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Clear cell sarcoma (CCS) is associated with the EWS/ATF1 oncogene that is created by chromosomal fusion of the Ewings Sarcoma
oncogene (EWS) and the cellular transcription factor ATF1. The melanocytic character of CCS suggests that the microphthalmia-
associated transcription factor (Mitf), a major inducer of melanocytic differentiation, may be miss-expressed in CCS. Accordingly, we
show that the mRNA and protein of the melanocyte-specific isoform of Mitf (Mitf-M) are present in several cultured CCS cell lines
(Su-ccs-1, DTC1, Kao, MST-1, MST-2 and MST-3). The above cell lines thus provide a valuable experimental resource for examining
the role of Mitf-M in both CCS and melanocyte differentiation. Melanocyte-specific expression of Mitf-M is achieved via an ATF-
dependent melanocyte-specific cAMP-response element in the Mitf-M promoter, and expression of Mitf-M in CCS cells suggests that
EWS/ATF1 (a potent and promiscuous activator of cAMP-inducible promoters) may activate the Mitf-M promoter. Surprisingly,
however, the Mitf-M promoter is not activated by EWS/ATF1 in transient assays employing CCS cells, melanocytes or
nonmelanocytic cells. Thus, our results indicate that Mitf-M promoter activation may require an appropriate chromosomal context in
CCS cells or alternatively that the Mitf-M promoter is not directly activated by EWS/ATF1.
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Human clear cell sarcoma (CCS) is a rare aggressive tumour, which
is typically associated with tendons and aponeuroses and is
thought to be of neuroectodermal origin (Chung and Enzinger
1983; Epstein et al, 1984). Clear cell sarcoma has also been called
malignant melanoma of soft parts (MMSP) due to the occurrence
of melanocytic markers and in some cases pigmentation (Epstein
et al, 1984). Molecular studies of CCS have been limited due to the
rarity of this malignancy and diagnostic problems prior to
identification of the EWS/ATF1 oncogene as the definitive
molecular signature of CCS.
EWS/ATF1 is created by aberrant t(12;22)(q13;q12) chromoso-

mal fusion (Zucman et al, 1993) of the Ewings Sarcoma oncogene
(EWS) to the C-terminal region of activating transcription factor 1
(ATF1) . Activating transcription factor 1 is a bZIP protein that
mediates cAMP-inducible transcription (Ribeiro et al, 1994), while
in contrast EWS/ATF1 is a potent constitutive activator of cAMP-
inducible promoters (Brown et al, 1995; Fujimura et al, 1996; Pan
et al, 1998; Feng and Lee, 2001); thus, suggesting that EWS/ATF1
may deregulate transcription of cAMP-inducible promoters in CCS
cells. The physiological target promoters for EWS/ATF1 and their
potential role in determining CCS biology and malignant

transformation are beginning to be identified (Schaefer et al,
2002; Jishage et al, 2003). In addition to having a role in
CCS genesis, EWS/ATF1 appears to be involved in CCS
maintenance (Bosilevac et al, 1999) and may therefore be a
therapeutic target.
The pigmentation that is sometimes associated with CCS

suggests that ectopic expression of the melanocyte-inducing factor
Mitf (microphthalmia-associated transcription factor; reviewed by
Goding 2000) might be a key feature of CCS. Microphthalmia-
associated transcription factor exists in multiple isoforms (Mitf-A,
Mitf-B, Mitf-C, Mitf-D, Mitf-H and Mitf-M) that are all members of
the basic helix– loop–helix/leucine zipper (bHLH/LZ) family of
transcription factors. The Mitf isoforms are highly related
(Figure 3A), but contain unique n-terminal exons expressed from
distinct promoters (Udono et al, 2000, Figure 2A) that yield
different expression profiles. The Mitf-M isoform is melanocyte
specific and can induce melanocytic differentiation (Tachibana
et al, 1996), indicating that Mitf-M is a critical melanogenic factor.
Microphthalmia-associated transcription factor acts in part via
direct transcriptional activation of genes (tyrosinase, TYRP1 and
TYRP2) required for pigment synthesis (Bentley et al, 1994;
Hemesath et al, 1994; Yavuzer et al, 1995; Yasumoto et al, 1997)
and also has a role in melanocyte survival and differentiation
(Lerner et al, 1986; Opdecamp et al, 1997; Hemesath et al, 1998).*Correspondence: Dr CR Goding; E-mail: c.goding@mcri.ac.uk
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With respect to CCS, it is significant that transcription of the Mitf-
M isoform is controlled by a melanocyte-specific promoter (Fuse
et al, 1996) that includes a cAMP-response element (CRE)
comprising a single ATF1/CREB binding site (Bertolotto et al,
1998). Thus, the Mitf-M promoter is a potential target for EWS/
ATF1.
Limited attempts have been made to examine the Mitf-M

expression in CCS. One study based on immunostaining of tumour
specimens (Granter et al, 2001) concluded that Mitf is a marker for
CCS, but did not confirm expression of the Mitf-M isoform due to
detection method employed and use of the D5 Mitf-antibody
(Hemesath et al, 1998) that recognises all Mitf isoforms. A second
study detected Mitf-M RNA in nonviable CCS tumour material and
did not examine Mitf-M protein expression (Antonescu et al,
2002). Here we show that Mitf-M mRNA and protein are expressed
at significant levels in a wide range of CCS cell lines, demonstrating
that Mitf-M is a stable marker for CCS in cell culture. In contrast,
tyrosinase is not generally expressed in the CCS cells studied,
indicating that elements of the pigmentation process downstream
of Mitf are not stable in culture. Although the endogenous Mitf-M
promoter is activated in CCS cells, the Mitf-M promoter is not
active when transiently introduced into CCS cells or upon
cotransfection with EWS/ATF1 in melanocytes or other cell types.
Our results therefore indicate that Mitf-M promoter activation by
EWS/ATF1 requires an appropriate chromosomal context in CCS
cells or alternatively, that the Mitf-M promoter is not directly
activated by EWS/ATF1.

MATERIALS AND METHODS

Cell culture and cell lines

All cell lines were maintained as monolayers in Dulbecco’s
modification of Eagle’s medium (DMEM) containing 10% FCS.
Su-ccs-1 (Epstein et al, 1984), DTC1 (Brown et al, 1995), Kao
(Hiraga et al, 1997), MST-1 (Liao et al, 1996) and GG-62 (Schaefer
et al, 2002) cells have been described previously. All of the above
cells (including MST-1, confirmed by detection of the EWS/ATF1
fusion transcript by rtPCR (Stella Chan and KL, unpublished
results), MST-2 and MST-3 (S-K Liao, unpublished results) contain
the t(12;22) translocation characteristic of CCS and express EWS/
ATF1 RNA. The expression of EWS/ATF1 protein in all of the
above cell lines is shown here (Figure 1A).

Plasmids and constructions

pD(�71)SomCAT contains the somatostatin promoter to position
�71, fused to the chloramphenicol acetyl transferase (CAT) coding
sequences (Montminy et al, 1986). pD(�42)SomCAT was obtained
by digestion of pD(�71)SomCAT with Aat2, blunting with T4 DNA
polymerase and religation (Brown et al, 1995). pRSVCAT contains
the RSV LTR linked to CAT as previously described (Gorman et al,
1982). pMITF-MCAT was obtained by insertion of CAT and MITF-
M promoter sequence from the position �395 into pSuppCT
(Yavuzer and Goding, 1994). pMCRE contains two ATF sites from
the MITF-M promoter upstream of the RSV TATA box and
transcription site linked to CAT. pMCRE was obtained by insertion
of an oligonucleotide containing tandem copies of the sequence
(agcaTGACGTCAagccagg, the ATF site is underlined) between
positions �151 and �133 of the MITF-M promoter into the Sac1
site of pDERSVCAT (Tsukada et al, 1987). pMCREm corresponds
to pMCRE containing mutated ATF sites (TGAtaTCA) that are
unable to bind ATF1 (Jones and Lee, 1991). pD287C has been
described previously (Pan et al, 1998) and expresses a protein,
containing the n-terminal 287 amino acids of EWS fused to ATF1,
which is virtually identical to intact EWS/ATF1. pMMRP was
obtained by insertion of an Nsi1/Hind3 fragment (from position

�50 to þ 136 of the MITF-M promoter) into Pst1/Hind3-digested
pGem3.

Transfections and reporter assays

For CAT reporters, transfections were carried out by calcium
phosphate coprecipitation and CAT assays were performed at 40 h
post-transfection as previously described (Gorman et al, 1982). For
promoter analysis, precipitates contained 5 mg of reporter plasmid
and 20 mg of total DNA made up with pGem3 as carrier. For cAMP-
induction, cells were cotransfected with reporter and pCMVCa
expressing the catalytic subunit of PKA and stimulated by addition
of 300 mM cptcAMP to the culture medium at 16 h post-
transfection. For quantitation of results, percent conversion of
unacetylated to acetylated 14C-chloramphenicol under linear assay
conditions was determined by excision of spots from the TLC plate
and quantitation of radioactivity using a liquid scintillation
counter. For luciferase reporters, cells were transfected using
Fugene reagent (Boehringer-Mannheim) according to the manu-
facturer’s instructions and firefly luciferase activity was deter-
mined at 48 h post-transfection.

RNA analysis

For the RT–PCR, total RNA was reverse transcribed with AMV
reverse transcriptase (Boehringer, Mannheim, Germany) followed
by first-strand cDNA synthesis (Amersham cDNA synthesis kit)
and PCR as described previously (Carreira et al, 1998). Reverse
transcription–PCR analysis of Mitf-M was performed using MITF-
M forward (50ATGCTGGAAATGCTAGAATATAATC30) and re-
verse (50CAATCAGGTTGTGATTGTCC30) primers. For RNAse
protection assays, preparation of total cellular RNA and detection
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Figure 1 (A) Expression of EWS/ATF1 in CCS cell lines. Proteins
present in nuclear extracts from multiple CCS cell lines (MST-1, MST-2,
MST-3, GG62 and Kao) or HeLa and Jeg3 negative control cells were
purified by ATF1-sequence-specific DNA-affinity chromatography and
subjected to Western blot analysis using anti-ATF1 antibody. The ATF1
and EWS/ATF1 are indicated to the right and molecular weight standards
(Biorad prestained, low molecular weight range) to the left. (B) ATF-site-
dependent promoter activity in CCS cell lines. Transient transfection of
CCS cell lines (indicated above) or Jeg3 control cells lacking EWS/ATF was
performed using pRSVcat (R), pD(�71)SomCat containing a single ATF
binding site (71) or pD(�42)SomCat lacking the ATF binding site (42).
Transfection conditions were as described in the Materials and Methods
and CAT assays were performed at 40 h post-transfection. A representa-
tive autoradiogram of a CAT assay is shown.
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of specific transcripts by RNAse protection analysis was performed
as previously described. (Zinn et al, 1983). For detection of Mitf-M
mRNA, pMMRP was linearised with Xba1 and transcribed by SP6
RNA polymerase to produce a high specific activity 32P-labelled
antisense probe (Figure 2A).

Antibodies and western blotting

For Western blotting, CREB antibody (New England Biolabs
Beverly MA., Cat #9192) was used at a 1:1000 dilution, ATF-1
antibody (Hurst et al, 1991] at 1:200 dilution, Mitf antibody
(NeoMarkers Ab-1(C5) ) at 1:500 dilution and tyrosinase antibody
(C19, Santa Cruz, CA) for CREB (Amersham NA934) peroxidase-
conjugated sheep anti-mouse (Amersham, NXA 931) for Mitf and
peroxidase-conjugated anti-goat (Sigma, product #A5420) for
tyrosinase. ECL detection reagents (Amersham RPN2106) were
used according to the manufacturer’s instructions.

Nuclear extracts and affinity purification

Nuclear extracts were prepared as previously described (Hurst et al,
1990). For DNA affinity purification, 200 ml of nuclear extract
(derived fromB107 cells) was incubated at room temperature with
20ml of affinity resin (by resuspending the resin several times over
a period of 30min) in the presence of 4 mgml�1 poly [dI/dC]).
After binding, the affinity resin was washed with two changes of
buffer (20mM HEPES pH 7.4; 100mM KCl) and SDS–PAGE sample
buffer was then added directly to the washed resin.

RESULTS

Presence of EWS/ATF1 and ATF-site-dependent promoter
activity in CCS cells

A consistent t(12;22)(q13;q12) chromosomal translocation that
produces the EWS/ATF1 fusion gene distinguishes CCS from
cutaneous melanoma (van Roggen et al 1998). Several CCS cell
lines have been established in culture and of these, Su-ccs-1 and
DTC1 have been shown to express the EWS/ATF1 fusion protein
(Brown et al, 1995). Several other cell lines used in this study (Kao,
GG62, MST-2, MST-1 (see Materials and Methods) and MST-3)
contain the EWS/ATF1 fusion gene, but have yet to be
characterised for EWS/ATF1 protein expression. We tested for
the presence of EWS/ATF1 in the above cell lines as previously
described (Brown et al, 1995) by using ATF1 DNA-affinity
purification of proteins present in nuclear extracts and detection
by Western blotting using anti-ATF1 (Figure 1A). ATF1 is
expressed at low levels in the CCS cells tested, while EWS/ATF1
(as indicated by an B80 kDa polypeptide that binds to the ATF1
DNA affinity resin, reacts with a c-terminal ATF1 antibody and is
absent in HeLa and Jeg3 cells) is detected at similar levels in all
CCS cells tested.
We have previously shown that promoters that can be activated

by EWS/ATF1 in a cotransfection assay are constitutively active
when transiently introduced into CCS cells (Brown et al, 1995). For
example, the somatostatin promoter (D(�71)SomCAT) is highly
active (260% of RSVCAT) in DTC1 cells while exhibiting only
background levels of activity (0.03% of RSVCAT) in Jeg3 cells.
Deletion of the ATF1 binding site in the somatostatin promoter
(D(�42)SomCAT) greatly reduces activity, strongly suggesting that
endogenous EWS/ATF1 in CCS cells is responsible for high
somatostatin promoter under the above conditions (Brown et al,
1995). To further characterise the additional CCS cells (Kao, GG62,
MST1, MST-2 and MST-3) used here , we tested the ability of these
to activate the D(�71)SomCAT reporter (Figure 1B). Similar to
DTC1 and Su-ccs-1 cells, D(�71)SomCAT was highly active (MST-
2, 285% of RSVCAT; MST-3, 800%; GG62, 860%; MST1, 583%;

KAO, 320%), while D(�42)SomCAT exhibited minimal activity in
all of the above cell lines. In summary, the presence of similar
levels of EWS/ATF1 and the ability to support constitutive ATF-
site-dependent promoter activity indicates that the CCS cells
described should be useful for transcriptional studies of EWS/
ATF1.

Expression of Mitf-M RNA in CCS cells

The Mitf gene is controlled by multiple promoters (Udono et al,
2000, Figure 2A) that give rise to closely related but distinct
isoforms (Mitf-A, Mitf-B, Mitf-C, Mitf-D, Mitf-H and Mitf-M,
Figure 3A) that are distinguished by the presence of unique n-
terminal exons. The Mitf-M expression is restricted to neural crest-
derived melanocytes due to a melanocyte-specific promoter (Fuse
et al, 1996), while the other Mitf isoforms are more broadly
expressed. To probe for Mitf-M expression in CCS, we initially
performed reverse transcription (RT)–PCR analysis of RNA from
two CCS cell lines (DTC1 and Su-ccs-1) using Mitf-M-specific
primers (Figure 2B). Microphthalmia-associated transcription
factor-M RNA is readily detectable in DTC1 and Su-ccs-1 cells,

1A 1H 1B 1M

1M

RNA probe

exons 2-8

ATG

Nsi1

−50 +1 +136

mRNA

Nsi1

Kao MST3HeLa Mel28 DTC1 S1 Kao GG62MST2 MST1

DTC1 S1 cDNA HeLa

Mitf-M

Mif-M

γ-actin  −

[

−

RNAse
protection

rtPCR

1D

B

A

Figure 2 Analysis of Mitf-M RNA expression. (A) Structure of the
human Mitf (hMitf) gene. The hMitf gene has alternative first exons (1A,
1H, 1D, 1B and 1M, shown in open boxes and 1C, not shown or mapped)
each containing a translation initiation codon, which arise from the use of
five different promoters. Fusion of alternative first exons to common
downstream exons 2–8 (black box) gives rise to distinct isoforms of Mitf
(Mitf-A, Mitf-H, Mitf-D, Mitf-C, Mitf-B and Mitf-M) that differ only in their
extreme n-terminal protein sequences. The Mitf-M promoter is melanocyte
specific. (B) Detection of Mitf-M transcripts in CCS cells. Total RNA was
extracted from the CCS cell lines indicated (S1( Su-ccs-1)) and negative
control (HeLa)) or positive control (Mel28) cells. RNA samples were
analysed by RT–PCR (upper panel) or by RNAse protection assay (lower
panel). microphthalmia-associated transcription factor-M isoform-specific
primers used for RT–PCR analysis are described in Materials and Methods.
32P-labelled antisense probes for Mitf-M (shown in part A) and g-actin as
invariant control, were used for RNAse protection assays. Bands indicated
to the left of the autoradiogram are the 32P-labelled protected fragments
corresponding to correctly initiated Mitf-M and g-actin mRNAs.
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with HeLa cell RNA serving as a negative control (Figure 2B, top
panel). We extended the analysis to several additional CCS cell
lines and the pigmented melanoma cell line Mel28 (Carey et al,
1976) (as positive control) or HeLa cells (as negative control) using
an RNAse protection assay (Figure 2B, bottom panel). Using a 32P-
labelled antisense probe spanning positions þ 136 to �50 of the
Mitf-M promoter (Figure 2A), protected fragments of B136 nt
representing correctly initiated Mitf-M transcripts are observed in
Mel28 cells but not in HeLa cells (as expected) and are observed in
all CCS cell lines tested at levels similar to Mel28. Considering the
structure of the Mitf gene (Figure 2A), the above result indicates
that the Mitf-M promoter is active in CCS cells.

Expression of Mitf-M protein in CCS cells

Following detection of Mitf-M RNA, we performed Western
blotting to examine expression of Mitf proteins in CCS
cells compared with Mel28 cells (Figure 3). We used a monoclonal
antibody (C5) that detects all Mitf isoforms (Figure 3A) and
that has been extensively used for studies of Mitf-M (Bertolotto
et al, 1998; King et al, 1999; King et al, 2001; Wu et al, 2000). In
Mel28 cells, the C5 antibody detects four polypeptides within the
reported size range of Mitf (55–75 kDa, Figure 3B) and these
polypeptides are absent or expressed at very low levels in
nonmelanoma cells (HeLa and Jeg3). The above pattern is
consistent with (but more complex than) other studies using
melanoma cells and the C5 antibody (Bertolotto et al, 1998; King
et al, 1999; Wu et al, 2000) or another antibody (D5) (Hemesath
et al, 1998) in which an B55–60 kDa Mitf-M doublet is detected.
Several considerations indicate that in Mel28 cells, either the
fastest migrating polypeptide (indicated by an open box in
Figure 3B) or the slower migrating doublet (open circles,
Figure 3B) or both of the above, are Mitf-M. First, Mitf-M is
significantly smaller than all other Mitf isoforms (Figure 3A) and
migrates faster in SDS gels at around 55–60 kDa (Fuse et al, 1999).
Thus, if the polypeptides detected in Mel28 cells are different Mitf-
isoforms, the fastest migrating polypeptide(s) in the range of 55–
60 kDa are Mitf-M. Second, Mitf-C (Fuse et al, 1999), Mitf-D
(Takeda et al, 2002) and Mitf-H (Amae et al, 1998) are reportedly
not expressed in melanoma cells. The slowest migrating polypep-
tide in Mel28 cells (open triangle, Figure 3B) is consistent with the
size of the more widely expressed Mitf-A isoform (Fuse et al,
1999). Significantly, with respect to the presumptive Mitf-M
isoforms in Mel28 cells (open box and/or open circles), the C5
antibody detected a similar but not identical pattern of polypep-
tides in all CCS cell lines (see discussion). Although we cannot
unequivocally assign Mitf-M to a particular band(s), based on the
considerations above, we conclude that Mitf-M (or isoforms
thereof) is expressed at significant levels in all CCS cell lines tested.
Moreover, unless there is translational control of Mitf-M, the
above result is expected based on the significant levels Mitf-M
RNA transcripts in all of the CCS cells studied (Figure 2B).
Microphthalmia-associated transcription factor-M functions in

melanocyte differentiation and survival, and directly activates the
promoters of genes, including tyrosinase, that are required for
pigment production (Bentley et al, 1994; Hemesath et al, 1994;
Yavuzer et al, 1995; Yasumoto et al, 1997). To evaluate the
downstream effects of Mitf-M expression in CCS cells, we surveyed
expression of tyrosinase (Figure 3B, bottom panel) by Western
blotting (using tyrosinase antibody C19, Santa Cruz, CA.).
Strikingly, tyrosinase was expressed at significant levels in only
one cell line (MST-2) and was either very weakly expressed (Su-
ccs-1 and Kao (data not shown)) or was undetectable (DTC1, MST-
1 and MST-3) in other CCS cell lines. This result is consistent with
a striking pigmentation that is visible with the naked eye for MST-
2 cells (KAWL, unpublished observations). In summary, our
results show that while Mitf-M is consistently and stably expressed
in CCS cell lines in culture, pigmentation, as scored by tyrosinase
expression, is generally not preserved.

Activity of the Mitf-M promoter in CCS cells

All CCS cell lines used in our study are able to support high levels
of constitutive ATF-site- dependent promoter activity in a
transient transfection assay (Figure 1B). We used the above assay
to ask whether the Mitf-M promoter (pMITF-MCAT) can be
activated in CCS cells (Figure 4A). Surprisingly, however, pMITF-
MCAT exhibited near background levels of activity in DTC1, Kao,
MST-2 and MST-3 cells, indicating that endogenous EWS/ATF1 is
unable to activate a transiently introduced Mitf-M promoter in
CCS cells. To test directly the ability of EWS/ATF1 to activate the
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Figure 3 Expression of Mitf-M and tyrosinase proteins in CCS cells. (A)
Structure of different isoforms of Mitf. White boxes represent the n-
terminal exons (including the translation initiation site) unique to each
isoform and the grey box is common to all isoforms. The black box shows
the position of the bHLH-LZ DNA binding and dimerisation domain of
Mitf. S73 and S409 are serine phosphoacceptor sites for MAPK and Rsk-1,
respectively. (B) Detection of Mitf and tyrosinase by Western blotting. For
Mitf, whole-cell extracts from Mel28 cells (positive control), the CCS cells
indicated or Jeg3 and HeLa cells (negative control) were analysed by
Western Blotting using anti-Mitf antibody (NeoMarkers AB-1 (C5)).
Different Mitf isoforms are indicated by an open box, open circles and an
open triangle adjacent to the Mel28 melanoma cell sample. Molecular
weight standards (kDa, Biorad prestained low molecular weight range) are
indicated to the left. The same samples were also probed with anti-CREB
antibody (Cat #9192, New England Biolabs) as a positive control. For
tyrosinase, whole-cell extracts were probed with antityrosinase antibody
(C19, Santa Cruz) and molecular weight standards (kDa, Biorad prestained
low molecular weight range) are indicated to the left.
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Mitf-M promoter, we used a previously described transient
cotransfection assay in which ATF-dependent promoters (includ-
ing pD(�71)SomCat) are strongly activated by exogenous EWS/
ATF1 (Brown et al, 1995). Similar to the above result in CCS cells,
exogenous EWS/ATF1 (expressed from pD287C) is unable to
activate the Mitf-M promoter in either Jeg3 cells (Figure 4B) or the
melanoma cell line Mel28 (Figure 4C) in which the Mitf-M
promoter is normally active. As a positive control for the integrity
of the Mitf-M reporter, pMITF-MCAT is able to exhibit a
melanocyte-specific cAMP-response in Mel28 cells (Figure 4B
and C) as expected (Bertolotto et al, 1998). Finally, we tested the
ability of the ATF binding site in the Mitf-M promoter to confer
EWS/ATF1 responsiveness to a heterologous promoter in Jeg3 cells
(Figure 4C). pMCRE contains tandem ATF sites from the Mitf-M
promoter placed upstream of the RSV TATA box and is activated
by EWS/ATF1, while mutations that eliminate ATF1 binding
(pMCREm) also eliminate response to EWS/ATF1. Similar results
are obtained in melanoma 501-Mel cells upon fusion of the Mitf-M
CRE to the tk promoter (data not shown). Taken together, the
above results using transient transfection assays demonstrate that
the Mitf-M ATF binding site can confer response to EWS/ATF1 but
that surprisingly, the Mitf-M promoter is refractory to EWS/ATF1,
even under conditions (in melanocytes) in which the Mitf-M
promoter is amenable to activation by cAMP.

DISCUSSION

The ability of Mitf to induce melanocytic or pigmented features in
other cell types (Tachibana et al, 1996; Planque et al, 1999)
suggests that the occurrence of such features in CCS arises due to
ectopic expression of Mitf-M. Consistent with this idea, Mitf-M
transcripts have been detected in nonviable tumour specimens by
RT–PCR (Antonescu et al, 2002), indicating that Mitf-M RNA can
serve as a diagnostic marker for CCS. Here, we report that the Mitf-
M promoter is active and the Mitf-M protein is expressed in
several cultured CCS cells. Our results therefore establish a panel
of cell lines that provide a valuable experimental resource for
studies of CCS and the role of Mitf-M in cellular differentiation and
survival. In contrast to Mitf-M, tyrosinase expression is not
generally maintained (MST-2 cells are an exception although even
in this case, tyrosinase levels are greatly reduced following
prolonged culture (KAWL, unpublished observations)). The above
results are also similar to those observed in melanoma, whereby
amelanotic tumour samples remain positive for Mitf (King et al,
1999).The apparent absence of tyrosinase in our experiments is
consistent with earlier studies of most CCS cell lines (Epstein et al,
1984; Sonobe et al, 1993; Liao et al, 1996; Hiraga et al, 1997), which
are only weakly melanotic. In light of our results, the absence of
tyrosinase expression in cultured CCS cells is notable, since the
tyrosinase promoter is a direct target for Mitf-M in melanoma cells
(Bentley et al, 1994; Yasumoto et al, 1994). The observation that
exogenous Mitf-M fails to reactivate the tyrosinase promoter in
melanoma cells that have lost expression of Mitf-M (Vachtenheim
et al, 2001) suggests that Mitf-M might, likewise, not be able to
activate the tyrosinase promoter in CCS cells. Alternatively,
degradation of tyrosinase protein similar to that which occurs in
amelanotic melanoma (Halaban et al, 1997) might explain lack of
tyrosinase in cultured CCS cells. The above possibilities remain to
be examined.
As we have described in the results section, lack of an Mitf-M-

specific antibody precludes an unequivocal assignment of Mitf-M
among the polypeptides detected in our Western blot analysis
(Figure 3B). We note however that dual phosphorylations of Mitf-
M by c-kit induced MAP kinase (on S73) and Rsk-1 (on S409)
dramatically affect the mobility of Mitf-M on SDS gels and the
stability of Mitf-M (Wu et al, 2000; Xu et al, 2000). Specifically,
phosphorylation of either S73 or S409 alone accounts for the 55–
60 kDa Mitf-M doublet reported in other studies (Hemesath et al,
1998; Wu et al, 2000; Xu et al, 2000) and an unphosphorylatable
S73A/S409A Mitf-M double mutant is greatly stabilised and
migrates faster than the 55–60 kDa doublet (Wu et al, 2000).
Moreover, the relative levels of Mitf-M phosphovariants differ
widely in different melanoma cells (King et al, 1999), presumably
reflecting variation in the MAP/Rsk-1 signalling status. Taking the
above observations together, it seems quite possible that in CCS
cells, the fastest migrating polypeptide (Figure 3B, open box) and
the slower migrating doublet (Figure 3B, open circles) are all
phosphovariants of Mitf-M, and that the differential pattern of
bands observed in CCS reflects variations in endogenous signalling
pathways in the different CCS cells examined.
Our results raise the possibility that Mitf-M is involved in CCS

tumorigenesis. The maintenance of Mitf-M expression may reflect
a selection process that indicates a role for Mitf-M in CCS cell
survival. In this respect, it is pertinent that Mitf-M functions in
normal melanocyte survival (Opdecamp et al, 1997) by mediating
c-Kit signalling (Hemesath et al, 1998). The expression of Mitf-M
may sensitise CCS cells to a c-Kit/MAP kinase signalling pathway
in a manner that contributes to their malignant character. It will be
of interest to manipulate Mitf-M expression in CCS cells and
examine the effects on cell growth/survival and tumorigenicity in
nude mice. If Mitf-M is required for maintenance of CCS
tumorigenicity, restricted expression of Mitf-M indicates that it
represents a potential therapeutic target for CCS.
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Figure 4 Mitf-M promoter analysis. (A) Mitf-M promoter activity in CCS
cell lines. The CCS cell lines indicated or Jeg3 cells as control were
transfected with pRSVCAT (R), D(�71)SomCAT (D71) or pMITF-MCAT
(Mitf). (B) Transactivation by EWS/ATF1 and PKA in Jeg3 cells. Cell were
transfected with the reporter plasmids (pD(�71)SomCAT (D71), pMITF-
MCAT (Mitf), pMCRECAT (MCRE) and pMCREmCAT (MCREm))
indicated above in the absence (�) and presence (þ ) of pD287C
expressing EWS/ATF1 or pCMVCa expressing the catalytic subunit of PKA.
(C) Transactivation by EWS/ATF1 and PKA in melanoma cells. Mel 28 cells
were transfected with the reporter plasmids (pD(�71)SomCAT (D71) and
pMITF-MCAT (Mitf)) indicated above in the absence (�) and presence
(þ ) of pD287C expressing EWS/ATF1 or pCMVCa expressing the
catalytic subunit of PKA.
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While expression of Mitf-M in CCS suggests that EWS/ATF1
may activate the Mitf-M promoter, we have been unable to
demonstrate this directly. Our results are equally consistent with
either of two possibilities. Firstly, despite the fact that EWS/ATF1
is able to bind to the Mitf-M CRE and activate transcription when
out of context (Figure 4), it may simply be the case that EWS/ATF1
is not directly responsible for activation of the endogenous Mitf-M
promoter in CCS cells. The inability of EWS/ATF1 to activate the
Mitf-M promoter in melanocytes, under conditions in which the
promoter is amenable to activation by cAMP (Figure 4), supports
this idea. Another alternative is that lack of EWS/ATF1 respon-
siveness in transient assays might reflect a requirement for an
appropriate chromatin context of the Mitf-M promoter. The ability
of the Mitf-M ATF binding site per se to confer response to EWS/
ATF1 in a heterologous promoter context suggests that other

transcription factors, including Pax 3, Sox10 and Lef1 that are
known to directly regulate the Mitf-M promoter (reviewed in
Goding, 2000), might cooperate with EWS/ATF1 to activate the
chromosomal Mitf-M promoter in CCS cells.
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