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Granzyme B (GrB) is the prototypic member of a serine protease family primarily used by cytotoxic lymphocytes to kill target cells.
We report here that, by immunohistochemical staining of paraffin-embedded tumour sections, GrB protein was unexpectedly
detected in malignant cells of a subset of breast cancers and their adjacent reactive endothelial and mesenchymal cells in which
endogenous retinoblastoma protein (pRB) is overexpressed. The identity of the endogenous GrB was further confirmed
experimentally in RB-deficient breast carcinoma cell culture upon overexpression of ectopic pRB. Our finding extends the recent
paradigm-shifting trend for a more diverse biological role of granzyme B, and might provide a rational basis for exploring its potential
prognostic value in a variety of human cancers.
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Granzyme B (GrB) is a major component of cytoplasmic granules
of cytotoxic T lymphocytes (CTL) and natural killer (NK) cells
(Schmid and Weissmann, 1987; Trapani et al, 1988). In cellular
immune reactions, GrB is produced by activated cytotoxic
lymphocytes and initially stored in cytoplasmic granules. These
granules are exocytosed, releasing GrB and other cytolytic
proteins, including a pore-forming protein (perforin). GrB can
enter target cells by autonomously crossing the cell membrane, or
via a receptor-mediated pathway, and the coexistence of perforin
facilitates intracellular trafficking of GrB in the target cells (Shi
et al, 1997; Motyka et al, 2000). The critical role of cytotoxic
lymphocyte GrB in target cell apoptosis has been well established
(Heusel et al, 1994; Pinkoski et al, 2001). More recently, albeit
controversially (Graubert et al, 1997), GrB expression has also
been detected in other normal and malignant haematopoietic
(nonlymphoid) cells. These include, for example, pluripotent stem
cells capable of giving rise to all haematopoietic lineages
(Hampson et al, 1992), CD34þ haematopoietic progenitor cells
mobilised by chemotherapy and granulocyte colony-stimulating
factor (Berthou et al, 1995), acute myeloblastic leukaemic cells
under genotoxic stress (Bruno et al, 2000) and Kupffer cells
(specialised macrophages in liver) (Tordjmann et al, 1998). In
addition, activated keratinocytes are able to protect against
invading pathogens through expression of endogenous GrB and
perforin (Berthou et al, 1997), whereas perforin-independent
expression of GrB and its specific inhibitor, proteinase inhibitor

9 (PI-9), in human testis and placenta may play a role in
reproduction (Hirst et al, 2001). Also of relevance is a recent report
showing that GrB was distributed in primary breast and lung
cancer cells rather than in tumour-infiltrating lymphocytes (TILs)
(Kontani et al, 2001). In the latter study, the authors assume cancer
cells may acquire GrB released from TIL. These observations
inspire speculation that under certain circumstance, endogenous
GrB may be expressed directly in nonhaematopoietic tumour cells,
which is strongly supported by the results of our present work. We
also report for the first time that there is apparent correlation
between endogenous GrB and pRB expression in breast tumour
specimens.

MATERIALS AND METHODS

Tumour specimens

Paraffin-embedded tissue sections of primary breast carcinoma
specimens were obtained from the archives of the Department of
Pathology at The University of Texas MD Anderson Cancer Center.
They were randomly selected among cases there were plenty of
tissues available from the tumour bank, and patients who had been
operated before other therapy.

Immunochemistry and Western blotting

Immunohistochemical staining of pRB and GrB proteins in breast
tumours was carried out on formalin-fixed, paraffin-embedded
tissue sections with an antigen retrieval protocol as previously
described (Xu, 1995; Yakirevich et al, 1999). The anti-RB antibody
RB-WL-1 (Xu, 1995) and anti-GrB monoclonal antibody B18.1 or
GrB7 (Alexis) were used. After antibody binding, the slides were
processed for colour development using the avidin–biotinylated
peroxidase method, and were counterstained with Mayer’s
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haemotoxylin. All slides were coded, and the pRB and GrB staining
results were scored separately by two investigators. Immunostain-
ing and Western blotting detection of pRB and GrB proteins in
cultured cells were done as described (Zhou et al, 1994; Berthou
et al, 1997; Pinkoski et al, 2000). For double immunofluorescence
analysis of pRB and endogenous GrB, anti-pRB monoclonal
antibodies G3-245 (FITC-labelled mouse IgG1; PharMingen,
SanDiego, CA, USA) and B18.1 (Texas Red-labelled mouse IgG2a)
were used. Digital images were acquired by confocal laser scanning
microscopy (CLSM) (Zeiss LSM 210, Thornwood, NY, USA).

Ribonuclease protection assay (RPA) and Northern
blotting

A multiprobe template set for human apoptosis-related genes
(hAPO-1; PharMingen) was used for RPA, which was done
according to the manuals. Northern blot analysis was conducted
on total RNA (PBL) or mRNA (MDA-MB-468) samples
(2mg lane�1), using 32P-labelled full-length GrB cDNA probe and
b-actin cDNA probe (for rehybridisation). After exposure to a
storage phosphor screen, quantitative comparison of endogenous
GrB transcript levels between the samples was carried out by using
a Storm 860 PhosphorImager system and ImageQuant software
(Molecular Dynamics, Piscataway, NJ, USA), and fold increases in
transcription were calculated based on the PhosphorImager counts
of GrB bands adjusted for counts of b-actin bands from the same
samples.

Deglycosylation of GrB proteins

The conditions for hydrolysis of N-glycosylated proteins in whole
cell lysates by Endo H (40Umg�1, Boehringer, Mannheim,
Germany) were optimised based on the general guidelines
previously established for deglycosylation of purified glycopro-
teins (Trimble and Maley, 1984). Briefly, cell extracts were
prepared in 50mM Tris �Cl (pH 8.0) containing 120mM NaCl and
0.5% NP-40, and then changed into 100mM phosphate reaction
buffer (pH 5.8) by using Bio-Spin 6 columns (Bio-Rad, Hercules,
CA, USA). In the case of using denatured substrates, the cell
extracts were preheated for 2min at 1001C with 1.2-fold weight
excess of sodium dodecyl sulphate (SDS) in relation to the protein
contents. The deglycosylation assays were carried out in triplicate
in microfuge tubes. Each tube contained 5 mg of total cellular
proteins in 25 ml reaction buffer, a cocktail of proteinase inhibitors,
100mM of b-mercaptoethanol (b-ME), and without Endo H (Tube
1, Control), or with Endo H (Tubes 2 and 3). Cell extracts in Tube 3
were predenatured. All reaction mixtures were incubated for 18 h
at 371C, and then analysed by Western blotting as described above.
For in vivo deglycosylation, cells were cultured in the presence of
tunicamycin (5mgml�1, Sigma, St Louis, MO, USA) overnight.

RESULTS

Detection of endogenous GrB in primary breast
carcinomas overexpressing pRB

In phytohaemagglutinin (PHA)-stimulated peripheral blood lym-
phocytes (PBL), coincident with the strong induction of GrB
expression (Schmid and Weissmann, 1987; Trapani et al, 1988),
pRB protein increased eight-fold, and RB RNA levels increased 2–
4-fold (Furukawa et al, 1990). The same appears to hold for the
primary keratinocytes in culture. While human keratinocytes
grown in vitro reportedly synthesised endogenous GrB protein
(Berthou et al, 1997), we observed that these activated keratino-
cytes also had elevated pRB expression (data not shown).
Therefore, to address the issue of whether breast cancer cells can
produce their own GrB, a total of 25 randomly selected breast

carcinomas were examined for endogenous pRB and GrB
expression.
As illustrated in Figure 1A, by immunohistochemical staining of

routinely processed pathological specimens, we found that five of
the 25 breast tumours were pRB�, that is, loss of pRB staining
occurred in every malignant cell of the tumours. In these pRB�

tumours, some (but not all) of the reactive stromal cells were stained
positively for pRB, which was consistent with the view ;that
expression of pRB in normal tissues was regulated by their
proliferation and differentiation states (Xu et al, 1991a, b; Shan
et al, 1994; Cordon-Cardo and Richon, 1994). Malignant cells of the
five pRB� breast tumours were all negative for GrB, although there
were clearly GrBþ TILs in immediately adjacent tumour stroma; the
latter served as an excellent internal control for validating the
GrB staining (Figure 1B). Second, 17 of the 25 cases fulfilled the
established criteria for pRBþ tumours (Cance et al, 1990; Xu et al,
1991a, b; Xu, 1995), that is, the observed pRB immunoreactivity
patterns in these tumours were highly heterogenous, and the
staining intensity was not uniform among the tumour cells, with
more or less of the tumour cell nuclei stained positively (Figure 1C).
In the majority (16 out of 17) of the pRBþ cases, all tumour cells
stained negatively for GrB, while TILs in the same tumour sections
were GrBþ (Figure 1D). Third, the remaining three tumours
expressed extremely high levels of pRB as determined by their
uniformly high intensity of pRB staining (pRBþþ , Figure 1E) (Cote
et al, 1998). In these three pRBþþ and one pRBþ tumours, GrB
staining was readily detected in many tumour cells as well as in
nonlymphoid reactive stromal cells, including endothelial and
mesenchymal cells (Figure 1F, G). The intensity of the endogenous
GrB staining was variable, with some areas exhibiting typical
granular or dot-like cytoplasmic and nuclear staining (Figure 1G).
In this small cohort study, the correlation between endogenous GrB
and pRB protein expression in malignant cells appeared to be very
significant (Po0.001), although an inadequate sample size for
statistical calculation has precluded a more definitive conclusion
(Table 1). On the other hand, the number of TILs with GrBþ

staining was variable within the same cohort, and in general was
unrelated to the pRB status of the tumour specimens (Figure 1B, D
and H). Two proven anti-granzyme B antibodies, B18.1 (Berthou
et al, 1997) and GrB7 (Kummer et al, 1993), were used for the
studies with essentially similar results.

Evidence from culture: confirmation of endogenous GrB
expression in breast cancer cells

Until recently, expression of GrB has been implicated solely in
lymphoid cells. The discovery of GrB in nonlymphoid cells, such as
mobilised haematopoietic CD34þ progenitor cells, epidermal kerati-
nocytes, testis and placenta (Berthou et al, 1995, 1997; Hirst et al,
2001), challenged the existing, perhaps oversimplified model for GrB
function. In these latter studies, however, expression of the GrB
mRNA was demonstrated only by in situ hybridisation using
antisense GrB RNA probes. The method was not able to determine
the extent of the nucleotide sequence identity between more or less
closely related RNA species, nor the size of the transcripts. An
independent study reported by others failed to detect GrB mRNA
expression in mobilised haematopoietic CD34þ progenitor cells when
an S1 nuclease protection assay was employed (Graubert et al, 1997).
To further validate our finding of endogenous GrB in primary

breast cancer, we conducted in vitro experiments to confirm the
identity of the GrB protein and messenger RNA, and the
correlation between induction of endogenous GrB and over-
expression of pRB. This was accomplished by using a panel of RB-
reconstituted MDA-MB-468 breast carcinoma cell lines (Xu et al,
1997) in which expression of pRB is tightly controlled by
tetracycline (Tc). The ectopic RB protein expressed in these cell
clones reach the highest level about 24 h after removal of Tc
from the cell culture medium, and will then become totally
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dephosphorylated within 24–40 h (Xu et al, 1997). The levels of
pRB expression in these cultured cells in Tc-free medium were
comparable to the elevated pRB expression in subsets of primary
tumours (Xu, 1995; Xu et al, 1997; Cote et al, 1998 and compare
Figures 1E with 3A, panel b below). Both ribonuclease protection
assay (RPA) and Northern blot analysis showed that the
endogenous GrB mRNA levels were increased up to 16-fold in

RB-reconstituted MDA-MB-468 tumour cells after removal of Tc for
4 days (Figure 2). The Northern blotting results also suggested that
the endogenous GrB mRNA detected in breast tumour cells was
slightly larger than the GrB mRNA from IL-2-stimulated peripheral
blood lymphocytes (PBL) (Figure 2). The difference in transcript
sizes is owing to differential usage of upstream transcription start
sites at the GrB locus (Xu HJ et al, unpublished data).

A B

DC

E F

G

H

pRB GrB

Figure 1 Detection of endogenous GrB in primary breast carcinomas overexpressing pRB (pRBþþ ) by immunohistochemical staining of paraffin-
embedded tissue sections. (A, C, E) pRB staining, showing typical pRB� (A), pRBþ (C), and pRBþþ (E) tumours. Note that the tumour cells in panel E
(pRBþþ ) display uniformly strong pRB staining, while the tumour cells in panel (C) (pRBþ ) show nuclear staining heterogeneity of the RB protein, ranging
from quite positive to seemingly negative (Xu, 1995). (B, D, and F–H) The same tumours corresponding to the left panels were stained for GrB. Panels B
and D, in either pRB� (B) or pRBþ (D) tumours, malignant cells are GrB negative, but some infiltrating lymphocytes are GrBþ . Panels (F–H),
representative areas of the same pRBþþ tumour shown in Panels E. GrBþ tumour cells (F, G), or lymphocytes (H) were evident. Note the finely granular
distribution of endogenous GrB protein in tumour cells of panel (G). Arrowheads, GrBþ lymphocytes; solid arrows, GrBþ tumour cells; open arrows, GrB;

mesenchymal and endothelial cells. Scale bar, 50 mm.
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Immunocytochemistry and double immunofluorescence stain-
ing of pRB and GrB showed that endogenous GrB protein (Endo-
GrB) was accumulated in the pRBþ (in Tc-free medium), but not
in the pRB� (in medium containing 0.5 mgml�1 of Tc) MDA-MB-
468 tumour cells (Figure 3A). Endo-GrB was located both in
cytoplasm and nuclei of the RB-reconstituted tumour cells
(Figure 3A); a comparable pattern was observed for IL-2-activated
PBL GrB (Lym-GrB). Western blotting revealed Endo-GrB protein
triplets from the RB-reconstituted MDA-MB-468 cells with
apparent molecular masses (Mr) of 26, 33 and 39 kDa (Figure 3B).
By SDS–PAGE, the 33-kDa Endo-GrB protein band is identical to
the mature glycosylated Lym-GrB protein from human PBL. The
39-kDa protein was markedly increased in the tumour cells after
overexpression of pRB. An in vitro hydrolysis assay using
endoglycosidase H (Endo H) revealed that, after deglycosylation,
the 39-kDa Endo-GrB and the 33-kDa Lym-GrB migrated to an
identical position corresponding to a reduced Mr of 26 kDa
(Figure 3C). When the RB-reconstituted MDA-MB-468 cells were
cultured in the presence of tunicamycin, an inhibitor of
glycosylation, a partially deglycosylated 39-kDa Endo-GrB protein
appeared at B36 kDa (Figure 3C, lane 8). Human GrB cDNA
contains a single open reading frame encoding a preproenzyme of
247 amino acids. The predicted mature Lym-GrB is an active
enzyme of 227 amino acids (after N-terminal cleavage by signal
peptidase and dipeptidyl peptidase I [DPPI]) with an unglycosy-
lated Mr of 26 kDa. Marked differences in apparent Mr of the
mature Lym-GrB, however, have been reported in the literature,
between 26 and 67 kDa, which are usually interpreted as being due
to heterogeneous N-linked glycosylation (Trapani et al, 1994).
Both glycosylated and nonglycosylated mature Lym-GrB are
proteolytically active.

DISCUSSION

In summary, we observed Endo-GrB expression in primary breast
cancer cells, which appeared to be coincident with overexpression
of pRB. Expression of endogenous GrB can also be manipulated
experimentally by making RB-deficient breast tumour cells over-
expressing ectopic pRB in culture. The identity of the endo-GrB
was confirmed by immunochemistry, Northern blotting, Western
blotting and deglycosylation. The mechanism of endo-GrB
expression in breast cancer cells have yet to be established. We
noticed that in paraffin-embedded breast tumour sections,
germinal centres of reactive lymph nodes showed intense pRB
staining, but were GrB negative (data not shown). Therefore, it
seems unlikely that pRB directly regulates GrB promoter in breast
cancers; it is more likely that the overexpression of pRB mediates
senescent arrest and/or terminal differentiation (Hinds and
Weinberg, 1994; Xu et al, 1997), resulting in endo-GrB expression
that occurs prior to the onset of the postsenescent apoptosis of the
tumour cells. In this regard, Kontani et al have reported that the
percentage of breast and lung cancer cells with positive GrB
immunoreactivity (as mentioned above, the authors had assumed

Table 1 Correlation between endogenous GrB and pRB protein
expression in breast cancers

Endogenous GrB expression

pRB status GrB2 GrB+

pRB� (n¼ 5) 5 0
pRB+ (n¼ 17) 16 1
pRB++ (n¼ 3) 0 3

Values are number of specimens. The correlation between GrB and pRB expression
was significant (Po0.001, calculated using the w2 method). Computation was
performed with the STATA statistical software (Computing Resource Center, Santa
Monica, CA, USA).

Figure 2 Transcriptional upregulation of endogenous GrB in RB-
reconstituted MDA-MB-468 breast carcinoma cells. RPA and Northern
blotting analyses were performed on RNAs extracted from parental MDA-
MB-468 (pRB�) and a representative Tc-regulated RB-reconstituted clone
at each indicated day. (þTc) medium containing 0.5mgml�1 of Tc; (�Tc)
Tc-free medium. An RNA sample from PBL of healthy donors cultured in
the presence of 50Uml�1 of IL-2 was included in the Northern blot as
GrB-positive control. Note that Endo-GrB mRNAs are slightly larger than
the Lym-GrB mRNA on the Northern blot. The numbers under the blots
indicate the fold increases in Endo-GrB transcription. Similar results were
obtained with three independent clones of RB-reconstituted MDA-MB-468
breast carcinoma cells (data not shown).

Figure 3 Characterization of endogenous GrB protein in RB-recon-
stituted MDA-MB-468 tumour cells. (A) Immunochemical staining of Endo-
GrB (panels a and c) and pRB (panel b) of MDA-MB-468 pRB-clone 19-4.
Endo-GrB was not detectable in tumour cells cultured in Tc-containing
medium (Panel a), but was induced in Tc-free medium (Panel c). Tumour
cells in Tc-free medium for 2 days exhibited uniformly pRBþ staining (Panel
b). The CLSM images shown in the inserts of Panels a and c illustrate the
double immunofluorescence staining of pRB (FITC, green) and Endo-GrB
(Texas Red). Scale bars, 25mm (12.5 mm in insets). (B) Western blotting.
Endo-GrB protein triplets with molecular weights of 26, 33, 39 kDa were
accumulated in RB-reconstituted cells grown in Tc-free medium. (C) The
deglycosylated Endo-GrB and Lym-GrB proteins are identical in apparent
molecular masses. Cell lysates were prepared from IL-2-activated PBL or
MDA-MB-468 pRB-clone 19 cells (in Tc-free medium, Day 5). Each lane
contains 5 mg of total cellular proteins treated with (lanes 1 and 4) reaction
buffer only, and (lanes 2, 3, 5 and 6) with Endo H. Cell extracts in lanes 3
and 6 were predenatured. Following deglycosylation, both the 33-kDa
mature Lym-GrB protein (lane 1) and the 39-kDa Endo-GrB protein (lanes
4) migrated to the identical position with an apparent Mr of 26 kDa (lanes
2, 3, 5 and 6). Also note that when small amounts of total cellular proteins
(5mg) were loaded in each lane, only the major species, that is, the 33-kDa
glycosylated Lym-GrB in lane 1 and the 39-kDa glycosylated Endo-GrB in
lane 4 were visible prior to Endo H treatment. (Lanes 7 and 8) The RB-
reconstituted MDA-MB-468 cells were cultured in the absence (lane 7) or
presence (lane 8) of tunicamycin. Arrow indicates a partially deglycosylated
Endo-GrB of B36 kDa.
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cancer cells acquired GrB released from TIL) was inversely
correlated with regional lymph node metastasis (Kontani et al,
2001). While overexpression of pRB in primary tumours is not
invariably associated with better prognosis (Cote et al, 1998), the
finding of an intrinsic GrB directly expressed by human
nonlymphoid tumour cells adds a new dimension to the clinical
research on potential prognostic value of pRB expression in
primary cancers. Furthermore, the diverse biological presence of
GrB might be complementary to the existing paradigm for
cytotoxic lymphocyte-mediated target cell death, allowing syner-
gistic interactions between the local mechanism of defense and the
immune system. We can thus look forward to intense research on
both the theoretical and practical implications of endogenous GrB

expression in nonlymphoid cells, which may lead us in an
unexpected direction.
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