Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Xenotransplants

Porcine hematopoietic cell xenotransplantation in nonhuman primates is complicated by thrombotic microangiopathy

Abstract

Thrombotic microangiopathy (TM) is a serious complication of bone marrow transplantation (BMT) that resembles thrombotic thrombocytopenic purpura (TTP). In attempting to achieve hematopoietic cell chimerism in the pig-to-baboon model, we have observed TM following infusion of high doses (>1010 cells/kg) of porcine peripheral blood mobilized progenitor cells (PBPC) into baboons. We performed investigations to analyze the pathobiology of this TM and to test therapeutic interventions to ameliorate it. PBPC were obtained by leukapheresis of cytokine-stimulated swine. The initial observations were made in two baboons that underwent a non-myeloablative regimen (NMR) prior to PBPC transplantation (TX) (group 1). We then studied three experimental groups. Group 2 (n = 2) received NMR without PBPC TX. Group 3 (n = 2) received PBPC TX alone. Group 4 (n = 6) received NMR + PBPC TX combined with prostacyclin, low-dose heparin, methylprednisolone, and cyclosporine was replaced by anti-CD40L mAb in five cases. Baboons in groups 1 and 3 developed severe thrombocytopenia (<10 000/mm3), intravascular hemolysis with schistocytosis (>10/high powered field (hpf)), increase in plasma lactate dehydrogenase (LDH) (2500–9000 U/l), transient neurologic changes, renal insufficiency, and purpura. Autopsy on two baboons confirmed extensive platelet thrombi in the microcirculation, and, similar to clinical BMT-associated TM/TTP, no unusually large vWF multimers or changes in vWF protease activity were observed in the plasma of baboons with TM. In group 2, self-limited thrombocytopenia occurred for 10–15 days following NMR. Group 4 baboons developed thrombocytopenia (<20 000/mm3) rarely requiring platelet transfusion, minimal schistocytosis (<3/hpf), minor increase in LDH (<1000 U/l), with no clinical sequelae. We conclude that high-dose porcine PBPC infusion into baboons induces a microangiopathic state with vWF biochemical parameters resembling clinical BMT-associated TM/TTP and that administration of antithrombotic and anti-inflammatory agents can ameliorate this complication. Bone Marrow Transplantation (2001) 27, 1227–1236.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pettitt AR, Clark RE . Thrombotic microangiopathy following bone marrow transplantation Bone Marrow Transplant 1994 14: 495–504

    CAS  PubMed  Google Scholar 

  2. Rock GA, Shumak KH, Buskard NA et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura New Engl J Med 1991 325: 393–397

    Article  CAS  PubMed  Google Scholar 

  3. Tsai HM, Lian EC . Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura New Engl J Med 1998 339: 1585–1594

    Article  CAS  PubMed  Google Scholar 

  4. Furlan M, Robles R, Galbusera M et al. Von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome New Engl J Med 1998 339: 1578–1584

    Article  CAS  PubMed  Google Scholar 

  5. Moake JL, Rudy CK, Troll JH et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura New Engl J Med 1982 307: 1432–1435

    Article  CAS  PubMed  Google Scholar 

  6. Van der Plas RM, Schiphrost ME, Huizinga EG et al. Von Willebrand factor proteolysis is deficient in classic, but not in bone marrow transplantation-associated thrombotic thrombocytopenic purpura Blood 1999 93: 3798–3802

    CAS  PubMed  Google Scholar 

  7. Sharabi Y, Abraham VS, Sykes M, Sachs DH . Mixed allogeneic chimeras prepared by a non-myeloablative regimen: requirement for chimerism to maintain tolerance Bone Marrow Transplant 1992 9: 191–197

    CAS  PubMed  Google Scholar 

  8. Sharabi Y, Aksentijevich I, Sundt TM et al. Specific tolerance induction across a xenogeneic barrier: production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen J Exp Med 1990 172: 195–202

    Article  CAS  PubMed  Google Scholar 

  9. Kawai T, Cosimi AB, Colvin RB et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys Transplantation 1995 59: 256–262

    Article  CAS  PubMed  Google Scholar 

  10. Bartholomew AM, Cosimi AB, Sachs DH et al. A study of tolerance in a concordant xenograft model Transplant Proc 1997 29: 923–924

    Article  CAS  PubMed  Google Scholar 

  11. Kozlowski T, Monroy R, Xu Y et al. Anti-αGal antibody response to porcine bone marrow in unmodified baboons and baboons conditioned for tolerance induction Transplantation 1998 66: 176–182

    Article  CAS  PubMed  Google Scholar 

  12. Kozlowski T, Shimizu A, Lambrigts D et al. Porcine kidney and heart transplantation in baboons undergoing a tolerance induction regimen and antibody adsorption Transplantation 1999 67: 18–30

    Article  CAS  PubMed  Google Scholar 

  13. Cooper DKC, Ye Y, Niekrasz M . Heart transplantation in primates. In Cramer DV, Podesta L, Makowka L (eds) Handbook of Animal Models in Transplantation Research CRC Press: Boca Raton 1994 pp 173–200

    Google Scholar 

  14. Hawley RJ, Abraham S, Akiyoshi DE et al. Xenogeneic bone marrow transplantation: I. Cloning, expression, and species specificity of porcine IL-3 and granulocyte–macrophage colony-stimulating factor Xenotransplantation 1997 4: 103–111

    Article  Google Scholar 

  15. Giovino MA, Hawley RJ, Dickerson MW et al. Xenogeneic bone marrow transplantation: II. Porcine-specific growth factors enhance bone marrow engraftment in an in vitro primate microenvironment Xenotransplantation 1997 4: 112–119

    Article  Google Scholar 

  16. Nash K, Chang Q, Watts A et al. Peripheral blood progenitor cell mobilization and leukapheresis in pigs Lab Anim Sci 1999 49: 645–649

    CAS  PubMed  Google Scholar 

  17. Xu Y, Lorf T, Sablinski T et al. Removal of anti-porcine natural antibodies from human and nonhuman primate plasma in vitro and in vivo by a Galα1–3Galβ1–4βGlc-X immunoaffinity column Transplantation 1998 65: 172–179

    Article  CAS  PubMed  Google Scholar 

  18. Kozlowski T, Ierino FL, Lambrigts D et al. Depletion of anti-Galα1–3Gal antibody in baboons by perfusion of specific immunoaffinity columns combined with apheresis Xenotransplantation 1998 5: 122–131

    Article  CAS  PubMed  Google Scholar 

  19. Lambrigts D, Van Calster P, Xu Y et al. Pharmacologic immunosuppressive therapy and extracorporeal immunoadsorption in the suppression of anti-αGal antibody in the baboon Xenotransplantation 1998 5: 274–283

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi T, Taniguchi S, Neethling FA et al. Delayed xenograft rejection of pig-to-baboon cardiac transplants after cobra venom factor therapy Transplantation 1997 64: 1255–1261

    Article  CAS  PubMed  Google Scholar 

  21. Cooper DKC, Lanza RP . Xeno – The Promise of Transplanting Animal Organs into Humans Oxford University Press: New York 2000

    Google Scholar 

  22. Cooper DKC, Ye Y, Rolf LL, Zuhdi N . The pig as potential organ donor for man. In: Cooper DKC, Kemp E, Reemtsma K, White DJG (eds) Xenotransplantation, first edn Springer: Heidelberg 1991 pp 481–500

    Chapter  Google Scholar 

  23. Sykes M, Sachs DH . Xenogeneic tolerance through hematopoietic cell and thymic transplantation. In: Cooper DKC, Kemp E, Platt JL, White DJG (eds) Xenotransplantation, second edn Springer: Heidelberg 1997 pp 496–518

    Chapter  Google Scholar 

  24. Holler E, Kolb HJ, Hiller E et al. Microangiopathy in patients on cyclosporine prophylaxis who developed acute graft-versus-host disease after HLA-identical bone marrow transplantation Blood 1989 73: 2018–2024

    CAS  PubMed  Google Scholar 

  25. Smith RE, Berg DD . Coagulation defects in cyclosporine A treated allogeneic bone marrow transplant patients Am J Hematol 1988 28: 137–140

    Article  CAS  PubMed  Google Scholar 

  26. Moschcowitz E . Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease Proc NY Pathol Soc 1924 24: 21–24

    Google Scholar 

  27. Cohen JA, Brecher ME, Bandarenko N . Cellular source of serum lactate dehydrogenase elevation in patients with thrombotic thrombocytopenic purpura J Clin Apher 1998 13: 16–19

    Article  CAS  PubMed  Google Scholar 

  28. Asada Y, Sumiyoshi A, Hayashi T et al. Immunohistochemistry of vascular lesion in thrombotic thrombocytopenic purpura, with special reference to factor VIII antigen Thromb Res 1985 38: 469–479

    Article  CAS  PubMed  Google Scholar 

  29. Furlan M, Robles R, Solenthaler M et al. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura Blood 1997 89: 3097–3103

    CAS  PubMed  Google Scholar 

  30. Furlan M, Robles R, Solenthaler M, Lämmle B . Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura Blood 1998 91: 2839–2846

    CAS  PubMed  Google Scholar 

  31. Moake JL, Chow TW . Thrombotic thrombocytopenic purpura: understanding a disease no longer rare Am J Med Sci 1998 316: 105–119

    CAS  PubMed  Google Scholar 

  32. Byrnes JJ, Hussein AM . Thrombotic microangiopathic syndromes after bone marrow transplantation Cancer Invest 1996 14: 151–157

    Article  CAS  PubMed  Google Scholar 

  33. Sarode R, McFarland JG, Flomenberg N et al. Therapeutic plasma exchange does not appear to be effective in the management of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome following bone marrow transplantation Bone Marrow Transplant 1995 16: 271–275

    CAS  PubMed  Google Scholar 

  34. Llamas P, Romero R, Cabrera R et al. Management of thrombotic microangiopathy following allogeneic transplantation: what is the role of plasma exchange? Bone Marrow Transplant 1997 20: 305–306

    Article  CAS  PubMed  Google Scholar 

  35. Lian EC . Pathogenesis of thrombotic thrombocytopenic purpura Semin Hematol 1987 24: 82–100

    CAS  PubMed  Google Scholar 

  36. Sanders WE, Read MS, Reddick RL et al. Thrombotic thrombocytopenia with von Willebrand factor deficience induced by botrocetin Lab Invest 1988 59: 443–452

    CAS  PubMed  Google Scholar 

  37. Sanders WE, Reddick RL, Nichols TC et al. Thrombotic thrombocytopenia induced in dogs and pigs Arterioscler Thromb Vasc Biol 1995 15: 793–800

    Article  CAS  PubMed  Google Scholar 

  38. Mant MJ, Turner AR, Bruce D et al. Splenectomy during partial remission in thrombotic thrombocytopenic purpura with prolonged plasma exchange dependency Am J Hematol 1999 62: 56–57

    Article  CAS  PubMed  Google Scholar 

  39. Kelton JG, Moore JC, Murphy WG . Studies investigating platelet aggregation and release initiated by sera from patients with thrombotic thrombocytopenic purpura Blood 1987 69: 924–928

    CAS  PubMed  Google Scholar 

  40. Samuelsson B, Dahler SE, Lindgren JA et al. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects Science 1987 237: 1171–1176

    Article  CAS  PubMed  Google Scholar 

  41. Marcus AJ . Multicellular eicosanoid and other metabolic interactions of platelets and other cells. In: Colman RW, Hirsch J, Marder VJ, Salzman EW (eds) Hemostasis and Thrombosis: Basic Principles and Clinical Practice, third edn JB Lippincott: Philadelphia 1993 pp 590–602

    Google Scholar 

  42. Tardy B, Page Y, Comtet C et al. Intravenous prostacyclin in thrombotic thrombocytopenic purpura: case report and review of the literature J Intern Med 1991 230: 279–282

    Article  CAS  PubMed  Google Scholar 

  43. Henn V, Slupsky JR, Grafe M et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells Nature 1998 391: 591–594

    Article  CAS  PubMed  Google Scholar 

  44. Robson SC, Schulte am Esch J II, Bach FH . Factors in xenograft rejection Ann NY Acad Sci 1999 875: 261–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs J Fishman and T Spitzer for their considerable advice throughout this study, Drs C Ferran and T Spitzer for their review of the manuscript, A Watts, S Treter and K Nash for excellent technical assistance and Mrs Lisa Bernardo for help in manuscript preparation. We also wish to record our gratitude to Ms Stephanie Spaide of Abbott Laboratories for making available additional Omniflow 4000 infusion pumps on several occasions, and to the following companies for generous gifts of their products: Abbot Laboratories (Hetastarch 6%), Baxter Healthcare (Albumin 5%), Novartis Pharmaceuticals (Sandimmune iv), Glaxo-Wellcome (Zantac iv), and Roche Laboratories, Inc. (CellCept iv). This work was supported in part by National Institutes of Health grant No. 5P01 AI39755 and by a Sponsored Research Agreement between the Massachusetts General Hospital and BioTransplant, Inc.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bühler, L., Goepfert, C., Kitamura, H. et al. Porcine hematopoietic cell xenotransplantation in nonhuman primates is complicated by thrombotic microangiopathy. Bone Marrow Transplant 27, 1227–1236 (2001). https://doi.org/10.1038/sj.bmt.1703067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703067

Keywords

This article is cited by

Search

Quick links