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Drug resistance is a major cause of treatment failure in cancer chemotherapy, including that with the extensively prescribed
antimetabolite, 5-fluorouracil (5-FU). In this study, we tried to reverse 5-FU resistance by using a double-punch strategy: combining
5-FU with a biochemical modulator to improve its tumoural activation and encapsulating both these agents in one same stealth
liposome. Experiments carried out in the highly resistant, canonical SW620 human colorectal model showed a up to 80% sensitisation
to 5-FU when these cells were treated with our liposomal formulation. Results with this formulation demonstrated 30% higher
tumoural drug uptake, better activation with increased active metabolites including critical-5-fluoro-2-deoxyuridine-5-monophos-
phate, superior inhibition (98%) of tumour thymidylate synthase, and subsequently, higher induction of both early and late apoptosis.
Drug monitoring showed that higher and sustained exposure was achieved in rats treated with liposomal formulation. When
examined in a xenograft animal model, our dual-agent liposomal formulation caused a 74% reduction in tumour size with a mean
doubling in survival time, whereas standard 5-FU failed to exhibit significant antiproliferative activity as well as to increase the lifespan
of tumour-bearing mice. Taken collectively, our data suggest that resistance to 5-FU can be overcome through a better control of its
intratumoural activation and the use of an encapsulated formulation.
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Despite the fact that 5-fluorouracil (5-FU) has been in use for half
a century, it remains the gold standard for chemotherapy of
colorectal cancer, the third cause of death due to cancer
worldwide. With a mere 20% response rate when used as
monotherapy, numerous attempts have been made to improve
its therapeutic index, both at the bench and at the bedside. 5-
Fluorouracil was rationally designed to target thymidylate synthase
(TS), an enzyme that is essential for DNA synthesis and cell
proliferation; however, the biochemical mechanisms responsible
for its antitumour properties are complex and actually require
anabolism of this prodrug into specific 5-FU nucleotides within
cancer cells. Several enzymes involved in its metabolic activation
eventually lead to the formation of active cytotoxic nucleotides
or deoxynucleotides (Boyer et al, 2004). However, the major
mechanism for 5-FU cytotoxicity is the formation of competitive 5-
fluoro-2-deoxyuridine-5-monophosphate (FdUMP), thereby inhi-
biting TS activity with subsequent depletion of intracellular
thymidine, suppression of DNA synthesis, and ultimately,

apoptosis induction (Pinedo and Peters, 1988; Diasio and Harris,
1989; Langley et al, 2003). Overexpression of TS has been
demonstrated to be associated with 5-FU resistance in patients
with colorectal cancer (Johnston et al, 1995; Peters et al, 2002). In
this respect, controlling the pattern of 5-FU activation, preferen-
tially towards inhibiting TS FdUMP synthesis, is a major goal for
optimising its anticancer efficacy.

The key enzyme in the process of yielding intratumoural
FdUMP is thymidine phosphorylase (TP), the rate-limiting enzyme
in the activation of 5-FU via the DNA pathway (Ciccolini et al,
2001; De Bruin et al, 2004). Several attempts to boost tumoural TP
levels have been published in an effort to improve cell sensitivity to
5-FU or oral 5-FU (capecitabine), by using either ‘Suicide Gene’
strategies (Schwartz et al, 1995a, b; Evrard et al, 1999; Ciccolini
et al, 2001), co-treating tumour cells with modulators such as IFN,
taxoı̈d drugs, mitomycine C, or with radiotherapy (Ciccolini et al,
2004; Blanquicett et al, 2005). Among the numerous compounds
tested as putative modulators, 20-deoxyinosine (d-Ino) is a non-
toxic precursor of the TP cofactor, deoxyribose 1-phosphate, that
has been shown to enhance 5-FU’s antiproliferative activity in
several in vitro and in vivo models, when either used alone or
combined with gene therapy strategies targeting TP (Ciccolini
et al, 2000a, b; Fanciullino et al, 2006). So far, extensive
erythrocytic metabolism and a failure to improve its pharmaco-
kinetic profile have prevented d-Ino from being considered
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cinétique, Faculté de Pharmacie, 27 Bd Jean Moulin 13385, Marseille 05,
France; E-mail: jo.ciccolini@pharmacie.univ-mrs.fr

British Journal of Cancer (2007) 97, 919 – 926

& 2007 Cancer Research UK All rights reserved 0007 – 0920/07 $30.00

www.bjcancer.com

T
ra
n
sl
a
ti
o
n
a
l
T
h
e
ra
p
e
u
ti
c
s

http://dx.doi.org/10.1038/sj.bjc.6603970
http://www.bjcancer.com
mailto:jo.ciccolini@pharmacie.univ-mrs.fr
http://www.bjcancer.com


clinically, as a possible modulator of 5-FU. To achieve this goal,
our group previously developed the first encapsulated formulation
of d-Ino alone (d-InoL), which was designed to spare it from
erythrocytic clearance. This d-InoL proved to increase 5-FU
efficacy in vitro and in mice xenografts, at doses much lower than
the ones used thus far (Fanciullino et al, 2005). The purpose of the
present study was to develop a novel, stealth double-liposomal
formulation encapsulating both 5-FU and its modulator, d-Ino, to
enhance further the therapeutic index of 5-FU through a two-
pronged strategy: modulationþ controlled release.

MATERIALS AND METHODS

Cell lines

All experiments were carried out in the 5-FU-resistant, human
colon carcinoma cell line SW620 (also known as CCL227), which
overexpresses TS. Cells were maintained in RPMI supplemented
with 10% fetal calf serum, 5% glutamine, 10% penicillin, 10%
streptomycin and 1% kanamycin in a humidified CO2 incubator at
371C. All experiments were performed in exponentially growing
cells.

Drugs and chemicals

Egg yolk phosphatidylcholine (PC), phosphatidylglycerol (PG),
cholesterol (C), polyethylene glycol (PEG) covalently binded to
phosphatidylethanolamine, 20-deoxyinosine (d-Ino), 5-FU and
50-dFUR were all purchased from Sigma (St Quentin, France).
Di-kalium hydrogenous phosphate (K2HPO4) buffer, tetrabutyl
ammonium nitrate, acetonitrile, ether and methanol were bought
from CarboErba (Milan, Italy). Dimethyl sulphoxide, the apoptosis
kit and culture media were purchased from Euromedex (Souffel-
weyersheim, France). Tritiated 5-FU (12Ci mmol�1) was obtained
from Moraveck Biochemical (Brea, CA, USA). All reagents were of
analytical grade.

Liposome preparation

Liposomes ((5-FUþ d-Ino)-L) were prepared by the classic thin
film method (Olson et al, 1979). In brief, a lipid mixture composed
of egg PC/PG/CHOL/PEG (molar ratios of 7.3 : 0.73 : 1.43 : 0.47) in
methanol was evaporated under nitrogen in a round-bottom flask
to form a dried thin film. This film was then hydrated with an
isotonic carbonate solution (pH 4.2– 7.4). The ratio – neutral
phospholipid/cholesterol was 30% and when present, the nega-
tively charged lipid was 10% of the neutral lipid. Multilamellar
vesicles were formed by vortex mixing the lipid dispersions at
room temperature. 5-Fluorouracil (0.2 mM) and d-Ino (0.24 mM)
were encapsulated by incubation with the lipid film for 30 min at
37–401C. The resulting loaded PEG-liposomes were then shaken.
Homogenous size distribution as SUV was achieved by 5 min
20 kHz sonication with a probe. To remove the non-encapsulated
drug, the liposomal suspension was ultracentrifuged at 70 000 g at
41C for 16 h, and the resulting pellet was re-suspended in either
10 ml of culture media or 10 mM carbonate buffer (pH 7.4),
depending on its use (e.g. in vitro or in vivo). Finally, sterile
liposomes were obtained after extrusion through PVDF filters
(Durapore 0.22 mm, Millipore, Molsheim, France).

Polydispersity study

Diameter and particle size distribution were determined by
dynamic laser light scattering using a Correlateur RTG submicron
particle analyser (Sematech, Nice, France). Measurements were
performed at 901 angles, at room temperature. The mean diameter
of the liposomes was estimated from the volume distribution
curves given by the particle analyser.

Encapsulation rate and releasing study

Encapsulation rates of both 5-FU and d-Ino were performed by
HPLC, using a previously published method (Fanciullino et al,
2005). Liposomal release of 5-FU and d-Ino was monitored by
dialysis as described elsewhere (Fanciullino et al, 2005). Sampling
was performed every 30 min, up to 4 h. The total amount of 5-FU
and d-Ino released was determined by UV spectrophotometry at
248 nm (Beckman, Villepinte, France).

Antiproliferative assays

Cells were seeded at a density of 8� 104 cells per well in 96-well
plates. After overnight attachment, exponentially growing cells
were exposed to increasing concentrations of 5-FU alone, 5-FU
combined with free d-Ino, or the liposomal formulation [5-FUþ d-
Ino]-L, with gentle shaking for 24 h. Next, drug was removed and
the cells were allowed to grow in fresh medium for an additional
48 h. After 72 h of discontinuous exposure, cell viability was
evaluated using the classic colorimetric MTT assay (Alley et al,
1988). The IC50 was defined as the 5-FU concentration inhibiting
50% of cell growth.

5-Fluorouracil tumoural metabolism study

Exponentially growing cells were exposed to 1 mM of tritiated 5-FU
alone, combined with free d-Ino or as a liposomal preparation
[5-FUþ d-Ino]-L. After 3, 4 and 6 h exposure, cells were harvested,
lysed into 70% methanol and cytosols were isolated by centrifuga-
tion (15 000 r.p.m., 30 min) and stored at –801C until analysis.
Separation of 5-FU and its main metabolites was achieved using a
HP1090 HPLC system (Agilent, Massy, France) coupled to a Flo-
One radioactive detector (Packard, Les Ulis, France) and equipped
with an RP18 column (Agilent, France), followed by elution with
a K2HPO4-TBAN/methanol gradient as described previously
(Ciccolini et al, 2000b).

Thymidylate synthase inhibition

Thymidylate synthase activity was assessed as described previously
(Chazal et al, 1997). Briefly, exponentially growing cells were
exposed to various combinations of 100 mM of 5-FU alone, 5-FU
combined with 250 mM d-Ino, or the liposomal formulation [5-
FUþ d-Ino]-L for 12 h. Inhibition of TS activity was evaluated at 8,
24, 48 and 72 h. Cells were then harvested and the pellet was stored
at �801C until further analysis. Thymidylate synthase activity was
assayed following the standard Roberts’ method based on tritiated
H2O release from [3H]deoxyuridine monophosphate, in the
presence of excess methylene tetrahydrofolate (Roberts, 1966).

Cell death induction

Cell-cycle distribution was monitored after exposing the cells for
48 and 72 h to 100mM 5-FU, 5-FU combined with 250mM of free
d-Ino, or the [5-FUþ d-Ino]-L combination at the same concen-
trations. Cells were washed two times with PBS, trypsinised and
suspended in 70% methanol for 1 h, at 41C. Next, they were
centrifuged and immediately collected in 300 ml PBS and 80 ml of
propidium iodide (PI), following the manufacturer’s recommenda-
tions. Samples were analysed with FACScan flow cytometer
(Beckman Coulter, Marseille, France) using Cell Quest software.
The percentage of cell death was measured by detecting the sub-
G0/G1 peak in PI staining (Derzynkiewicz et al, 1992).

Apoptosis studies

Cells in the exponential phase were exposed to 100mM 5-FU
alone, 5-FU with 250 mM d-Ino, or the liposomal combination
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[5-FUþ d-Ino]-L for 24, 48 and 72 h. Cells were harvested, and
early as well as late apoptotic changes were detected by
simultaneous staining with Annexin and PI, using an Annexin V
FITC staining kit (Sigma, St Quentin Fallavier, France). Cells were
treated following the manufacturer’s guidelines. FACS analysis
was carried out in a FACScan flow cytometer (Becton Dickinson,
Poisat, France) using the Cell Quest Software, and apoptosis
measured in untreated cells was defined as 100%.

Drug monitoring study

Comparison of the drug exposure levels achieved in animals
treated with the free or encapsulated 5-FUþ d-Ino combination
was performed. Six-week-old male wistar rats (Charles River,
Lyon, France) were kept anaesthetised using O2/NO2

gasþ isoflurane (TEM, Bordeaux, France) during the whole study.
Body temperature was maintained at 371C using a warming
blanket. Animals (n¼ 3/group) were administered by intraperi-
toneal injection with 5-FU (50 mg kg�1) plus d-Ino (120 mg kg�1),
either free or combined in the liposomal formulation. Sampling
times were as following: T0, T60, T90 and T120 min. One millilitre
of blood was withdrawn from jugular vein on heparinised tubes,
and plasma was isolated by centrifugation at 5000 g for 10 min.
Samples were stored at �201C until analysed. 5-Fluorouracil and
d-Ino plasma concentrations were determined by reverse-phase
UV–HPLC as described previously, using 2-deoxyadenosine as
internal standard (Fanciullino et al, 2005). Animal study was
performed following animal welfare guidelines, and local animal
ethics committee approval was obtained prior to starting the
experiments.

In vivo efficacy studies

The antitumour efficacy of 5-FU alone, or in association with free
d-Ino, or as the liposomal [5-FUþ d-Ino]-L combination was
investigated in the SW620 mouse xenograft model. Mouse care was
in agreement with the animal welfare guidelines of our institution,
and local animal ethics committee approval was obtained prior to
starting the experiments. Four-week-old, female Swiss, nude mice
(n¼ 5 per group, Charles River) were subcutaneously inoculated
with 1� 106 SW620 cells on the right flank. Ten days after implant,
and once tumours had reached accurately measurable size, mice
were treated with 5-FU by itself, 5-FU combined with free d-Ino, or
with the [5-FUþ d-Ino]-L form as follows: 5-FU: 50 mg kg�1, d-Ino
and 120 mg kg�1. Drugs were administered intraperitoneally on a
3-times per week basis for 3 consecutive weeks (e.g., D1/D2/D3,
D8/D9/D10 and D16/D17/D18). Tumour size was measured three
times a week in three dimensions using vernier calipers, and
tumour weight (mg) was calculated using the following standard
formula: mass¼ p/6� length�width� height (Waterhouse et al,
2005). Preliminary experiments with empty liposomes were
conducted to confirm the absence of any in vivo antiproliferative
activity. Animal weight was monitored as a marker of toxicity.
Animals were euthanised whenever a 25% loss of initial weight was
observed, or when tumours reached 2500 mg.

RESULTS

Encapsulation rate and release studies

Homogenous, 100-nm-diameter liposome populations were ob-
tained. Encapsulation rates of 5-FU and d-Ino were 10.6±1.6 and
26.2±5.3%, respectively. Release curves for 5-FU and d-Ino had
similar profiles (n¼ 5). Both were described by a polynomial
equation (Figure 1). No significant difference was observed
between the 180 and 240 min concentrations (P40.05, t-test).
Maximum, 100% release from the liposomes was reached after 4-h
incubation for both drugs.

Modulation of antiproliferative activity

Empty liposomes showed no in vitro cytotoxicity (data not shown).
Results of cytotoxic studies are summarised in Figure 2. Combining
5-FU with either free d-Ino or used as a liposomal [5-FUþ d-Ino]-L
formulation led to a significant increase in cell sensitivity. The
IC50s for 5-FU alone, freely associated with d-Ino and encapsulated
with d-Ino in a single liposome were 77±6, 57±13 and
48±6.4 mM, respectively (n¼ 3). At the IC50 level, use of free
d-Ino caused a 26% improvement in 5-FU efficacy, whereas the
double-agent liposomal formulation caused a 37% increase in
SW620 sensitivity. Similarly, cell response was further improved by
52 and 77% (free d-Ino and liposomal formulation, respectively) at
IC20, and by 18 and 80% (free d-Ino/liposomes) at the IC80 levels.

Modulation of 5-FU intracellular activation

Intratumoural metabolic profiles of 5-FU used alone, combined
with d-Ino or used as a liposomal formulation are displayed in
Figure 3. When used alone, 5-FU anabolism took place via the RNA
pathway, and little or no FdUMP was formed over the 3–6 h
observation period. Combining d-Ino with 5-FU led to a striking
change in the activation pattern of 5-FU, with activation occurring
predominantly through the DNA pathway, resulting in subsequent
intracellular accumulation of fluoro-deoxynucleotides. Overall,
anti-TS FdUMP synthesis was increased from 83 d.p.m. mg�1

protein (5-FU alone) to 3199 d.p.m. mg�1 (5-FUþ d-Inoþ 3801%)
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Figure 1 Monitoring of d-Ino (~) and 5-fluorouracil (5-FU) (&) release
from the liposomal [5-FUþ d-Ino]-L form. d-Ino and 5-FU concentrations
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Figure 2 Modulation of 5-fluorouracil (5-FU) (B) cytotoxicity by free
d-Ino (’) or as the co-encapsulated [5-FUþ d-Ino]-L form (m). Cells
were treated for 24 h and viability was measured by MTT testing after 48
extra hours of growth in drug-free medium. Bars, s.d.
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and to 11 276 d.p.m. mg�1 (liposomal combination, þ 13 561%).
When considering the total cytosolic amount of unchanged 5-FU
and metabolites formed, data showed that exposing SW620 cells to
the [5-FUþ d-Ino]-L combination led to a 36% increase of drug
uptake as compared with the free form combination.

Thymidylate synthase inhibition study

A significant improvement in TS inhibition was observed both
with free d-Ino and with the encapsulated formulation (Figure 4).
Thymidylate synthase activity was diminished by 96% after 8 h in
cells exposed to 5-FUþ d-Ino as compared to 5-FU alone. The
liposomal formulation further improved this inhibition level by
61%, with an eventual 98% decrease in TS activity (n¼ 3).

Cell-cycle analysis

Monitoring of the sub-G0/G1 population at 48 h after PI staining is
displayed in Figure 5. Results revealed a 324% higher induction of
cell death by 5-FU when associated with free d-Ino, and a 408%
increase with the liposomal form, as compared with 5-FU alone.
At 72 h, increases in cell death of 150 and 169%, respectively with
d-Ino or liposomal formulations (n¼ 3) were observed.

Apoptosis studies

A greater induction of both early and late apoptosis was observed
in SW620 exposed to FU modulated with free d-Ino, or the co-
encapsulated form (Figure 6). Early apoptosis induction was
increased by 235, 103 and 136% at 24, 48 and 72 h, respectively

(free d-Ino) and by 326, 268 and 219% with the liposomal form, as
compared with 5-FU alone. Similarly, late apoptosis was increased
by 92, 119 and 138% after 24, 48 and 72 h (free d-Ino) and by 159,
206 and 219% with the encapsulated form, as compared with the
use of standard 5-FU (n¼ 4).

Drug monitoring study

Monitoring of 5-FU and d-Ino in plasma was performed after
administration of these both drugs, injected either free or as a
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liposomal combination. Due to analytical interferences with
merging endogenous peaks, 5-FU concentrations remained below
our limit of detection, regardless of the formulation used.
Conversely, d-Ino was fully measurable over the 60– 120 min
period and showed circulating concentrations up to 139% higher
when administered as liposomes, as compared with the free form.
At 120 min, 470 ng ml�1 of d-Ino was still measured in rats of the
liposome group, whereas no modulator was detected anymore in
animals treated with the free 5-FUþ d-Ino association.

In vivo efficacy studies

Treatment with the empty liposomes showed no impact on tumour
growth as compared to untreated animals (data not shown). At the
conclusion of the study, tumour size was reduced by 28% (NS),
23% (NS) and 74% (Po0.05) in mice treated with 5-FU alone, 5-FU
with free d-Ino or the [5-FUþ d-Ino]-L formulation, respectively
(Figure 7). No signs of toxicity were observed in these animals,
regardless of the treatment modality, and no statistical differences
were found in animal weights among the different groups (data
not shown). When compared to controls, survival time was
increased by 25% in the 5-FU-treatment group (20 vs 16 days),
56% in the group treated with the 5-FUþ d-Ino combination, and
by 94% in animals treated with the liposomal formulation
(Po0.05, Figure 8).

DISCUSSION

Liposomes can help reduce the toxicity of anticancer drugs, while
maintaining or enhancing their efficacy (Di Paolo, 2004). Despite
these promising features, with regard to improving of the
therapeutic index of anticancer chemotherapies, only doxorubicine
(Caelyxs) has been marketed to date as a liposomal formulation.
In addition to anthracyclines, several experimental or clinical
studies involving encapsulated gemcitabine, methotrexate and
platinum derivatives, have been reported over the past 20 years,
but thus far, none of them has made its way to the bedside, in a
routine, clinical setting (Doddoli et al, 2005; Stathopoulos et al,
2006; Brusa et al, 2007).

Several mechanical and biological mechanisms support the
passive tumoural selectivity of liposomes. Sustained release rates,
for instance, may enhance antitumour efficacy through an
enhanced permeability and retention effect, via a better utilisation

of the vascular abnormalities of solid tumours, eventually leading
to a greater tumoural uptake (Maeda, 2001). Defects in the
capillary endothelium of tumour vasculature are typically in the
size range of 200–600 nm and therefore, liposomes of 100 nm in
diameter, as generated in this study, can efficiently extravasate
and accumulate within the tumour interstitial space, thus
providing additional specificity (Yuan et al, 1995). Besides
their size, intratumoural accumulation of macromolecules is
further enhanced by carrier systems displaying reduced
release rates and long circulating times (Papahadjopoulos et al,
1991; Yuan et al, 1994). To slow down the release rate of
our liposomes and improve their bioavailability, cholesterol
and PEG were used to extend stability via greater membrane
rigidity and a ‘stealth’ passage through the liver. Additionally,
negatively charged lipids were also used in this study to avoid
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liposomal aggregation, eventually permitting a better stability.
Consequently, drug monitoring of d-Ino revealed circulating
concentrations systematically higher when injected as a part of
the liposomal formulation, as compared with its free counterpart.
Beside these higher plasma levels, sustained exposure to the
drug was achieved, as liposomal d-Ino remained fully
detectable 2 h after administration, whereas free d-Ino was
totally cleared. Despite its extremely widespread use in clinical
oncology, few reports have focused on encapsulating 5-FU in
simple carriers, probably as a result of its polar and amphotereous
properties that render it particularly difficult to entrap in
standard liposomes (Simmons and Krame, 1977; Nii and
Ishii, 2005). However, as a prodrug, 5-FU presents an opportunity
to increase its therapeutic efficacy by combining it with
biochemical modulators that can improve its intratumoural
activation pattern. Similarly, the strategy of combining
encapsulated anticancer drugs with a modulator has been
established, for example, in the case of doxorubicin combined
with valspodar. However, these two drugs were not encapsulated in
a single liposome (Fracasso et al, 2005). The specific, well-tolerated
modulator, d-Ino, has been identified as a promising agent
that can improve the antitumour action of 5-FU (Ciccolini et al,

2000b, 2001). Despite significant achievements in enhancing
5-FU efficacy, in various experimental models, in vivo handling
of d-Ino was rendered difficult as a result of dramatic erythrocytic
catabolism. To overcome this, we developed previously the
first encapsulated formulation of liposomal d-Ino. We next,
demonstrated its ability to modulate 5-FU efficacy in mouse
xenografts (Ciccolini et al, 2000b). In light of these considerations,
the aim of the present study was to reverse 5-FU resistance in vitro
and in vivo through a two-pronged strategy: combining 5-FU
with the d-Ino modulator, and treating tumour cells with our new,
stealth liposomal formulation comprised of the aforementioned
combination. The canonical SW620 line was chosen in this
study because it overexpresses TS and, therefore, proves to be
highly resistant to 5-FU, thus miming the major cause of treatment
failure in clinical settings (Ciccolini et al, 2000b). We showed
that it was possible to reproducibly co-encapsulate both 5-FU
and its modulator, with encapsulation rates and release profiles
comparable to the pharmacodynamics of these compounds,
showing that intratumoural formation of active FdUMP in the
3–6 h time window was associated with a maximum efficacy in
digestive cancer models (Ciccolini et al, 2000b, 2001). However,
co-encapsulation rates of both 5-FU and its modulator were
relatively poor (11 and 26%, respectively). Such a moderate
encapsulation rate for 5-FU is not surprising when considering the
polar and amphoterous properties of this drug, that render its
handling quite difficult when preparing standard pegylated
liposomes, as used here (Nii and Ishii, 2005). Indeed, our strategy
was to develop a stealth delivery system as basic and as simple as
possible, to easily standardise a fabrication process that could be
performed in most laboratories equipped with standard apparatus
and reagents.

In the current study, encapsulation rates proved to be highly
reproducible throughout time (e.g., o2% for 5-FU), thus
suggesting little batch-to-batch variation, likely to bias subsequent
experiments. In vitro, reversal of the resistant profile of our
model was achieved, with increases in both cell death and
apoptosis induction, as well as marked increases in sensitisation
(e.g., þ 80% at IC20) of the SW620 cells to 5-FU. Further
experiments confirmed that this increase in efficacy was due to a
remarkable switch from the RNA to the DNA activation pathway,
with increased formation of active FdUMP when 5-FU was
modulated with d-Ino. Subsequent examination of TS activity, as
a pharmacological end point, showed profound and sustained
inhibition of this target, in cells exposed to the liposomal
combination. Additionally, we observed that besides the prefer-
ential activation towards FdUMP, a nearly 40% increase in overall
5-FU cytosolic levels was achieved in cells treated with the
liposomal formulation, thus probably adding to the higher
cytotoxicity effect that was subsequently measured. Interestingly,
similar reversal of resistance to 5-FU was also achieved in mice.
When used as monotherapy, 5-FU failed to reduce tumour growth
as compared with untreated animals. It is noteworthy that
combining 5-FU with free d-Ino hardly improved efficacy in this
animal study, probably due to the relatively low doses of
modulator used (120 mg kg�1) and considering d-Ino’s dramatic
catabolism and the dosage that is normally required (3.2 g kg�1) to
achieve modulating effects in vivo (Ciccolini et al, 2000b, 2001).
Conversely, [FUþ d-Ino]-L caused a 69% reduction in tumour size
when compared with untreated animals, and a significant 57%
reduction when compared with 5-FU alone. Of note, this increase
in efficacy was not accompanied with extra toxicities and all
animals showed excellent tolerance, thus indicating an obvious
improvement in the therapeutic index of 5-FU. In concordance
with the increased antitumoural efficacy and good tolerance,
median survival time was nearly doubled in animals treated with
our liposomal formulation, compared with standard 5-FU, thus
demonstrating that chemoresistance to 5-FU could indeed be
overcome.
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Figure 7 Effects of the liposomal association [5-FUþ d-Ino]-L on
SW620 tumour growth in nude mice. Animals (n¼ 5 per group) were
subcutaneously transplanted with SW620 tumoural cells and administered
for three consecutive days, over three consecutive weeks with each of the
following: carbonate (daily intraperitoneally (i.p.)); 5-fluorouracil (5-FU)
(50mg kg�1 daily i.p.) alone or combined with d-Ino (120mg kg�1 daily i.p.),
or as the [5-FUþ d-Ino]-L formulation (50þ 120mg kg�1, respectively).
Bars, s.d.
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Figure 8 Kaplan–Meier representation of tumour-bearing mice’s
survival treated either with 5-fluorouracil (5-FU) alone, 5-FUþ d-Ino, or
with the [5-FUþ d-Ino]-L combination, as compared with untreated
animals.
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CONCLUSION

Drug resistance is a major cause for clinical failure of
chemotherapies for digestive cancers. Here, we demonstrate that
it is possible to render chemosensitive an experimental model
initially highly resistant to 5-FU, a drug used extensively in
colorectal cancer. Our dual-agent liposomal formulation caused,
through a more effective activation of the 5-FU prodrug into active
metabolites interfering with TS, an increase in the induction of
both cell death and apoptosis. When examined in tumour-bearing
mice, this new formulation led to a striking improvement in
treatment efficacy and subsequent survival in animals, thus

suggesting that reversal of chemoresistance could be achieved
following our combined (encapsulationþmodulation) strategy.
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