Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Regulating regulatory T cells

Abstract

Regulatory T cells (Tregs) are a specialized subpopulation of T cells that act to suppress activation of other immune cells and thereby maintain immune system homeostasis, self-tolerance as well as control excessive response to foreign antigens. The mere concept of Tregs was the subject of significant controversy among immunologists for many years owing to the paucity of reliable markers for defining these cells and the ambiguity of the nature and molecular basis of suppressive phenomena. However, recent advances in the molecular characterization of this cell population have firmly established their existence and their vital role in the vertebrate immune system. Of interest, accumulating evidence from both humans and experimental animal models has implicated the involvement of Tregs in the development of graft-versus-host disease (GVHD). The demonstration that Tregs could separate GVHD from graft-versus-tumor (GVT) activity suggests that their immunosuppressive potential could be manipulated to reduce GVHD without detrimental consequence on GVT effect. Although a variety of T lymphocytes with suppressive capabilities have been reported, the two best-characterized subsets are the naturally arising, intrathymic-generated Tregs (natural Tregs) and the peripherally generated, inducible Tregs (inducible Tregs). This review summarizes our current knowledge of the generation, function and regulation of these two populations of Tregs during an immune response. Their role in the development of GVHD and their therapeutic potential for the prevention and treatment of GVHD will also be described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I et al. Thymic selection revisited: how essential is it? Immunol Rev 2003; 191: 62–78 (review).

    Article  CAS  PubMed  Google Scholar 

  2. Arnold B, Schoenrich G, Haemmerling GJ . Multiple levels of peripheral tolerance. Immunol Today 1993; 14: 12–14.

    Article  CAS  PubMed  Google Scholar 

  3. Van Parijs L, Abbas AK . Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 1998; 280: 243–248.

    Article  CAS  PubMed  Google Scholar 

  4. Miller JF, Heath WR . Self-ignorance in the peripheral T-cell pool. Immunol Rev 1993; 133: 131–150.

    Article  CAS  PubMed  Google Scholar 

  5. Weigle WO . Analysis of autoimmunity through experimental models of thyroiditis and allergic encephalomyelitis. Adv Immunol 1980; 30: 159–273.

    Article  CAS  PubMed  Google Scholar 

  6. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA . T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990; 346: 183–187.

    Article  CAS  PubMed  Google Scholar 

  7. Belkaid Y, Rouse BT . Natural regulatory T cells in infectious disease. Nat Immunol 2005; 6: 353–360 (review).

    Article  CAS  PubMed  Google Scholar 

  8. Joffre O, van Meerwijk JPM . CD4+CD25+ regulatory T lymphocytes in bone marrow transplantation. Semin Immunol 2006; 18: 128–135 (review).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fehervari Z, Sakaguchi S . CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209–1217 (review).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL . Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237–1240.

    Article  CAS  PubMed  Google Scholar 

  11. Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C, Savelkoul HF et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 2002; 195: 603–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levings MK, Sangregorio R, Galbiati F, Squadrone S, de Waal Malefyt R, Roncarolo MG . IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol 2001; 166: 5530–5539.

    Article  CAS  PubMed  Google Scholar 

  13. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389: 737–742.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou J, Carr RI, Liwski RS, Stadnyk AW, Lee TD . Oral exposure to alloantigen generates intragraft CD8+ regulatory cells. J Immunol 2001; 167: 107–113.

    Article  CAS  PubMed  Google Scholar 

  15. Gilliet M, Liu YJ . Generation of human CD8T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002; 195: 695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seino KI, Fukao K, Muramoto K, Yanagisawa K, Takada Y, Kakuta S et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci USA 2001; 98: 2577–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ziegler SF . FOXP3: of mice and men. Annu Rev Immunol 2006; 24: 209–226 (review).

    Article  CAS  PubMed  Google Scholar 

  18. Seidel MG, Ernst U, Printz D, Juergens B, Pichler J, Attarbaschi A et al. Expression of the putatively regulatory T-cell marker FOXP3 by CD4(+)CD25+ T cells after pediatric hematopoietic stem cell transplantation. Haematologica 2006; 91: 566–569.

    CAS  PubMed  Google Scholar 

  19. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4(+) T reg cells. J Exp Med 2006; 203: 1701–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006; 203: 1693–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fuller MJ, Hildeman DA, Sabbaj S, Gaddis DE, Tebo AE, Shang L et al. Cutting edge: emergence of CD127high functionally competent memory T cells is compromised by high viral loads and inadequate T cell help. J Immunol 2005; 174: 5926–5930.

    Article  CAS  PubMed  Google Scholar 

  22. Boettler T, Panther E, Bengsch B, Nazarova N, Spangenberg HC, Blum HE et al. Expression of the interleukin-7 receptor alpha chain (CD127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection. J Virol 2006; 80: 3532–3540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci USA 2004; 101: 5610–5615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Apostolou I, von Boehmer H . In vivo instruction of suppressor commitment in naïve T cells. J Exp Med 2004; 199: 1401–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al. Conversion of peripheral CD4+CD25- naïve T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198: 1875–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bensinger SJ, Bandeira A, Jordan MS, Caton AJ, Laufer TM . Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells. J Exp Med 2001; 194: 427–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Apostolou I, Sarukhan A, Klein L, von Boehmer H . Origin of regulatory T cells with known specificity for antigen. Nat Immunol 2002; 3: 756–763.

    Article  CAS  PubMed  Google Scholar 

  28. Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2: 301–306.

    Article  CAS  PubMed  Google Scholar 

  29. Walker LS, Chodos A, Eggena M, Dooms H, Abbas AK . Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J Exp Med 2003; 198: 249–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Santen HM, Benoist C, Mathis D . Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med 2004; 200: 1221–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Romagnoli P, Hudrisier D, van Meerwijk JP . Molecular signature of recent thymic selection events on effector and regulatory CD4+ T lymphocytes. J Immunol 2005; 175: 5751–5758.

    Article  CAS  PubMed  Google Scholar 

  32. Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Bandeira A . On the ontogeny and physiology of regulatory T cells. Immunol Rev 2001; 182: 5–17 (review).

    Article  CAS  PubMed  Google Scholar 

  33. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH . Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192: 1213–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H . Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003; 18: 605–617.

    Article  CAS  PubMed  Google Scholar 

  35. Lavelle EC, McNeela E, Armstrong ME, Leavy O, Higgins SC, Mills KH . Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J Immunol 2003; 171: 2384–2392.

    Article  CAS  PubMed  Google Scholar 

  36. Honey K, Cobbold SP, Waldmann H . CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression. J Immunol 1999; 163: 4805–4810.

    CAS  PubMed  Google Scholar 

  37. Davies JD, Leong LY, Mellor A, Cobbold SP, Waldmann H . T cell suppression in transplantation tolerance through linked recognition. J Immunol 1996; 156: 3602–3607.

    CAS  PubMed  Google Scholar 

  38. Albert MH, Liu Y, Anasetti C, Yu XZ . Antigen-dependent suppression of alloresponses by Foxp3-induced regulatory T cells in transplantation. Eur J Immunol 2005; 35: 2598–2607.

    Article  CAS  PubMed  Google Scholar 

  39. Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon BL et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 2003; 112: 1688–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hesse M, Piccirillo CA, Belkaid Y, Prufer J, Mentink-Kane M, Leusink M et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J Immunol 2004; 172: 3157–3166.

    Article  CAS  PubMed  Google Scholar 

  41. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL . CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002; 420: 502–507.

    Article  CAS  PubMed  Google Scholar 

  42. Kinter AL, Hennessey M, Bell A, Kern S, Lin Y, Daucher M et al. CD25(+)CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 2004; 200: 331–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raghavan S, Suri-Payer E, Holmgren J . Antigen-specific in vitro suppression of murine Helicobacter pylori-reactive immunopathological T cells by CD4CD25 regulatory T cells. Scand J Immunol 2004; 60: 82–88.

    Article  CAS  PubMed  Google Scholar 

  44. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004; 199: 1455–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM . CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 2004; 199: 1467–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaeckel E, von Boehmer H, Manns MP . Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes 2005; 54: 306–310.

    Article  CAS  PubMed  Google Scholar 

  47. Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M et al. Developmental stage, phenotype, and migration distinguish naïve- and effector/memory-like CD4+ regulatory T cells. J Exp Med 2004; 199: 303–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cottrez F, Groux H . Specialization in tolerance: innate CD(4+)CD(25+) versus acquired TR1 and TH3 regulatory T cells. Transplantation 2004; 77 (Suppl): S12–S15.

    Article  PubMed  Google Scholar 

  49. Graca L, Cobbold SP, Waldmann H . Identification of regulatory T cells in tolerated allografts. J Exp Med 2002; 195: 1641–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thornton AM, Shevach EM . Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 2000; 164: 183–190.

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10: 1969–1980.

    Article  CAS  PubMed  Google Scholar 

  52. Suri-Payer E, Cantor H . Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4(+)CD25(+) T cells. J Autoimmun 2001; 16: 115–123.

    Article  CAS  PubMed  Google Scholar 

  53. Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H et al. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 2002; 196: 237–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S . Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3: 135–142.

    Article  CAS  PubMed  Google Scholar 

  56. Paust S, Lu L, McCarty N, Cantor H . Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 2004; 101: 10398–10403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakamura K, Kitani A, Strober W . Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J Exp Med 2001; 194: 629–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 2001; 166: 3789–3796.

    Article  CAS  PubMed  Google Scholar 

  59. Josien R, Douillard P, Guillot C, Muschen M, Anegon I, Chetritt J et al. A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance. J Clin Invest 1998; 102: 1920–1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klein L, Khazaie K, von Boehmer H . In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 2003; 100: 8886–8891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fisson S, Darrasse-Jeze G, Litvinova E, Septier F, Klatzmann D, Liblau R et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med 2003; 198: 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamazaki S, Iyoda T, Tarbell K, Olson K, Velinzon K, Inaba K et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 2003; 198: 235–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. von Boehmer H . Dynamics of suppressor T cells: in vivo veritas. J Exp Med 2003; 198: 845–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gratama JW, van Esser JW, Lamers CH, Tournay C, Lowenberg B, Bolhuis RL et al. Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 2001; 98: 1358–1364.

    Article  CAS  PubMed  Google Scholar 

  65. van Esser JW, van der Holt B, Meijer E, Niesters HG, Trenschel R, Thijsen SF et al. Epstein–Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell – depleted SCT. Blood 2001; 98: 972–978.

    Article  CAS  PubMed  Google Scholar 

  66. Kernan NA . T-cell depletion for prevention of graft-versus-host disease. In: Forman SJ, Blume KG, Thomas ED (eds). Bone Marrow Transplantation. Blackwell: Boston, MA, 1994, pp 124–135.

    Google Scholar 

  67. Taylor PA, Noelle RJ, Blazar BR . CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 2001; 193: 1311–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL . CD4(+)CD25(+) immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med 2002; 196: 401–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S . Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  71. Jones SC, Murphy GF, Korngold R . Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425T cells to allow an effective graft-versus-leukemia response. Biol Blood Marrow Transplant 2003; 9: 243–256.

    Article  PubMed  Google Scholar 

  72. Hess AD . Modulation of graft-versus-host disease: role of regulatory T lymphocytes. Biol Blood Marrow Transplant 2006; 12: 13–21.

    Article  PubMed  Google Scholar 

  73. Clark FJ, Gregg R, Piper K, Dunnion D, Freeman L, Griffiths M et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood 2004; 103: 2410–2416.

    Article  CAS  PubMed  Google Scholar 

  74. Sanchez J, Casano J, Alvarez MA, Roman-Gomez J, Martin C, Martinez F et al. Kinetic of regulatory CD25high and activated CD134+ (OX40) T lymphocytes during acute and chronic graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 2004; 126: 697–703.

    Article  PubMed  Google Scholar 

  75. Miura Y, Thoburn CJ, Bright EC, Phelps ML, Shin T, Matsui EC et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood 2004; 104: 2187–2193.

    Article  CAS  PubMed  Google Scholar 

  76. Meignin V, de Latour RP, Zuber J, Regnault A, Mounier N, Lemaitre F et al. Numbers of Foxp3-expressing CD4+CD25high T cells do not correlate with the establishment of long-term tolerance after allogeneic stem cell transplantation. Exp Hematol 2005; 33: 894–900.

    Article  CAS  PubMed  Google Scholar 

  77. Zorn E, Kim HT, Lee SJ, Floyd BH, Litsa D, Arumugarajah S et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood 2005; 106: 2903–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zorn E . CD4+CD25+ regulatory T cells in human hematopoietic cell transplantation. Semin Cancer Biol 2006; 16: 150–159 (review).

    Article  CAS  PubMed  Google Scholar 

  79. Taylor PA, Lees CJ, Blazar BR . The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002; 99: 3493–3499.

    Article  CAS  PubMed  Google Scholar 

  80. Godfrey WR, Ge YG, Spoden DJ, Levine BL, June CH, Blazar BR et al. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 2004; 104: 453–461.

    Article  CAS  PubMed  Google Scholar 

  81. Karakhanova S, Munder M, Schneider M, Bonyhadi M, Ho AD, Goerner M . Highly efficient expansion of human CD4+CD25+ regulatory T cells for cellular immunotherapy in patients with graft-versus-host disease. J Immunother 2006; 29: 336–349.

    Article  CAS  PubMed  Google Scholar 

  82. Bluestone JA . Regulatory T-cell therapy: is it ready for the clinic? Nat Rev Immunol 2005; 5: 343–349.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N T Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, N., Chao, N. Regulating regulatory T cells. Bone Marrow Transplant 39, 1–9 (2007). https://doi.org/10.1038/sj.bmt.1705529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705529

Keywords

This article is cited by

Search

Quick links