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Cutaneous melanoma is one of the highly malignant human tumours, due to its tendency to generate early metastases and its
resistance to classical chemotherapy. We recently demonstrated that pamidronate, a nitrogen-containing bisphosphonate, has an
antiproliferative and proapoptotic effect on different melanoma cell lines. In the present study, we compared the in vitro effects of
three different bisphosphonates on human melanoma cell lines and we demonstrated that the two nitrogen-containing
bisphosphonates pamidronate and zoledronate inhibited the proliferation of melanoma cells and induced apoptosis in a dose- and
time-dependent manner. Moreover, cell cycle progression was altered, the two compounds causing accumulation of the cells in the S
phase of the cycle. In contrast, the nonaminobisphosphonate clodronate had no effect on melanoma cells. These findings suggest a
direct antitumoural effect of bisphosphonates on melanoma cells in vitro and further support the hypothesis of different intracellular
mechanisms of action for nitrogen-containing and nonaminobisphosphonates. Our data indicate that nitrogen-containing
bisphosphonates may be a useful novel therapeutic class for treatment and/or prevention of melanoma metastases.
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Melanoma is a highly malignant tumour and its propensity to
metastasise together to its resistance to therapy in later stages
make it the most aggressive skin cancer (Serrone and Hersey, 1999;
Soengas and Lowe, 2003). The high mortality rate of malignant
melanoma, the poor efficacy of chemotherapy in advanced stages
of the disease and the high toxicity of the classical regimens have
stimulated intensive research for new alternatives for the therapy
of melanoma. Various studies suggest that an intrinsic resistance
to apoptosis can be one important mechanism by which melanoma
cells escape therapeutic control (Soengas and Lowe, 2003).
Therefore, new therapeutical strategies that bypass this resistance
are necessary.
Bisphosphonates are a class of synthetic analogues of the

endogenous pyrophosphate, which are well established in the
treatment of osteoclast-mediated bone diseases such as osteo-
porosis, Paget’s disease of the bone and tumour-induced osteolysis
(Fleisch, 1997; Finley, 2002). They have been used in medical
practice for more than three decades for their antidemineralising
effects. Recently, an increasing body of evidence from both in vitro
and in vivo studies suggests that bisphosphonates may also have a
specific antitumoural action (Clezardin, 2002; Padalecki and Guise,
2002; Green, 2003). Thus, bisphosphonates have been shown to
inhibit proliferation, induce cell cycle changes and/or induce

apoptosis in various types of human tumour cells, especially in
those with preferential spread to bone, such as multiple myeloma,
breast or prostate carcinoma cells (Shipman et al, 1997; Senaratne
et al, 2000; Hiraga et al, 2001; Lee et al, 2001; Sonnemann et al,
2001; Iguchi et al, 2003; Oades et al, 2003).
For the nitrogen-containing bisphosphonates, this antiprolifera-

tive and proapoptotic effect appears to be related to their ability to
inhibit the enzymes of the mevalonate pathway, especially farnesyl
pyrophosphate (FPP) synthase (Luckman et al, 1998; Benford et al,
1999; Senaratne et al, 2002). Consequently, bisphosphonates
prevent the synthesis of higher isoprenoids such as geranylgeranyl
pyrophosphate (GGPP) and FPP, which are necessary for the post-
translational processing (prenylation) of different signalling
molecules, including monomeric G proteins of the Ras and Rho
families. For these families of small GTPases, the prenyl residues
act as membrane anchors essential for their activation and further
interaction with other signalling molecules (Bar-Sagi and Hall,
2000; Aznar and Lacal, 2001). Ras and Rho protein families are key
regulators of a variety of cellular processes, ranging from
reorganisation of the cytoskeleton to transcriptional regulation
and control of cell growth and survival (Aznar and Lacal, 2001).
When their expression and activation escape the control mechan-
isms, small GTPases play an essential part in promoting
tumorigenesis and tumour metastasing (Fritz et al, 1999; Clark
et al, 2000; Pruitt and Der, 2001). Therefore, their inactivation by
inhibition of prenylation could explain at least in part the
antitumoral effects described for bisphosphonates. On the
contrary, bisphosphonates that lack a nitrogen atom, such as
clodronate, appear to have no effect on the mevalonate pathway,
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but rather reduce cell viability by metabolism to inactive analogues
of ATP, and consequently, by disruption of the ATP-dependent
processes of the cell (Rogers et al, 1996; Rogers et al, 1999).
We have previously demonstrated that the nitrogen-containing

bisphosphonate pamidronate is able to induce apoptosis and to
inhibit proliferation in melanoma cells in vitro (Riebeling et al,
2002). Melanoma metastasises less often to bone, but it is an
aggressive tumour with high metastatic potential and marked
resistance to the currently available antitumour therapy strategies.
New therapy alternatives are urgently required, and we addressed
the question of the possible benefit of bisphosphonates in the
adjuvant therapy of melanoma. Besides the well-known pamidro-
nate, a wide range of newer bisphosphonates with higher
antiresorptive effect have been introduced in practice (Green,
2001; Fleisch, 2002; Widler et al, 2002). However, the relationship
between antiresorptive potency, mechanism of action and cellular
effects of bisphosphonates has not been completely elucidated.
Moreover, to what extent bisphosphonates of different pharmaco-
logical classes differ in their effects in tumour cells or if higher
antiresorptive potency implies a stronger effect against tumour cell
growth is still a matter of debate.
The present study aims to compare the effect of three different

bisphosphonates, with different postulated mechanisms of action
and different antiresorptive potencies, on cell proliferation, cell
cycle progression and cell survival in melanoma in vitro. We have
chosen for this purpose the nonaminobisphosphonate clodronate,
widely used in the treatment of cancer-induced osteolytic disease,
and two nitrogen-containing bisphosphonates, pamidronate and
the newly developed zoledronate, the most potent antiresorptive
agent known to date.

MATERIAL AND METHODS

Reagents

Pamidronate (Aredias) (3-amino-1-hydroxy-propyldiene-1,1-bi-
sphosphonate) and zoledronate (Zometas) (2-(imidazole)-1-yl)
hydroxyethylidene-1,1-bisphophonate) were obtained from No-
vartis Pharma (Nürnberg, Germany). Clodronate (dichlorohydro-
methylene-diphosphonic acid) was purchased from Sigma
(Munich, Germany).
All three bisphosphonates were dissolved in distilled water and

filter sterilised (sterile filters, B Braun, Melsungen, Germany).
Stock solutions (at final concentrations of 21.5mM for pamidro-
nate, and 100mM for zoledronate and clodronate) were aliquoted
and kept at �201C for long-term storage.
Caspase-3 inhibitor was purchased from Alexis (Grünberg,

Deutschland). Cells were pretreated with the inhibitor 1 h prior to
stimulation.
Dulbecco’s modified Eagle’s medium (DMEM) was purchased

from Invitrogen (Karlsruhe, Germany). Further cell culture
reagents were obtained from Seromed-Biochrom (Berlin, Ger-
many). All other reagents were obtained from Sigma (Munich,
Germany) unless stated otherwise.

Cell culture

The melanoma cell line A375 (CRL-1619), derived from primary
tumour, was purchased from American Type Culture Collection
(Manassas, VA, USA). The melanoma cell population M186 was
obtained by surgical intervention from a patient with histologically
confirmed melanoma metastases. Melanoma cells were grown in
75 cm2 culture flasks (Nunc, Wiesbaden, Germany) in DMEM
supplemented with 10% heat-inactivated foetal calf serum,
100Uml�1 penicillin and 100 mgml�1 streptomycin, in a 5% CO2

atmosphere at 371C.

Proliferation assay

Proliferation was assessed using the crystal violet staining method
(Wieder et al, 1998). Subconfluent melanoma (60 000 cells well�1)
were treated in 24-well plates with the indicated agents or
corresponding solvents as control. After the indicated incubation
time, culture medium was removed, cells were rinsed with
phosphate-buffered saline (PBS) to wash off nonadherent cells
and the remaining cells were fixed with 0.1 M glutaraldehyde in PBS
for 30min at room temperature. Subsequently, cells were washed
with PBS and then stained by incubation with 0.2mM crystal violet
in PBS for 30min at room temperature. Unbound dye was washed
away in deionised water for 15min and 0.2% Triton X-100 was
added to release the bound dye. After 1 h of incubation, 100 ml
supernatant of each sample was transferred to 96-well microtitre
plate and the extinction at 570 nm was measured using an ELISA
photometer. Extinction values of vehicle-treated control cells were
set at 100% and the rate of proliferation of bisphosphonate-treated
cells was calculated as the percent of controls.

Cytotoxicity assay

Cytotoxicity was determined using the Cytotoxicity Detection Kit
(LDH) Roche Diagnostics, (Mannheim, Germany). After incuba-
tion of 80 000 cells well�1 in 24-well plates, for up to 24 h plates
were centrifuged at 300 g for 5min. A measure of 50 ml of the
resulting supernatant were transferred into a microtitre plate and
lactate dehydrogenase (LDH) activity was determined by the
addition of substrate solution. Formation of the formazan salt was
measured at 490 nm using an ELISA photometer. Extinction values
of control cells were set at 100% and the rate of LDH release from
the treated cells was calculated as the percent of controls.

Cell death detection

Induction of apoptosis was measured using the ‘Cell death
detection ELISAPLUS’ kit from Roche Diagnostics (Mannheim,
Germany), which detects oligonucleosomes released into the
cytoplasm of cells during apoptosis, by means of a combination
of anti-histone and anti-DNA antibodies, as described (Wieder
et al, 1998).
Cells were seeded at 80 000 cells well�1 in 24-well plates and left

to adhere overnight. Subsequently, cells were treated as indicated,
after which the plates were centrifuged at 300 g for 5min. The
supernatant was cautiously removed and the cells further
incubated with lysis buffer for 30min at room temperature. After
centrifugation at 300 g for 10min, 20 ml from the resulting
supernatants were transferred to a streptavidin-coated microtitre
plate, supplemented with 80 ml of immunoreagent solution
(containing biotin-coupled anti-histone antibodies and peroxi-
dase-coupled anti-DNA antibodies) and incubated for 2 h at room
temperature under moderate shaking.
After incubation, the wells were rinsed with incubation buffer,

supplied with 100 ml substrate solution per well and further
incubated for 10min at room temperature, under protection from
light. The extinction of the samples at 405 nm was measured using
an ELISA photometer. Extinction values of control samples were
set at 100% and DNA fragmentation of treated cells was calculated
as the percent of control.

Measurement of caspase-3/7 activity

Capase-3/7 activity was measured by proteolytic cleavage of the
fluorogenic substrate Z-DEVD-R110 using the Apo-Onet Homo-
geneous Caspase-3/7 Assay (Promega, Madison, WI, USA). Cells
were treated for 24 h in 96-well plates with the corresponding
bisphosphonates or vehicle as control, at concentrations as
indicated. Apo-Onet Homogeneous Caspase-3/7 buffer containing
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Z-DEVD-R110 diluted 1 : 100 was added to the cells and incubated
at room temperature. The activity was measured fluorimetrically
with an excitation wavelength of 499 nm and an emission
wavelength of 521 nm after 90min. Caspase-3/7 activity was
determined and expressed as the percentage of control.

Cell cycle analysis

The distribution of cells in different phases of the cell cycle after
treatment with bisphosphonates was analysed by measuring the
DNA content of cells using FACS analysis after nuclear staining
with propidium iodide. Melanoma cells were seeded at 80 000
cells well�1 in six-well plates. After 48 h, they were treated as
indicated and subsequently washed with PBS, trypsinised and
harvested in culture medium. All washes and cell solutions were
pooled and centrifuged at 200 g for 5min. The cell pellet was
resuspended in PBS and 1� 106 cells of each sample were
collected, washed in ice-cold PBS and fixed in ice-cold 70%
ethanol in PBS (v v�1) at �201C over night.
For the analysis of DNA content, samples were thawed and

centrifuged at 400 g for 5min. The pellet was washed once with
1ml PBS, and then incubated with 1ml of 2% propidium iodide
and 20% RNase A in PBS, for at least 30min at room temperature,
protected from light. After incubation, the cell suspension was
analysed for red fluorescence with a FACSCalibur flowcytometer
(Becton Dickinson, Heidelberg, Germany). DNA histograms were
created using Cell Questt software, version 3.0 for Apple
Macintosh (Becton Dickinson), where 20 000 events sample�1 were
analysed. The relative distribution of cells in the phases of the cell
cycle was calculated with ModFitLT software, version 2.0 for Apple
Macintosh (Becton Dickinson).

Statistical analysis

Statistical significance was determined using the Student’s t-test,
with SigmaStat 2.03 software. Po0.05 was considered significant.

RESULTS

Nitrogen-containing bisphosphonates inhibit melanoma
cell proliferation

In order to investigate the effect of bisphosphonates on melanoma
cell growth, melanoma cell lines A375 and M186 were treated with
increasing concentrations of pamidronate, zoledronate and
clodronate for 24 h. The number of cells was determined using
the crystal violet method. In both cell lines, pamidronate as well as
zoledronate treatment resulted in a dose-dependent decrease in
cell number (Figure 1). In A375 cells, (Figure 1A) a significant
reduction in cell number was observed after treatment with 50 mM
pamidronate, and reached the maximum after treatment with at
100mM pamidronate (84% of control). Higher concentrations of
pamidronate were not able to induce a further decrease in cell
number. Zoledronate was more effective in inhibiting cell growth.
The cell number was significantly reduced to 89% of control at a
concentration of 30 mM and further decreased to 45% of control at
100mM zoledronate. A similar effect of bisphosphonate treatment
was observed in M186 cells (Figure 1B). A slight, yet still significant
reduction of cell number was observed for pamidronate at a
concentration of 100 mM (88% of control), and a stronger effect was
observed for zoledronate, beginning at a concentration of 30mM
and reaching a maximum at 100 mM with 57% of control.
In contrast, incubation of both A375 and M186 cells with the

nonaminobisphosphonate clodronate, at concentrations ranging
from 100 to 1000 mM, failed to induce a significant decrease in cell
number within 24 h (data not shown).

Nitrogen-containing bisphosphonates induce apoptosis in
melanoma cell lines

DNA fragmentation as a marker of apoptosis was evaluated by
means of an ELISA technique in A375 and M186 cells after 24 h of
incubation with increasing concentrations of pamidronate, zole-
dronate or clodronate.
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Figure 1 Effects of bisphosphonates on melanoma cell proliferation.
A375 (A) and M186 (B) melanoma cells were incubated for 24 h with the
indicated doses of pamidronate (squares) or zoledronate (circles). Cell
proliferation was evaluated using the crystal violet technique. Four
independent experiments were performed in quadruplicate with similar
results. One representative experiment is shown. Results are given as % of
controls7s.d. (n¼ 4) (*Po0.05; **Po0.01).
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A dose-dependent induction of DNA fragmentation was
observed after both zoledronate and pamidronate treatment in
the two-cell populations that were studied. In A375 cells, a
significant effect was detectable at concentrations of 50 mM and was
further increased at 100 mM (Figure 2A). In M186 cells, increased
DNA fragmentation was first detected at a concentration of 30mM
(Figure 2B). In both cell lines, 100 mM pamidronate had a stronger
effect in inducing apoptosis, with DNA fragmentation reaching
711% of control in A375 cells, and 746% of control in M186 cells,
while, using 100 mM zoledronate, DNA fragmentation reached only

280% of controls in A375 cells and 247% in M186 cells. In contrast,
A375 and M186 cells treated for 24 h with clodronate in
concentrations ranging from 100 to 1000mM showed no significant
effect on DNA fragmentation (Figure 2C).
The activity of the execution caspase-3 or -7 is a further marker

of apoptosis. The data obtained for DNA fragmentation correlated
well with the caspase activity measured in bisphosphonate-treated
melanoma cells. A375 and M186 cells were treated for 24 h with
100mM pamidronate or zoledronate, respectively, after which the
activity of caspase-3/7 was measured. The data obtained on
caspase activation further support a stronger proapoptotic effect of
pamidronate, in comparison to zoledronate. (Figure 3). Treatment
of the cells with clodronate showed no effect on caspase-3/7
activity (data not shown).
A possible unspecific cytotoxic effect of bisphosphonates on

melanoma cells was investigated by measuring the extracellular
release of LDH, following bisphosphonate treatment. No increase
of LDH release in comparison with controls was found in M186
and A375 cells treated for 24 h with zoledronate or pamidronate in
a concentration range between 10 and 100 mM, while treatment with
the nonaminobisphosphonate clodronate, in concentrations ran-
ging from 100 to 1000mM, induced a moderate but significant
increase in extracellular LDH activity measured after 24 h (data not
shown). Thus, nitrogen-containing bisphosphonates are able to
induce apoptosis in a dose-dependent manner in melanoma cells,
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Figure 2 Effect of bisphosphonates on the induction of apoptosis in
melanoma cells. Preconfluent A375 (A) and M186 (B) melanoma cells
were treated with the indicated concentrations of zoledronate (white
columns), or pamidronate (grey columns) for 24 h. (C) A375 (light grey
columns) and M186 (hatched columns) cells were treated for 24 h with
clodronate in the indicated concentrations. DNA fragmentation was
measured using the ‘Cell death detection ELISAPLUS’ as described under
Materials and methods. Four independent experiments were performed in
quadruplicate, with similar results. One representative experiment is
shown. Results are given as % of controls7s.d. (n¼ 4) (*Po0.05;
**Po0.01).
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Figure 3 Nitrogen-containing bisphosphonates induce caspase-3/7
activity in melanoma cells. Preconfluent A 375 (A) and M186 (B) cells
were treated with vehicle control (white bars), 100 mM pamidronate (grey
columns) or 100 mM zoledronate (black columns) for 24 h. For specific
activation of caspase-3, cells were pretreated with the respective caspase-3
inhibitor 1 h prior to stimulation and then treated for 24 h with 100 mM
pamidronate or zoledronate in combination with the inhibitor (square
bars). Caspase-3/7 activity was determined with the Apo-Onet homo-
geneous caspase-3/7 assay as described under Materials and methods.
Three independent experiments were performed in quadruplicate, with
similar results. One representative experiment is shown. Results are given
as % of control7s.d. (n¼ 4) (*Po0.05; **Po0.01).
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while the nonaminobisphosphonate clodronate appears to induce
necrosis without apoptotic effect.
Further on, we investigated the relationship between the

apoptotic effect of bisphosphonates and the duration of the
treatment. A375 melanoma cells were incubated for 6, 12 and 24 h
with 100 mM pamidronate or zoledronate. A significant increase in
DNA fragmentation was observed after 12 h of incubation with
both bisphosphonates (Figure 4), and increased further markedly
after 24 h of treatment, reaching up to 700% of controls for
pamidronate and 315% for zoledronate. Thus, apoptosis induced
by bisphosphonates is dependent on both concentration and
duration of treatment.

Bisphosphonates inhibit progression of melanoma cells
through the cell cycle

In order to study the effect of bisphosphonates on cell cycle
progression of melanoma cells, FACS analysis of the DNA content
was used to investigate the distribution of A375 and M186 cells in
the phases of the cell cycle. Cells were treated for 24 h with
increasing concentrations of pamidronate, zoledronate or clodro-
nate.
Vehicle-treated cultures exhibited a distribution of cells in the

phases of the cell cycle typical for proliferating cells, with an
average of 61% of cells having a 2n DNA content, corresponding to
G0/G1 phase, 10% of cells having a 4n DNA content (G2/M) and
28% showing a DNA content between 2n and 4n, corresponding to
the S phase (Figure 5).
Cells treated with pamidronate or zoledronate in a concentra-

tion range of 10–100 mM showed comparable dose-dependent
alterations in cell cycle distribution, with an increase in number of
cells in S phase accompanied by a reduction in the proportion of
cells in G0/G1 and G2/M phases (Figure 5A and B). Zoledronate
was more potent in inducing changes in cell cycle distribution, its
effects starting at concentrations of 30 mM, while pamidronate
significantly altered the distribution of cells in the cell cycle phases
only at the highest concentration. The maximum effect was seen
for both drugs at a concentration of 100mM, with an increase in the
proportion of cells in S phase from 28 to 49% for pamidronate and
to 47% for zoledronate.

In contrast, treatment of cells with clodronate at concentrations
10 times higher showed a different pattern, with the tendency of an
increase in the proportion of cells in G0/G1 phase (Figure 5C).

DISCUSSION

At present, bisphosphonates are emerging as new potential
antitumoral drugs. While most of the studies on bisphosphonates
concentrate on tumours with preferential spreading to bone, such
as breast or prostate cancer, we were the first to show that
pamidronate can induce apoptosis in melanoma cells (Riebeling
et al, 2002). In order to further investigate the potential benefit of
bisphosphonates in the treatment of melanoma, the present study
compares the effect of these compounds on proliferation, cell cycle
progression and apoptosis induction in melanoma cell lines. Three
bisphosphonates, with different structure, antiresorptive potency
and postulated mechanism of action, namely pamidronate,
zoledronate and clodronate, were analysed.
Our results indicate that both nitrogen-containing bispho-

sphonates pamidronate and zoledronate are able to decrease cell
proliferation in vitro in a dose-dependent manner. Inhibition of
cell growth was not the result of necrosis, as no significant release
of LDH from the cells was measured after treatment with the two
bisphosphonates. At the same time, proliferation inhibition cannot
be explained only by induction of apoptosis, since the antiproli-
ferative capacity did not correlate to the proapoptotic effect of
these nitrogen-containing bisphosphonates. Both pamidronate and
zoledronate induced DNA fragmentation in the two studied
melanoma cells lines, A375 and M186, in a dose- and time-
dependent manner, but pamidronate had a stronger proapoptotic
effect. Consistently, pamidronate induced a stronger activation of
the execution caspase-3/7. This caspases activation supported the
specificity of the proapoptotic effect of bisphosphonates.
In contrast, the nonaminobisphosphonate clodronate, even at

concentrations 10 times higher, had no significant effect on cell
number and induction of apoptosis in cultured melanoma cells.
However, in higher dose, clodronate caused a slight increase in
LDH activity, suggesting some cytolytic effect.
These differences observed in the activity of the three bispho-

sphonates may reflect the difference in the mechanism of action
between the nitrogen-containing and nonaminobisphosphonates.
The stronger antiproliferative and/or proapoptotic effect of
nitrogen-containing bisphosphonates compared to nonaminobi-
sphosphonates was also reported in other cell types such as
macrophages (Benford et al, 1999; Rogers et al, 1999), breast
cancer cells (Senaratne et al, 2000), multiple myeloma (Shipman
et al, 1998; Shipman et al, 2000) or colon adenocarcinoma (Suri
et al, 2001), and this effect appears to be related to the ability of
nitrogen-containing bisphosphonates to inhibit the mevalonate
pathway and thereby the prenylation of signalling proteins such as
the small GTPases. Both pamidronate and zoledronate were shown
to inhibit specifically the enzyme FPP synthase (Bergstrom et al,
2000; Dunford et al, 2001), and the depletion of cellular pools of
GGPP and FPP has been demonstrated to be a key mechanism in
the induction of apoptosis and reduction of cell viability by
nitrogen-containing bisphosphonates (Benford et al, 1999; Jagdev
et al, 2001; Reszka et al, 2001). Consistently, in melanoma, we
previously demonstrated that the apoptotic effect of pamidronate
could be reversed by supplementation of cells with GGPP and FPP
precursors, which circumvents the bisphosphonate-induced in-
hibition of isoprenoid synthesis (Riebeling et al, 2002). However,
the exact mechanisms by which inactivation of small GTPases
leads to the induction of apoptosis have not been elucidated to
date. In melanoma, the apoptotic action of nitrogen-containing
bisphosphonates involves caspase-3 activation and as shown
previously (Riebeling et al, 2002) is not influenced by bcl-2
overexpression.
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melanoma cells. Preconfluent A375 melanoma cells were treated with the
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(black columns), or vehicle for 6, 12 and 24 h. At each time point, DNA
fragmentation was measured using the ‘Cell death detection ELISAPLUS’ as
described under Materials and methods. Three independent experiments
were performed in quadruplicate, with similar results. One representative
experiment is shown. Results are given as % of controls7s.d. (n¼ 4)
(*Po0.05; **Po0.01).

Bisphosphonates and melanoma

A-M Forsea et al

807

British Journal of Cancer (2004) 91(4), 803 – 810& 2004 Cancer Research UK

E
x
p
e
ri
m
e
n
ta
l
T
h
e
ra
p
e
u
ti
c
s



In contrast to nitrogen-containing bisphosphonates, clodronate
does not inhibit isoprenoid synthesis (Reszka et al, 1999). Rather,
it has been reported that nonaminobisphosphonates can induce
cell death by metabolism to toxic nonhydrolysable analogues of
ATP (Rogers et al, 1996) and consequently by disrupting the
energy-requiring processes of the cells. In the present study, the
lack of effect of clodronate on cell survival in vitro (even at high
concentrations) may suggest that this mechanism has no
functional significance in melanoma cell lines.
Although the two nitrogen-containing bisphosphonates differed

in their capacity to induce apoptosis and to inhibit cell
proliferation, a prominent effect of both was the alteration of the
progression of melanoma cells through the phases of the cell cycle.
Measurement of the cellular DNA content by FACS analysis
revealed that both zoledronate and pamidronate caused accumula-
tion of cells in the S phase of the cycle in the two melanoma cell
lines studied, with a corresponding decrease in the number of cells
in G1 and G2/M phases (Figure 5). This effect was dose dependent
and stronger using zoledronate, which induced significant altera-
tions of the cell cycle progression starting at the concentration of
30mM; in comparison, pamidronate had a significant effect on cell

cycle progression only at the concentration of 100mM. The
mechanism of these changes in the cell cycle is not clear. A
similar delay in the S-phase progression has been documented in
myeloma (Aparicio et al, 1998; Iguchi et al, 2003), prostate cancer
cells (Lee et al, 2001) or keratinocytes (Reszka et al, 2001) treated
with nitrogen-containing bisphosphonates, and this could be
related to the inhibition of prenylation of small GTPases. Both Ras
and Rho proteins are known as important regulators of the cell
cycle (Hirai et al, 1997; Olson et al, 1998; Pruitt and Der, 2001;
Welsh et al, 2001), and in consequence their inactivation via
inhibition of prenylation by bisphosphonates could explain the
alterations of the cell cycle observed after treatment with these
compounds. It would also be consistent with the observation that
other inhibitors of the mevalonate pathway, such as statins, also
induce comparable cell cycle changes (Vogt et al, 1997; Naderi et al,
1999).Very recently it was shown, for myeloma cells, that S-phase
cell cycle arrest induced by nitrogen-containing bisphosphonates
is linked to mitogen-activated protein kinase (MAPK) cascade
activation (Iguchi et al, 2003).
Consistent with the lack of effect of clodronate on cell

proliferation and apoptosis, this compound also failed to
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significantly alter cell cycle progression, even at the higher
concentrations.
Zoledronate is considered the most effective antidemineralising

agent available on the market, being about 100 times more potent
then pamidronate in inhibiting bone resorption in vivo (Widler
et al, 2002). However, in our study pamidronate was more efficient
than zoledronate in inducing apoptosis in both melanoma cell
lines studied. In contrast, zoledronate proved to be more potent in
altering the cell cycle progression of cells and in inhibiting cell
proliferation.
These results suggest that zoledronate affects mostly cell

growth, while pamidronate acts rather by inducing cell
death. Similar differences in the actions of the two agents
have also been reported in some of the studies in breast
(Boissier et al, 2000)or prostate cancer cells (Lee et al, 2001).
Pamidronate has also been shown to be more effective in inducing
cell death than other bisphosphonates with higher antiresorptive
potency (Coxon et al, 2000; Senaratne et al, 2000; Benford et al,
2001; Suri et al, 2001). The lack of correlation between the
antiresorptive potency of bisphosphonates in vivo and their
antitumoral effect in vitro appears to be dependent on both
compound and cell type, and may be explained, for example, by
selective inhibition by bisphosphonates of additional enzymes of
the mevalonate pathway (van Beek et al, 1999; Rogers et al, 2000;
Thompson et al, 2002) or possible additional mechanisms of action
of bisphosphonates, for example, MAPK signalling (Iguchi et al,
2003).
One objection point mentioned in most of the studies on

bisphosphonates is the doses at which the antitumoral effect is
achieved. In our study, inhibition of proliferation, cell cycle
progression changes and induction of apoptosis in cultured
melanoma cells by the two aminobisphosphonates were observed
at concentrations ranging from 10 to 100 mM. Similar concentra-

tions of aminobisphosphonates have been reported to act
antiproliferative and/or proapoptotic in other types of tumour
cells, for example, myeloma (Shipman et al, 1997), breast cancer
(Senaratne et al, 2000)or prostate cancer (Lee et al, 2001). It is
however not clear if these high concentrations may also be
achieved in vivo, at least using the current dosage and treatment
regimens. As bisphosphonates are rapidly removed from circula-
tion following administration and accumulate in the bone, primary
tumour cells or visceral metastases would be most likely exposed
to only much lower doses of bisphosphonates, probably in the
range 1–5 mM (Daley-Yates et al, 1991; Berenson et al, 1997).
Different treatment regimens or new bisphosphonates analogues
with less affinity for the bone may be necessary in future to solve
this problem.
In summary, we demonstrate that nitrogen-containing bispho-

sphonates are effective antitumour agents in melanoma in vitro, as
they inhibit proliferation, cause an S-phase delay in the cell cycle
progression and induce apoptosis in melanoma cells. These
encouraging results need to be confirmed by in vivo studies and
further investigation is required to clarify the exact mechanism of
the antineoplasic action of bisphosphonates, as well as their most
effective structure and dosing regimen, in order to establish the
possible benefit of these compounds in the adjuvant treatment of
melanoma.

ACKNOWLEDGEMENTS

This study was supported by grants of the Deutsche Forschungs-
gemeinschaft (SFB 366) and the Sonnenfeld-Stiftung, Berlin. A-M
Forsea was a recipient of a scholarship of the Berliner Stiftung für
Dermatologie.

REFERENCES

Aparicio A, Gardner A, Tu Y, Savage A, Berenson J, Lichtenstein A (1998)
In vitro cytoreductive effects on multiple myeloma cells induced by
bisphosphonates. Leukemia 12: 220–229

Aznar S, Lacal JC (2001) Rho signals to cell growth and apoptosis. Cancer
Lett 165: 1–10

Bar-Sagi D, Hall A (2000) Ras and Rho GTPases: a family reunion. Cell 103:
227–238

Benford HL, Frith JC, Auriola S, Monkkonen J, Rogers MJ (1999) Farnesol
and geranylgeraniol prevent activation of caspases by aminobispho-
sphonates: biochemical evidence for two distinct pharmacological classes
of bisphosphonate drugs. Mol Pharmacol 56: 131–140

Benford HL, McGowan NW, Helfrich MH, Nuttall ME, Rogers MJ (2001)
Visualization of bisphosphonate-induced caspase-3 activity in apoptotic
osteoclasts in vitro. Bone 28: 465–473

Berenson JR, Rosen L, Vescio R, Lau HS, Woo M, Sioufi A, Kowalski MO,
Knight RD, Seaman JJ (1997) Pharmacokinetics of pamidronate
disodium in patients with cancer with normal or impaired renal
function. J Clin Pharmacol 37: 285–290

Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G (2000)
Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate
synthase. Arch Biochem Biophys 373: 231–241

Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel
M, Delmas P, Delaisse JM, Clezardin P (2000) Bisphosphonates inhibit
breast and prostate carcinoma cell invasion, an early event in the
formation of bone metastases. Cancer Res 60: 2949–2954

Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of
metastasis reveals an essential role for RhoC. Nature 406: 532–535

Clezardin P (2002) The antitumor potential of bisphosphonates. Semin
Oncol 29: 33–42

Coxon FP, Helfrich MH, Van’t Hof R, Sebti S, Ralston SH, Hamilton A,
Rogers MJ (2000) Protein geranylgeranylation is required for osteoclast
formation, function, and survival: inhibition by bisphosphonates and
GGTI-298. J Bone Miner Res 15: 1467–1476

Daley-Yates PT, Dodwell DJ, Pongchaidecha M, Coleman RE,
Howell A (1991) The clearance and bioavailability of pamidronate in
patients with breast cancer and bone metastases. Calcif Tissue Int 49:
433–435

Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD,
Ebetino FH, Rogers MJ (2001) Structure–activity relationships for
inhibition of farnesyl diphosphate synthase in vitro and inhibition of
bone resorption in vivo by nitrogen-containing bisphosphonates.
J Pharmacol Exp Ther 296: 235–242

Finley RS (2002) Bisphosphonates in the treatment of bone metastases.
Semin Oncol 29: 132–138

Fleisch H (2002) Development of bisphosphonates. Breast Cancer Res 4:
30–34

Fleisch HA (1997) Bisphosphonates: preclinical aspects and use in
osteoporosis. Ann Med 29: 55–62

Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human
tumors. Int J Cancer 81: 682–687

Green JR (2001) Chemical and biological prerequisites for novel bispho-
sphonate molecules: results of comparative preclinical studies. Semin
Oncol 28: 4–10

Green JR (2003) Antitumor effects of bisphosphonates. Cancer 97: 840–847
Hiraga T, Williams PJ, Mundy GR, Yoneda T (2001) The bisphosphonate
ibandronate promotes apoptosis in MDA-MB-231 human breast cancer
cells in bone metastases. Cancer Res 61: 4418–4424

Hirai A, Nakamura S, Noguchi Y, Yasuda T, Kitagawa M, Tatsuno I, Oeda
T, Tahara K, Terano T, Narumiya S, Kohn LD, Saito Y (1997)
Geranylgeranylated rho small GTPase(s) are essential for the degradation
of p27Kip1 and facilitate the progression from G1 to S phase in growth-
stimulated rat FRTL-5 cells. J Biol Chem 272: 13–16

Iguchi T, Miyakawa Y, Yamamoto K, Kizaki M, Ikeda Y (2003) Nitrogen-
containing bisphosphonates induce S-phase cell cycle arrest and
apoptosis of myeloma cells by activating MAPK pathway and inhibiting
mevalonate pathway. Cell Signal 15: 719–727

Bisphosphonates and melanoma

A-M Forsea et al

809

British Journal of Cancer (2004) 91(4), 803 – 810& 2004 Cancer Research UK

E
x
p
e
ri
m
e
n
ta
l
T
h
e
ra
p
e
u
ti
c
s



Jagdev SP, Coleman RE, Shipman CM, Rostami HA, Croucher PI (2001)
The bisphosphonate, zoledronic acid, induces apoptosis of breast
cancer cells: evidence for synergy with paclitaxel. Br J Cancer 84:
1126–1134

Lee MV, Fong EM, Singer FR, Guenette RS (2001) Bisphosphonate
treatment inhibits the growth of prostate cancer cells. Cancer Res 61:
2602–2608

Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ
(1998) Nitrogen-containing bisphosphonates inhibit the mevalonate
pathway and prevent post-translational prenylation of GTP-binding
proteins, including Ras. J Bone Miner Res 13: 581–589

Naderi S, Blomhoff R, Myklebust J, Smeland EB, Erikstein B, Norum KR,
Blomhoff HK (1999) Lovastatin inhibits G1/S transition of normal
human B-lymphocytes independent of apoptosis. Exp Cell Res 252:
144–153

Oades GM, Senaratne SG, Clarke IA, Kirby RS, Colston KW (2003) Nitrogen
containing bisphosphonates induce apoptosis and inhibit the mevalonate
pathway, impairing Ras membrane localization in prostate cancer cells.
J Urol 170: 246–252

Olson MF, Paterson HF, Marshall CJ (1998) Signals from Ras and Rho
GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394:
295–299

Padalecki SS, Guise TA (2002) Actions of bisphosphonates in animal
models of breast cancer. Breast Cancer Res 4: 35–41

Pruitt K, Der CJ (2001) Ras and Rho regulation of the cell cycle and
oncogenesis. Cancer Lett 171: 1–10

Reszka AA, Halasy-Nagy J, Rodan GA (2001) Nitrogen-bisphosphonates
block retinoblastoma phosphorylation and cell growth by inhibiting the
cholesterol biosynthetic pathway in a keratinocyte model for esophageal
irritation. Mol Pharmacol 59: 193–202

Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA (1999) Bispho-
sphonates act directly on the osteoclast to induce caspase cleavage of
mst1 kinase during apoptosis. A link between inhibition of the
mevalonate pathway and regulation of an apoptosis-promoting kinase.
J Biol Chem 274: 34967–34973

Riebeling C, Forsea AM, Raisova M, Orfanos CE, Geilen CC (2002) The
bisphosphonate pamidronate induces apoptosis in human melanoma
cells in vitro. Br J Cancer 87: 366–371

Rogers MJ, Brown RJ, Hodkin V, Blackburn GM, Russell RG, Watts DJ
(1996) Bisphosphonates are incorporated into adenine nucleotides by
human aminoacyl-tRNA synthetase enzymes. Biochem Biophys Res
Commun 224: 863–869

Rogers MJ, Frith JC, Luckman SP, Coxon FP, Benford HL, Monkkonen J,
Auriola S, Chilton KM, Russell RG (1999) Molecular mechanisms of
action of bisphosphonates. Bone 24: 73S–79S

Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J,
Frith JC (2000) Cellular and molecular mechanisms of action of
bisphosphonates. Cancer 88: 2961–2978

Senaratne SG, Mansi JL, Colston KW (2002) The bisphosphonate
zoledronic acid impairs Ras membrane [correction of impairs mem-

brane] localisation and induces cytochrome c release in breast cancer
cells. Br J Cancer 86: 1479–1486

Senaratne SG, Pirianov G, Mansi JL, Arnett TR, Colston KW (2000)
Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J
Cancer 82: 1459–1468

Serrone L, Hersey P (1999) The chemoresistance of human malignant
melanoma: an update. Melanoma Res 9: 51–58

Shipman CM, Croucher PI, Russell RG, Helfrich MH, Rogers MJ (1998) The
bisphosphonate incadronate (YM175) causes apoptosis of human
myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer
Res 58: 5294–5297

Shipman CM, Rogers MJ, Apperley JF, Russell RG, Croucher PI (1997)
Bisphosphonates induce apoptosis in human myeloma cell lines: a novel
anti-tumour activity. Br J Haematol 98: 665–672

Shipman CM, Rogers MJ, Vanderkerken K, Van Camp B, Graham R, Russell
G, Croucher PI (2000) Bisphosphonates – mechanisms of action in
multiple myeloma. Acta Oncol 39: 829–835

Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance.
Oncogene 22: 3138–3151

Sonnemann J, Eckervogt V, Truckenbrod B, Boos J, Winkelmann W, van
Valen F (2001) The bisphosphonate pamidronate is a potent inhibitor of
human osteosarcoma cell growth in vitro. Anticancer Drugs 12: 459–465

Suri S, Monkkonen J, Taskinen M, Pesonen J, Blank MA, Phipps RJ, Rogers
MJ (2001) Nitrogen-containing bisphosphonates induce apoptosis of
Caco-2 cells in vitro by inhibiting the mevalonate pathway: a model of
bisphosphonate-induced gastrointestinal toxicity. Bone 29: 336–343

Thompson K, Dunford JE, Ebetino FH, Rogers MJ (2002) Identification of a
bisphosphonate that inhibits isopentenyl diphosphate isomerase and
farnesyl diphosphate synthase. Biochem Biophys Res Commun 290:
869–873

van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999) Nitrogen-
containing bisphosphonates inhibit isopentenyl pyrophosphate isomer-
ase/farnesyl pyrophosphate synthase activity with relative potencies
corresponding to their antiresorptive potencies in vitro and in vivo.
Biochem Biophys Res Commun 255: 491–494

Vogt A, Sun J, Qian Y, Hamilton AD, Sebti SM (1997) The geranylgeranyl-
transferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and
induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol
Chem 272: 27224–27229

Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK (2001)
Timing of cyclin D1 expression within G1 phase is controlled by Rho.
Nat Cell Biol 3: 950–957

Widler L, Jaeggi KA, Glatt M, Muller K, Bachmann R, Bisping M, Born AR,
Cortesi R, Guiglia G, Jeker H, Klein R, Ramseier U, Schmid J, Schreiber
G, Seltenmeyer Y, Green JR (2002) Highly potent geminal bispho-
sphonates. From pamidronate disodium (Aredia) to zoledronic acid
(Zometa). J Med Chem 45: 3721–3738

Wieder T, Orfanos CE, Geilen CC (1998) Induction of ceramide-mediated
apoptosis by the anticancer phospholipid analog, hexadecylphosphocho-
line. J Biol Chem 273: 11025–11031

Bisphosphonates and melanoma

A-M Forsea et al

810

British Journal of Cancer (2004) 91(4), 803 – 810 & 2004 Cancer Research UK

E
x
p
e
rim

e
n
ta
l
T
h
e
ra
p
e
u
tic

s


