeloablative chemoradiotherapy regimens. Bone Marrow Transplant 1997; 19: 1095–1101.

    CAS  PubMed  Google Scholar 

  26. Coulombel L . Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 2004; 23: 7210–7222.

    CAS  PubMed  Google Scholar 

  27. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518.

    CAS  PubMed  Google Scholar 

  28. Bartolovic K, Balabanov S, Berner B, Buhring HJ, Komor M, Becker S et al. Clonal heterogeneity in growth kinetics of CD34+CD38− human cord blood cells in vitro is correlated with gene expression pattern and telomere length. Stem Cells 2005; 23: 946–957.

    CAS  PubMed  Google Scholar 

  29. Glimm H, Schmidt M, Fischer M, Schwarzwaelder K, Wissler M, Klingenberg S et al. Efficient marking of human cells with rapid but transient repopulating activity in autografted recipients. Blood 2005; 106: 893–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guenechea G, Segovia JC, Albella B, Lamana M, Ramirez M, Regidor C et al. Delayed engraftment of nonobese diabetic/severe combined immunodeficient mice transplanted with ex vivo-expanded huma CD34(+) cord blood cells. Blood 1999; 93: 1097–1105.

    CAS  PubMed  Google Scholar 

  31. McNiece IK, Almeida-Porada G, Shpall EJ, Zanjani E . Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential. Exp Hematol 2002; 30: 612–616.

    PubMed  Google Scholar 

  32. Domen J, Cheshier SH, Weissman IL . The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med 2000; 191: 253–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu B, Buckley SM, Lewis ID, Goldman AI, Wagner JE, van der Loo JC . Homing defect of cultured human hematopoietic cells in the NOD/SCID mouse is mediated by Fas/CD95. Exp Hematol 2003; 31: 824–832.

    CAS  PubMed  Google Scholar 

  34. Wang LS, Liu HJ, Xia ZB, Broxmeyer HE, Lu L . Expression and activation of caspase-3/CPP32 in CD34(+) cord blood cells is linked to apoptosis after growth factor withdrawal. Exp Hematol 2000; 28: 907–915.

    CAS  PubMed  Google Scholar 

  35. Orschell-Traycoff CM, Hiatt K, Dagher RN, Rice S, Yoder MC, Srour EF . Homing and engraftment potential of Sca-1(+)lin(−) cells fractionated on the basis of adhesion molecule expression and position in cell cycle. Blood 2000; 96: 1380–1387.

    CAS  PubMed  Google Scholar 

  36. Ramirez M, Segovia JC, Benet I, Arbona C, Guenechea G, Blaya C et al. Ex vivo expansion of umbilical cord blood (UCB) CD34(+) cells alters the expression and function of alpha 4 beta 1 and alpha 5 beta 1 integrins. Br J Haematol 2001; 115: 213–221.

    CAS  PubMed  Google Scholar 

  37. Zhai QL, Qiu LG, Li Q, Meng HX, Han JL, Herzig RH et al. Short-term ex vivo expansion sustains the homing-related properties of umbilical cord blood hematopoietic stem and progenitor cells. Haematologica 2004; 89: 265–273.

    CAS  PubMed  Google Scholar 

  38. Giet O, Huygen S, Beguin Y, Gothot A . Cell cycle activation of hematopoietic progenitor cells increases very late antigen-5-mediated adhesion to fibronectin. Exp Hematol 2001; 29: 515–524.

    CAS  PubMed  Google Scholar 

  39. Glimm H, Oh IH, Eaves CJ . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood 2000; 96: 4185–4193.

    CAS  PubMed  Google Scholar 

  40. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    CAS  PubMed  Google Scholar 

  41. Cashman J, Bockhold K, Hogge DE, Eaves AC, Eaves CJ . Sustained proliferation, multi-lineage differentiation and maintenance of primitive human haemopoietic cells in NOD/SCID mice transplanted with human cord blood. Br J Haematol 1997; 98: 1026–1036.

    CAS  PubMed  Google Scholar 

  42. Ballen K, Becker PS, Greiner D, Valinski H, Shearin D, Berrios V et al. Effect of ex vivo cytokine treatment on human cord blood engraftment in NOD-scid mice. Br J Haematol 2000; 108: 629–640.

    CAS  PubMed  Google Scholar 

  43. Horn PA, Thomasson BM, Wood BL, Andrews RG, Morris JC, Kiem HP . Distinct hematopoietic stem/progenitor cell populations are responsible for repopulating NOD/SCID mice compared with nonhuman primates. Blood 2003; 102: 4329–4335.

    CAS  PubMed  Google Scholar 

  44. Danet GH, Lee HW, Luongo JL, Simon MC, Bonnet DA . Dissociation between stem cell phenotype and NOD/SCID repopulating activity in human peripheral blood CD34(+) cells after ex vivo expansion. Exp Hematol 2001; 29: 1465–1473.

    CAS  PubMed  Google Scholar 

  45. Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE . Expansion of human cord blood CD34(+)CD38(−) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood 2000; 95: 102–110.

    CAS  PubMed  Google Scholar 

  46. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34− cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 1998; 26: 353–360.

    CAS  PubMed  Google Scholar 

  47. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells. Blood 1999; 94: 2548–2554.

    CAS  PubMed  Google Scholar 

  48. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    CAS  PubMed  Google Scholar 

  49. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M . Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 2000; 95: 2813–2820.

    CAS  PubMed  Google Scholar 

  50. Bonanno G, Perillo A, Rutella S, De Ritis DG, Mariotti A, Marone M et al. Clinical isolation and functional characterization of cord blood CD133+ hematopoietic progenitor cells. Transfusion 2004; 44: 1087–1097.

    PubMed  Google Scholar 

  51. Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 2004; 104: 1648–1655.

    CAS  PubMed  Google Scholar 

  52. von Drygalski A, Savatski L, Eastwood D, Klein J, Adamson JW . The rate of marrow recovery and extent of donor engraftment following transplantation of ex vivo-expanded bone marrow cells are independently influenced by the cytokines used for expansion. Stem Cells Dev 2005; 14: 564–575.

    CAS  PubMed  Google Scholar 

  53. Zheng Y, Sun A, Han ZC . Stem cell factor improves SCID-repopulating activity of human umbilical cord blood-derived hematopoietic stem/progenitor cells in xenotransplanted NOD/SCID mouse model. Bone Marrow Transplant 2005; 35: 137–142.

    CAS  PubMed  Google Scholar 

  54. De Felice L, Di Pucchio T, Breccia M, Agostini F, Mascolo MG, Guglielmi C et al. Flt3L enhances the early stem cell compartment after ex vivo amplification of umbilical cord blood CD34+ cells. Bone Marrow Transplant 1998; 22 (Suppl 1): S66–S67.

    PubMed  Google Scholar 

  55. De Felice L, Di Pucchio T, Mascolo MG, Agostini F, Breccia M, Guglielmi C et al. Flt3LP3 induces the ex-vivo amplification of umbilical cord blood committed progenitors and early stem cells in short-term cultures. Br J Haematol 1999; 106: 133–141.

    CAS  PubMed  Google Scholar 

  56. Solanilla A, Grosset C, Duchez P, Legembre P, Pitard V, Dupouy M et al. Flt3-ligand induces adhesion of haematopoietic progenitor cells via a very late antigen (VLA)-4- and VLA-5-dependent mechanism. Br J Haematol 2003; 120: 782–786.

    CAS  PubMed  Google Scholar 

  57. Jiang Y, Prosper F, Verfaillie CM . Opposing effects of engagement of integrins and stimulation of cytokine receptors on cell cycle progression of normal human hematopoietic progenitors. Blood 2000; 95: 846–854.

    CAS  PubMed  Google Scholar 

  58. Papayannopoulou T, Priestley GV, Nakamoto B . Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 1998; 91: 2231–2239.

    CAS  PubMed  Google Scholar 

  59. Levac K, Karanu F, Bhatia M . Identification of growth factor conditions that reduce ex vivo cord blood progenitor expansion but do not alter human repopulating cell function in vivo. Haematologica 2005; 90: 166–172.

    CAS  PubMed  Google Scholar 

  60. Murray LJ, Young JC, Osborne LJ, Luens KM, Scollay R, Hill BL . Thrombopoietin, flt3, and kit ligands together suppress apoptosis of human mobilized CD34+ cells and recruit primitive CD34+ Thy-1+ cells into rapid division. Exp Hematol 1999; 27: 1019–1028.

    CAS  PubMed  Google Scholar 

  61. Gammaitoni L, Weisel KC, Gunetti M, Wu KD, Bruno S, Pinelli S et al. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 2004; 103: 4440–4448.

    CAS  PubMed  Google Scholar 

  62. Schofield R . The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7–25.

    CAS  PubMed  Google Scholar 

  63. Verfaillie CM . Hematopoietic stem cells for transplantation. Nat Immunol 2002; 3: 314–317.

    CAS  PubMed  Google Scholar 

  64. Chute JP, Muramoto G, Fung J, Oxford C . Quantitative analysis demonstrates expansion of SCID-repopulating cells and increased engraftment capacity in human cord blood following ex vivo culture with human brain endothelial cells. Stem Cells 2004; 22: 202–215.

    PubMed  Google Scholar 

  65. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL . Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176: 57–66.

    CAS  PubMed  Google Scholar 

  66. Robinson SN, Ng J, Niu T, Yang H, McMannis JD, Karandish S et al. Superior ex vivo cord blood TNC and hematopoietic progenitor cell expansion following co-culture with bone marrow-derived mesenchymal stem cells. Biol Blood Marrow Transplant 2006; 12 (Suppl 1): 132.

    Google Scholar 

  67. Kim DW, Chung YJ, Kim TG, Kim YL, Oh IH . Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood 2004; 103: 1941–1948.

    CAS  PubMed  Google Scholar 

  68. in 't Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2003; 31: 881–889.

    PubMed  Google Scholar 

  69. Noort WA, Kruisselbrink AB, in't Anker PS, Kruger M, van Bezooijen RL, de Paus RA et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2002; 30: 870–878.

    PubMed  Google Scholar 

  70. Rasmusson I, Ringden O, Sundberg B, Le Blanc K . Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76: 1208–1213.

    PubMed  Google Scholar 

  71. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    PubMed  Google Scholar 

  72. McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ . Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 2004; 6: 311–317.

    CAS  PubMed  Google Scholar 

  73. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    CAS  PubMed  Google Scholar 

  74. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    CAS  PubMed  Google Scholar 

  75. Schroeter EH, Kisslinger JA, Kopan R . Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998; 393: 382–386.

    CAS  PubMed  Google Scholar 

  76. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD . MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 2000; 26: 484–489.

    CAS  PubMed  Google Scholar 

  77. Zhou S, Hayward SD . Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol Cell Biol 2001; 21: 6222–6232.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 1998; 91: 4084–4091.

    CAS  PubMed  Google Scholar 

  79. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 2000; 192: 1365–1372.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ohishi K, Varnum-Finney B, Bernstein ID . Delta-1 enhances marrow and thymus repopulating ability of human CD34+CD38− cord blood cells. J Clin Invest 2002; 110: 1165–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Varnum-Finney B, Brashem-Stein C, Bernstein ID . Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 2003; 101: 1784–1789.

    CAS  PubMed  Google Scholar 

  82. Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID . Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 2005; 106: 2693–2699.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jaleco AC, Neves H, Hooijberg E, Gameiro P, Clode N, Haury M et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 2001; 194: 991–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Neves H, Weerkamp F, Gomes AC, Naber BAE, Gameiro P, Becker JD et al. Effects of Delta1 and Jagged1 on early human hematopoiesis: correlation with expression of Notch signaling-related genes in CD34+ cells. Stem Cells 2006; 24: 1328–1337.

    CAS  PubMed  Google Scholar 

  85. Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W . A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 1997; 89: 3624–3635.

    CAS  PubMed  Google Scholar 

  86. Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R . Role of members of the Wnt gene family in human hematopoiesis. Blood 1998; 92: 3189–3202.

    CAS  PubMed  Google Scholar 

  87. Murdoch B, Chadwick K, Martin M, Shojaei F, Shah KV, Gallacher L et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA 2003; 100: 3422–3427.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    CAS  PubMed  Google Scholar 

  89. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    CAS  PubMed  Google Scholar 

  90. Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML . Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 1992; 7: 1471–1480.

    CAS  PubMed  Google Scholar 

  91. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    CAS  PubMed  Google Scholar 

  92. Ying QL, Nichols J, Chambers I, Smith A . BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003; 115: 281–292.

    CAS  PubMed  Google Scholar 

  93. Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 2002; 20: 1261–1264.

    CAS  PubMed  Google Scholar 

  94. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    CAS  PubMed  Google Scholar 

  95. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    CAS  PubMed  Google Scholar 

  96. Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 2004; 21: 843–851.

    CAS  PubMed  Google Scholar 

  97. Guney I, Wu S, Sedivy JM . Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16INK4a. Proc Natl Acad Sci USA 2006; 103: 3645–3650.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lawrence HJ, Largman C . Homeobox genes in normal hematopoiesis and leukemia. Blood 1992; 80: 2445–2453.

    CAS  PubMed  Google Scholar 

  99. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994; 91: 12223–12227.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pineault N, Helgason CD, Lawrence HJ, Humphries RK . Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002; 30: 49–57.

    CAS  PubMed  Google Scholar 

  101. Bjornsson JM, Larsson N, Brun AC, Magnusson M, Andersson E, Lundstrom P et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol 2003; 23: 3872–3883.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Brun AC, Bjornsson JM, Magnusson M, Larsson N, Leveen P, Ehinger M et al. Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 2004; 103: 4126–4133.

    CAS  PubMed  Google Scholar 

  103. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9: 1753–1765.

    CAS  PubMed  Google Scholar 

  104. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109: 39–45.

    CAS  PubMed  Google Scholar 

  105. Amsellem S, Pflumio F, Bardinet D, Izac B, Charneau P, Romeo PH et al. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med 2003; 9: 1423–1427.

    CAS  PubMed  Google Scholar 

  106. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    CAS  PubMed  Google Scholar 

  107. Eberharter A, Becker PB . Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 2002; 3: 224–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Michalowsky LA, Jones PA . Differential nuclear protein binding to 5-azacytosine-containing DNA as a potential mechanism for 5-aza-2′-deoxycytidine resistance. Mol Cell Biol 1987; 7: 3076–3083.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pietrobono R, Pomponi MG, Tabolacci E, Oostra B, Chiurazzi P, Neri G . Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res 2002; 30: 3278–3285.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Milhem M, Mahmud N, Lavelle D, Araki H, DeSimone J, Saunthararajah Y et al. Modification of hematopoietic stem cell fate by 5aza 2′deoxycytidine and trichostatin A. Blood 2004; 103: 4102–4110.

    CAS  PubMed  Google Scholar 

  111. Araki H, Mahmud N, Milhem M, Nunez R, Xu M, Beam CA et al. Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Exp Hematol 2006; 34: 140–149.

    CAS  PubMed  Google Scholar 

  112. Peled T, Mandel J, Goudsmid RN, Landor C, Hasson N, Harati D et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 2004; 6: 344–355.

    CAS  PubMed  Google Scholar 

  113. Peled T, Nagler A, Treves AJ . Preferential expansion of cord blood early progenitors enabled by linear polyamine copper chelators. Biol Blood Marrow Transplant 2003; 9: 129–130.

    Google Scholar 

  114. Peled T, Landau E, Prus E, Treves AJ, Nagler A, Fibach E . Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. Br J Haematol 2002; 116: 655–661.

    CAS  PubMed  Google Scholar 

  115. Shpall EJ, de Lima M, McMannis JD, Robinson S, McNiece IK, Champlin RE . Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 2005; 11: 932.

    Google Scholar 

  116. Collins SJ . The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002; 16: 1896–1905.

    CAS  PubMed  Google Scholar 

  117. Purton LE, Bernstein ID, Collins SJ . All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood 2000; 95: 470–477.

    CAS  PubMed  Google Scholar 

  118. Ghatpande S, Ghatpande A, Sher J, Zile MH, Evans T . Retinoid signaling regulates primitive (yolk sac) hematopoiesis. Blood 2002; 99: 2379–2386.

    CAS  PubMed  Google Scholar 

  119. Leung AY, Verfaillie CM . All-trans retinoic acid (ATRA) enhances maintenance of primitive human hematopoietic progenitors and skews them towards myeloid differentiation in a stroma-noncontact culture system. Exp Hematol 2005; 33: 422–427.

    CAS  PubMed  Google Scholar 

  120. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH . Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004; 10: 55–63.

    CAS  PubMed  Google Scholar 

  121. Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M . Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 2006; 12: 89–98.

    CAS  PubMed  Google Scholar 

  122. Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001; 344: 1815–1822.

    CAS  PubMed  Google Scholar 

  123. Sanz GF, Saavedra S, Planelles D, Senent L, Cervera J, Barragan E et al. Standardized, unrelated donor cord blood transplantation in adults with hematologic malignancies. Blood 2001; 98: 2332–2338.

    CAS  PubMed  Google Scholar 

  124. Rocha V, Gluckman E . Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant 2006; 12 (1 Suppl 1): 34–41.

    PubMed  Google Scholar 

  125. Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP . The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol 2000; 18: 529–560.

    CAS  PubMed  Google Scholar 

  126. Kovarik J, Siegrist CA . Immunity in early life. Immunol Today 1998; 19: 150–152.

    CAS  PubMed  Google Scholar 

  127. Cairo MS . Therapeutic implications of dysregulated colony-stimulating factor expression in neonates. Blood 1993; 82: 2269–2272.

    CAS  PubMed  Google Scholar 

  128. Chang M, Suen Y, Lee SM, Baly D, Buzby JS, Knoppel E et al. Transforming growth factor-beta 1, macrophage inflammatory protein-1 alpha, and interleukin-8 gene expression is lower in stimulated human neonatal compared with adult mononuclear cells. Blood 1994; 84: 118–124.

    CAS  PubMed  Google Scholar 

  129. Suen Y, Lee SM, Schreurs J, Knoppel E, Cairo MS . Decreased macrophage colony-stimulating factor mRNA expression from activated cord versus adult mononuclear cells: altered posttranscriptional stability. Blood 1994; 84: 4269–4277.

    CAS  PubMed  Google Scholar 

  130. Hassan J, Reen DJ . Reduced primary antigen-specific T-cell precursor frequencies in neonates is associated with deficient interleukin-2 production. Immunology 1996; 87: 604–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee SM, Suen Y, Chang L, Bruner V, Qian J, Indes J et al. Decreased interleukin-12 (IL-12) from activated cord versus adult peripheral blood mononuclear cells and upregulation of interferon-gamma, natural killer, and lymphokine-activated killer activity by IL-12 in cord blood mononuclear cells. Blood 1996; 88: 945–954.

    CAS  PubMed  Google Scholar 

  132. Goriely S, Vincart B, Stordeur P, Vekemans J, Willems F, Goldman M et al. Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol 2001; 166: 2141–2146.

    CAS  PubMed  Google Scholar 

  133. Kaminski BA, Kadereit S, Miller RE, Leahy P, Stein KR, Topa DA et al. Reduced expression of NFAT-associated genes in UCB versus adult CD4+ T lymphocytes during primary stimulation. Blood 2003; 102: 4608–4617.

    CAS  PubMed  Google Scholar 

  134. Risdon G, Gaddy J, Horie M, Broxmeyer HE . Alloantigen priming induces a state of unresponsiveness in human umbilical cord blood T cells. Proc Natl Acad Sci USA 1995; 92: 2413–2417.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rosenzwajg M, Giarratana M-C, Gluckman J-C, Douay L, Kobari L . Incidence of ex vivo expansion on the capacity of cord blood graft to generate immune cells: rational for co-infusion of expanded and non expanded fractions? Blood (ASH Annual Meeting Abstracts) 2004; 104: 407.

    Google Scholar 

  136. Sakaguchi S . Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345–352.

    CAS  PubMed  Google Scholar 

  137. Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005; 436: 1181–1185.

    CAS  PubMed  Google Scholar 

  138. Chang CC, Satwani P, Oberfield N, Vlad G, Simpson LL, Cairo MS . Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naive and antigenic-specific cord blood Treg cells. Exp Hematol 2005; 33: 1508–1520.

    CAS  PubMed  Google Scholar 

  139. Wing K, Larsson P, Sandstrom K, Lundin SB, Suri-Payer E, Rudin A . CD4+ CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunology 2005; 115: 516–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Storek J, Joseph A, Dawson MA, Douek DC, Storer B, Maloney DG . Factors influencing T-lymphopoiesis after allogeneic hematopoietic cell transplantation. Transplantation 2002; 73: 1154–1158.

    PubMed  Google Scholar 

  141. Weinberg K, Blazar BR, Wagner JE, Agura E, Hill BJ, Smogorzewska M et al. Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood 2001; 97: 1458–1466.

    CAS  PubMed  Google Scholar 

  142. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T . Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 2006; 441: 992–996.

    CAS  PubMed  Google Scholar 

  143. Ortman CL, Dittmar KA, Witte PL, Le PT . Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 2002; 14: 813–822.

    CAS  PubMed  Google Scholar 

  144. Haddad R, Guardiola P, Izac B, Thibault C, Radich J, Delezoide AL et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 2004; 104: 3918–3926.

    CAS  PubMed  Google Scholar 

  145. Hao QL, Zhu J, Price MA, Payne KJ, Barsky LW, Crooks GM . Identification of a novel, human multilymphoid progenitor in cord blood. Blood 2001; 97: 3683–3690.

    CAS  PubMed  Google Scholar 

  146. Zuniga-Pflucker JC . T-cell development made simple. Nat Rev Immunol 2004; 4: 67–72.

    CAS  PubMed  Google Scholar 

  147. Schmitt TM, Ciofani M, Petrie HT, Zuniga-Pflucker JC . Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 2004; 200: 469–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Schmitt TM, Zuniga-Pflucker JC . Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 2002; 17: 749–756.

    CAS  PubMed  Google Scholar 

  149. Robinson KL, Ayello J, Hughes R, van de Ven C, Issitt L, Kurtzberg J et al. Ex vivo expansion, maturation, and activation of umbilical cord blood-derived T lymphocytes with IL-2, IL-12, anti-CD3, and IL-7. Potential for adoptive cellular immunotherapy post-umbilical cord blood transplantation. Exp Hematol 2002; 30: 245–251.

    CAS  PubMed  Google Scholar 

  150. Ballen KK, Spitzer TR, Yeap B, Steve M, Dey BR, Attar E et al. Excellent disease-free survival after double cord blood transplantation using a reduced intensity chemotherapy only conditioning regimen in a diverse adult population. ASH Annual Meeting Abstracts 2005; 106: 2048.

    Google Scholar 

  151. Serrano LM, Pfeiffer T, Olivares S, Numbenjapon T, Bennitt J, Kim D et al. Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood 2006; 107: 2643–2652.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Rieber AG, Parmar S, Robinson SN, Decker W, Xing D, Komanduri KV et al. Optimization of expansion of cord blood T cells with anti-CD3/anti-CD28 coated beads. Biol Blood Marrow Transplant 2006; 12 (2 Suppl 1): 81–82.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Illinois Regenerative Medicine Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Stiff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmeister, C., Zhang, J., Knight, K. et al. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 39, 11–23 (2007). https://doi.org/10.1038/sj.bmt.1705538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705538

Keywords

This article is cited by

Search

Quick links