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KIT is a tyrosine kinase receptor expressed by several tumours, which has for specific ligand the stem cell factor (SCF). KIT is the main
oncogene in gastrointestinal stromal tumours (GISTs), and gain-of-function KIT mutations are present in 70% of these tumours. The
aim of the study was to measure and investigate the mechanisms of KIT activation in 80 KIT-positive GIST patients. KIT activation was
quantified by detecting phosphotyrosine residues in Western blotting. SCF production was determined by reverse transcriptase–
PCR, ELISA and/or immunohistochemistry. Primary cultures established from three GISTs were also analysed. The results show that
KIT activation was detected in all cases, even in absence of KIT mutations. The fraction of activated KIT was not correlated with the
mutational status of GISTs. Membrane and soluble isoforms of SCF mRNA were present in all GISTs analysed. Additionally, SCF was
also detected in up to 93% of GISTs, and seen to be present within GIST cells. Likewise, the two SCF mRNA isoforms were found to
be expressed in GIST-derived primary cultures. Thus, KIT activation in GISTs may in part result from the presence of SCF within the
tumours.
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Proto-oncogene KIT is a class III transmembrane tyrosine kinase
receptor (TKR) (Reilly, 2003) which is involved in the growth
and differentiation of haematopoietic stem cells, mast cells,
melanocytes, germinal cells and Cajal’s interstitial cells (Ashman,
1999). The binding of KIT ligand promotes KIT dimerization,
and activates its intrinsic tyrosine kinase activity, thereby resulting
in a transphosphorylation at several critical tyrosine residues
and an activation of downstream signal transduction molecules
(Blume-Jensen et al, 1991). The ligand for KIT receptor is the
stem cell factor (SCF) also known as KIT ligand, steel factor and
mast cell growth factor. SCF is implicated in cell proliferation
(Williams and Allan, 1996; Drayer et al, 2005), migration
and survival (Bredin et al, 2003; Erlandsson et al, 2004). Recently,
SCF has also been shown to be implicated in a resistance
mechanism of malignant mesothelioma cells to drug treatment
(Catalano et al, 2004). SCF expression is widely distributed
throughout the body, especially in stromal cells such as fibroblasts
and endothelial cells, and detectable at low levels in the blood
(Ashman, 1999). SCF exists under soluble (s) and membrane-
bound (m) forms due to differential splicing and proteolytic
cleavage (Broudy, 1997). The two forms display distinct effects
as regards to the survival and proliferation of haematopoietic cell

lines (Caruana et al, 1993; Miyazawa et al, 1995) and primary
cells (Fujita et al, 1989; Toksoz et al, 1992), although they are
both active in increasing the number of human progenitor cells
in the context of stromal cell cultures (Toksoz et al, 1992).
Stromal mSCF appears to induce more persistent signalling than
the soluble form, this last form inducing rapid downregulation of
cell surface expression and degradation of KIT (Miyazawa et al,
1995).
KIT is detectable in several human tumours (Went et al, 2004),

and paracrine/autocrine activation by its ligand has been suggested
to be involved in numerous malignancies, including small-cell lung
cancer (Hibi et al, 1991; Krystal et al, 1996), ovarian cancer (Inoue
et al, 1994), neuroblastoma (Ricotti et al, 1998), breast carcinoma
(Hines et al, 1995), leukaemia (Pietsch, 1993; Zheng et al, 2004),
colon carcinoma (Lahm et al, 1995) and Leydig cell tumour
(Kondoh et al, 1995). Gastrointestinal stromal tumours (GISTs) are
the most frequent mesenchymal tumours of the digestive tract.
Nearly all of them express KIT and 70% have a gain-of-function
mutation of KIT gene (Corless et al, 2004), responsible for ligand-
independent KIT activation (Hirota et al, 1998). Moreover, rare
GISTs have been shown to be related to familial KIT mutations
(Nishida et al, 1998), and transgenic mice with a gain-of-function
mutation of KIT have a high incidence of GIST (Sommer et al,
2003). Finally, treatment of GIST patients with the KIT inhibitor
Imatinib can induce tumour regression in many patients (Heinrich
et al, 2003a). Thus, KIT activation plays a major role in GIST
oncogenesis. Surprisingly, there are a few data dealing with SCF in
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GISTs and its possible role as an autocrine/paracrine growth
factor.
In the present study, we quantified the activation of KIT in GIST

samples and found that there is no correlation with the presence of
gain-of-function mutations. We also show that the two isoforms of
the KIT ligand SCF are present in nearly all GISTs, and are
produced by tumour cells.

MATERIALS AND METHODS

Patients

A total of 80 patients with GIST were included in the study. For all
cases, GIST diagnosis was confirmed by at least two pathologists.
Haematoxyline–eosin–saffran staining and immunohisto-
chemistry were performed with CD117/KIT (rabbit polyclonal,
Dako, Copenhagen, Denmark, 1 : 300 dilution), CD34 (mouse,
clone QBEND, Immunotech, Marseille, France, 1 : 2 dilution), and
S100 protein (rabbit polyclonal, Dako, 1 : 200 dilution). Detection
of exon 9, 11, 13, 17 mutations of KIT, and exon 12 and 18
mutations of PDGFRA was performed on either formalin fixed or
frozen tumour samples as previously described (Emile et al, 2002,
2004). Clinical and pathological characteristics, as well as
mutational status of most cases, have been previously reported
(Emile et al, 2004; Théou et al, 2004; Tabone et al, 2005). Frozen
and fresh tumour samples were obtained from 18 and three
patients, respectively. Tumour samples were collected during
surgical resection performed for therapeutic purposes and
harvested before treatment with imatinib mesylate. According to
French ethical laws, none of the patients expressed his willingness
not to be included in this study. Paraffin-embedded and frozen
normal digestive tissue samples from eleven patients without GIST
were used as controls. None of them displayed mutations in KIT or
PDGFRA.

Cell isolation and primary cell culture

Fresh GIST samples were minced with scissors, washed twice in
PBS, and incubated in a 0.25% solution of collagenase A (Roche
Diagnostics, Meylan, France) at þ 371C until disaggregation was
complete. After cold centrifugation in PBS, cell pellets were
resuspended in 1640 RPMI medium supplemented with 10%s FCS
(both from Gibco BRL, Cergy-Pontoise, France), and seeded into
culture flasks (ATGC Biotechnologie, Noisy-le-Grand, France) at
approximately 1.0� 105 cells cm�2. Medium changes were per-
formed 24 h after seeding, and once a week before cell analysis. For
RNA extraction, confluent cultures were trypsinized, and cells were
centrifuged at 2000 r.p.m. for 5min at room temperature. Cell
pellets were vortexed in lysis buffer (350 ml/106 cells) of RNeasy
KIT for RNA extraction (Qiagen, Courtaboeuf, France), and kept at
�801C before analysis.

Detection of soluble and membrane-bound forms of SCF
mRNA

For RNA extraction, frozen tissues were mechanically homo-
genized (Mixer Mill MM 300, Retsch, Germany). RNA was
extracted from homogenates of tumours, digestive tissues and
cultured cells with the RNeasy & QIAshredder KITs (Qiagen)
according to the manufacturer’s instructions. A maximum of 1 mg
of RNA was reverse transcribed in a 20 ml final volume. The
reaction mixture contained 1�RT buffer, 5.5mM MgCl2, 500mM
each dNTP, 2.5 mM random hexamers, 0.4 U ml�1 RNase inhibitor
and 1.25U ml�1 reverse transcriptase (Applied Biosystems, Foster
City, CA, USA). The cycling conditions were 10min at 251C, 30min
at 481C, and 5min at 951C. Soluble and membrane-bound
SCF mRNA were detected by PCR amplification using primers
SCF-F-HEX (50CAAGGACTTTGTAGTGGCATCT30) and SCF-R

(50GAGAAAACAATGCTGGCAAT30) on RT–PCR products.
Each of the 35 PCR cycles consisted of denaturation for 1min
at 921C, annealing for 30 s at 601C and elongation for 45 s
at 721C. Each PCR included an initial denaturation step of 2min at
941C and a final elongation step of 7min at 721C. To detect
the PCR HEX-labelled products and to determine their size, 1 ml
of each sample was added to 23 ml of formamide and 0.5 ml of
GeneScan 500 TAMRA size standard (Applied Biosystems,
Foster City, CA, USA). Capillary electrophoresis was performed
with an ABI Prism 310 apparatus, according to the manu-
facturer’s instructions. Size curves and fluorescence intensity
were analysed and quantified with Genescan software (Applied
Biosystems).

Immunohistochemical detection of SCF

Paraffin-embedded donor tissue blocks were sampled with 0.6
punchers using a tissue microarray (TMA) instrument (Beecher
Instruments Inc., Sun Prairie, WI, USA). Previously haematox-
ylin–eosin–saffran stained sections were used to select represen-
tative tumour areas, and for each tumour, three cylindrical
cores were removed from the donor block and placed into the
recipient TMA paraffin block. After antigen removal,
TMA sections were subjected to immunohistochemical staining
by using anti-KIT (1 : 300 dilution), DOG-1 (rabbit polyclonal
S0284, Applied Genomics Inc., Huntsville, AL, USA, 1 : 40 dilution)
and SCF (rabbit polyclonal H-189, Santa Cruz Biotechnology
Inc., Santa Cruz, CA, USA, 1 : 40 dilution) antibodies, and avidin–
biotin complex immunoperoxidase technique (LSAB2, Dako).
Immunohistochemistry was also performed on 10 large GIST
samples, which contained tumour as well as adjacent nontumour
tissue.

Protein extraction and analysis

Frozen GIST samples were calibrated and mechanically homo-
genized (Mixer Mill MM 300) in lysis buffer (20mM Tris, 150mM

NaCl, 1mM othovanadate, 10mM NaF, 1mM PMSF, 0.5 mgml�1

leupeptine, 1 mgml�1 pepstatine, 10 KIUml�1 aprotinine, 1%
Triton X-100). Lysates were rocked for 30min at 41C, and then
centrifuged to remove insoluble material. Supernatant protein
contents were determined using Bradford solution and were
normalized.
KIT was immunoprecipitated from 100 ml of lysates, using

anti-CD117 antibody and Sepharose protein G beads (Amersham
Pharmacia Biotech, Les Ulis, France). After 1 h incubation at
41C under constant agitation, the beads were washed three times in
lysis buffer. Immunoprecipitates and total lysates were resus-
pended in Laemmli buffer, heated and separated by 5–15% SDS–
polyacrylamide gel electrophoresis under reducing conditions,
and transferred to a polyvinylidene difluoride membrane (Biorad,
Marnes-la Coquette, France). Western blots on immuno-precipi-
tates were performed using 4G10 (kindly provided by Dr C
Boucheix, 1 : 5 dilution) phosphotyrosine mAb and anti-CD117
(rabbit polyclonal, Dako, 1 : 1000 dilution) antibody whereas
Western blots on total lysates was performed using TYR
721 Antibody (Voytyuk et al, 2003, rabbit polyclonal, 1 mgml�1)).
Immunoreactive bands were visualized by using appropriate
secondary horseradish peroxidase-conjugated antibodies (Immu-
notech, Marseille, France) and enhanced chemiluminescence
(PerkinElmer, Life Sciences). Measurement of fluorescent
intensity was performed by using Intelligent Dark box II (Fujifilm,
FUJI, Japan) and Image Gauge V4.0 5F (Fujifilm) sofware.
Quantitative determinations of human SCF concentrations
were performed using 100 ml of protein extracts by ELISA
(Quantikine, R&D systems, USA) according to the manufacturer’s
instructions.
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RESULTS

KIT activation in GISTs

KIT activation was determined in total protein extracts prepared
from 17 frozen GIST samples by two different methods. In the first
step, analyses was performed by Western blotting using TYR721
antibody, specific for the phosphorylated tyrosine 721. A positive
signal was detected in 14/17 cases (Figure 1). However, the total
amount of activated KIT highly varied between tumours. To
quantify the fraction of activated KIT present in each GIST sample,
total protein extracts were immunoprecipitated with anti-KIT
antibody. After Western blotting, dilutions were made to obtain
the same amount of KIT in each sample. KIT activation was then
analysed on a second Western blot using 4G10 mAb, specific for
phosphotyrosine. As illustrated in Figure 2, a positive signal was
detected at 145 kDa in all cases and the fraction of KIT activation
differed between samples. The fraction of activated KIT revealed
by 4G10 mAb was then quantified in GIST samples (Table 1), no
correlation was found with the presence of KIT mutations
(P40.05, nonparametric Wilcoxon test).

Detection of SCF in GISTs

As KIT activation did not depend on the gain-of-function
mutations, we looked for the presence of the KIT ligand SCF
within the tumours. Indeed, SCF mRNAs were detected in the 18
frozen GISTs samples tested by RT–PCR. SCF was also detected in
protein extracts from eight GISTs by ELISA with concentrations
ranging from 3.7 to 89 pgml�1 of total protein extract (mean

29.6 pgml�1). Interestingly, the lowest SCF amount was found in a
tumour in which PDGFRA mutation had been detected. To further
confirm the presence of SCF in GISTs, we performed immuno-
histochemistry on tissue microarray containing 67 GISTs positive for
both KIT and DOG-1. In all, 62 cases (93%) were positive for SCF.
As seen in Figure 3, primers for RT-PCR allowed amplifying the

two SCF isoforms. The larger amplicon (222 base pairs)
corresponded to the sSCF, containing a proteolytic domain. The
smaller amplicon (137 base pair) did no contain this domain and
corresponded to the mSCF. sSCF signal was higher in most (14/18)
cases.

Production of SCF by tumour and nontumour cells

SCF is known to be produced by several types of cells. Indeed, SCF
mRNA was detected in the 11 normal digestive control samples
that we tested (Table 1). SCF was also detected by ELISA in two of
three control digestive samples.
Immunohistochemistry analysis showed that, in the 63 GIST

samples positive for SCF, the staining was mainly detected within
tumour cells. In nearly all positive cases, cellular staining was
diffuse, and generally displayed a membranous and cytoplasmic
distribution pattern (Figure 4).
To further confirm that GIST cells were able to produce SCF,

primary cultures were established from three fresh tumours
derived from the stomach, and all strongly positive for KIT.
Primary cultures consisted of a homogeneous population of
spindle-shaped cells (Figure 5). The heterozygous KIT exon 11
deletions detected in two out of the three tumours, were similarly
present in the corresponding primary cultures. Moreover, RT–
PCR also revealed the presence of both both sSCF and mSCF.
Immunohistochemistry performed on larger histological sam-

ples, which contained GIST as well as nontumour adjacent tissue,
confirmed the diffuse staining within GIST and also showed a
positivity in some nontumour cells. Staining of muscular cells of
the muscularis propria and of the arteries was always lower than
that of GIST cells (Figure 6). By contrast, some lymphocytes had a
higher positivity (Figure 6).

DISCUSSION

KIT plays a major role in GIST oncogenesis. Indeed, 95% of
GISTs express KIT (Corless et al, 2004), and its inhibitor, Imatinib,

KIT

pY721

A B C D E F G H

145 kDa

145 kDa

Figure 1 Expression of phosphorylated Tyrosine 721 of KIT protein. For
each sample, 18 mg of total protein extracts were loaded in gels and
revealed on Western blot by Y721 polyclonal antibody specific for the
phosphorylated tyrosine 721 (upper gel) or polyclonal anti-KIT antibody
(lower gel). Wild type GIST: A (71105) and B (71183). Mutated GIST C
(71229), D (71175), E (71100), F (71237), G (70810) and H (71101).

A
IP KIT

IB KIT

IB 4G10

B C D E F G

145 kDa

145 kDa

Figure 2 Expression of phosphorylated KIT protein. Protein extracts
were immunoprecipitated by KIT antibody. A first Western blot was
revealed with KIT antibody to quantify the amount of KIT in each samples.
Appropriate dilutions were then performed to load the same amount of
KIT from each samples in a second gel revealed by 4G10mAb (upper gel)
and a third gel revealed by KIT (lower gel). On the upper gel, the bands of
145 kDa corresponded to activated KIT protein. The lower gel confirmed
that similar amounts of total KIT were loaded from each samples. Wild-
type GIST: A (71186) and B (71105). Mutated GIST C (71237), D (71101),
E (70810), F (71231) and G (71562).

Table 1 KIT mutations and KIT expression and activation in GISTs

Patients Primary site Mutations KITa phosphoKITa

70810 Stomach KIT: del555-558 208 043 657 690
71100 Stomach KIT: del553-558 400 505 152 088
71101 Stomach KIT: del576 198 769 143 520
71175 Stomach KIT: W557R 362 286 46 980
71181 Intestine KIT: ins502-503 317 449 229 884
71229 Stomach KIT: del576 482 715 36 444
71231 Intestine KIT: del557-558 158 166 341 288
71237 Stomach KIT: del561-578 87 749 257 960
71562 Stomach KIT: del557-558 213 413 156 411
71224 Stomach PDGFRA: del842-845 32 597 679 888
71103 Colon wt 567 685 65 588
71105 Peritoneum wt 363 408 55 359
71183 Stomach wt 58 616 269 632
71186 Intestine wt 36 972 1 046 213
71233 Colon wt 7339 979 572
71385 Intestine wt 197 507 152 647

aKIT and phosphoKIT correspond to the chemiluminescent intensity mesured on
blots and repported to 18 mg of total protein extract for KIT, and a
chemoluminescent signal of total KIT at 7000 for phosphoKIT.
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shows strong antitumour effects (Demetri et al, 2002). About
70% of GISTs display gain-of-function mutation of KIT (Corless
et al, 2004) responsible for constitutive KIT activation
(Hirota et al, 1998). These mutations also play a major role in
GIST oncogenesis. Indeed, they are associated with some familial
cases (Nishida et al, 1998), and similarly KIT-mutated knock-in
mice display high GIST incidence (Sommer et al, 2003). However,
most data dealing with KIT activation by gain-of-function
mutations are obtained in cells containing a homozygous
mutation, while 94% of GISTs’ mutations are heterozygous (Emile
et al, 2004). It is, thus, not yet known whether heterozygous KIT
mutations act by inducing overall KIT activation or by other
mechanisms, such as activation of specific signal transduction
pathways in GIST cells.
Our analysis of the activation status of KIT in 17 KIT-positive

GISTs by the detection of phosphorylated tyrosine residues shows
that at least a fraction of KIT was activated in each tumour, even in
the absence of gain-of-function mutation, consistent with pre-
viously published data (Rubin et al, 2001; Heinrich et al, 2003b;
Antonescu et al, 2005). After immunoprecipitation and adjustment
of the total KIT amounts in each sample, we were able to quantify

the activated fraction of KIT. In these conditions, we found no
correlation with the mutational GIST’s status. Thus, the hetero-
zygous gain-of-function mutations of KIT in GISTs have a few
impact on the overall activation of this tyrosine kinase receptor.
These results prompted us to look for an alternative mechanism of
KIT activation in GISTs.
The absence of correlation between mutational status and

KIT activation could be explained by the presence of SCF within
tumours. Indeed, we show that SCF transcripts were present in
the entire GIST samples tested, results consistent with a recently
published cDNA array study (Antonescu et al, 2004). We also
detected SCF by ELISA and immunohistochemistry in up to 93%
of GIST samples. SCF treatment of GIST544 cells, which express a
heterozygous KIT exon 9 mutation induces a stronger KIT tyrosine
phosphorylation (Duensing et al, 2004), while SCF treatment
of GIST882 cells, which carry a homozygous KIT exon 13 mutation
does not (Lux et al, 2000). The two main isoforms of KIT, GNNK�
and GNNKþ , have been shown to have differential biological
activities. Indeed GNNK�, which is the most abundant in
GISTs (Théou et al, 2004), strongly promotes colony formation
in semisolid medium, loss of cell to cell contact inhibition, and
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2R : SCF 71387 3 28/06/3/

3R : SCF 71388 3 28/06/3/

63R : 71237 SCF 26/06/3/

Figure 3 Quantification of SCF isoforms by fluorescence intensity after RT–PCR in GISTs and digestive tissues. Fluorescent amplicons (blue peaks) were
separated by capillary electrophoresis and identified on the basis of their size. Peaks at 222 base pairs (arrow head) corresponded to sSCF, while peaks at
137 base pairs (arrow) corresponded to mSCF. The green peaks corresponded to size markers (TAMRA). Numbers 71237 and 70810 are GISTs samples,
and 71387 and 71388 are digestive tissues from muscularis propria (ileon) and mucosa (colon), respectively.

A B C D

Figure 4 Detection of SCF staining within GIST cells by immunohistochemistry with anti-SCF antibody. A positive diffuse staining was present in most
GISTs (A–C), but absent in some cases (D). The staining was generally both cytoplasmic and membranous (A), and sometimes predominantly
membranous (B) or cytoplasmic (C).
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N Théou-Anton et al

1183

British Journal of Cancer (2006) 94(8), 1180 – 1185& 2006 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



tumour growth in nude mice (Caruana et al, 1999). Furthermore,
after ligand stimulation, the GNNK� isoform displayed more rapid
and extensive tyrosine autophosphorylation and faster internaliza-
tion (Caruana et al, 1999). Thus SCF may activate the wild-type
species of KIT in GISTs without mutations, and may also modulate
the fraction of activated KIT in GISTs with heterozygous
mutations.
The presence of both KIT and SCF has already been reported

in several tumours (Hibi et al, 1991; Pietsch, 1993; Inoue
et al, 1994; Hines et al, 1995; Kondoh et al, 1995; Lahm et al,
1995; Krystal et al, 1996; Ricotti et al, 1998; Zheng et al, 2004),
suggesting either an autocrine or paracrine oncogenic effect. The
cellular origin of SCF in GIST samples appears to be the tumour
cells themselves. Immunohistochemistry disclosed a strong

staining of most GIST cells with anti-SCF antibody. This staining,
however, could result from the internalization of SCF after its
ligation to KIT. Indeed, SCF is known to be produced by dif-
ferent cell types, and we did detect SCF mRNA in all
the nontumoural digestive samples tested. This result high-
lights that microenvironnement of tumour cells could led
to a paracrine loop mechanism. However, by establishing
primary homogenous GIST cell cultures, we confirmed the SCF
production, both membrane and soluble isoforms of SCF mRNA,
in GIST cells.
In conclusion, although KIT gain-of-function mutations play a

major role in GIST oncogenesis, we show that KIT activation in
these tumours is unrelated to the presence of these mutations, and
may result from an autocrine/paracrine mechanism. Therefore,
heterozygous KIT mutations in GISTs may act by inducing specific
signal transduction pathways, rather than enhancing overall KIT
activation.
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