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Summary The squamous cell carcinoma antigen (SCC Ag) is a tumour-associated protein and a member of the serine protease inhibitor
(serpin) family. The SCC Ag has been used as a serologic tumour marker for SCC progression, and its elevated serum levels are a risk factor
for disease relapse. However, the biologic significance of this intracytoplasmic protein in cancer cells remains unknown. In this report, we
demonstrated that apoptosis induced by 7-ethyl-10-hydroxycamptothecin, tumour necrosis factor-α (TNF-α) or interleukin (IL)-2-activated
natural killer (NK) cells was significantly inhibited in tumour cells transduced with the SCC Ag-1 cDNA, as compared to control cells in vitro.
Also, inhibition of the SCC Ag-1 expression in tumour cells by transfection of antisense SCC Ag-1 cDNA was accompanied by significantly
increased sensitivity of these cells to apoptosis induced by etoposide or TNF-α. The mechanism of protection of tumour cells from apoptosis
involved inhibition of caspase-3 activity and/or upstream proteases. In vivo, tumour cells overexpressing the SCC Ag-1 formed significantly
larger tumours in nude mice than the SCC Ag-1-negative controls. Thus, overexpression of the SCC Ag-1, a member of the serpin family, in
human cancer cells contributed to their survival by mediating protection from drug-, cytokine- or effector cell-induced apoptosis. © 2000
Cancer Research Campaign
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The squamous cell carcinoma antigen (SCC Ag) was first discov-
ered as a tumour-associated protein in squamous cell carcinoma of
the uterine cervix and named the TA-4 (Kato and Torigoe, 1977).
This protein was also found to be expressed in the normal squa-
mous epithelium, but its level was found to be significantly
increased in cancer tissues as well as sera of patients with SCC.
Therefore, the SCC Ag has been used as a tumour marker for SCC
of various organs, including uterine cervix, skin, head and neck,
oesophagus, lung and bladder (Kato et al, 1979; Mino et al, 1988;
Kato, 1992). In fact, elevated serum levels of the SCC Ag antigen
have been shown to correlate with the clinical stage of SCC,
ranging from 18% at stage 0 to > 90% at stage IV of uterine
cervical SCC (Kato, 1992). After tumour resection, serum levels
of the SCC Ag fall rapidly, and the subsequent increase of its level
strongly indicates recurrence of the disease. Furthermore, at stages
Ib and IIa of uterine cervical cancer, elevated serum levels of the
SCC Ag prior to treatment are a risk factor for disease recurrence,
independent of the tumour size or lymph node metastases (Duk
et al, 1996). This tumour marker can be separated into two
fractions (neutral and acidic) by isoelectric focusing (Kato et al,
1984), and recent studies indicate that there are two genes
encoding SCC Ag (Schneider et al, 1995). They encode two
proteins designated as the SCC Ag-1 and the SCC Ag-2, which
have 92% homology.

Although the level of expression of the SCC Ag increases in
tissue and serum of patients with cancer, biologic function of the
SCC Ag in cancer cells has remained undefined. We have cloned
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cDNA of the SCC Ag-1 (Suminami et al, 1991) and identified it as
a member of the ovalbumin-serine protease inhibitor (ov-serpin)
family (Suminami et al, 1991; Potempa et al, 1994). Subsequently,
it has been shown that the recombinant SCC Ag-1 can bind to and
inhibit chymotrypsin (serine protease) (Nawata et al, 1995) and
cathepsin L (cysteine protease) in vitro (Takeda et al, 1995;
Nawata et al, 1997). Proteins of the ov-serpin family have unique
characteristics, which distinguish them from other members of the
serpin super family. While most serpins are secreted and work
extracellulary, ov-serpins are intracellular protease inhibitors,
which are secreted only occasionally and without a signal
sequence by an unknown mechanism (Belin et al, 1989).

Various inhibitory mechanisms of apoptosis have been identi-
fied in cancer cells, which seem to augment the progression of
cancer by interfering with death of cancer cells. For example,
many cancer cells express the anti-apoptotic  gene (Reed,
1995). Nearly all anticancer drugs eliminate cancer cells by
inducing apoptosis (Fisher, 1994; Ormerod et al, 1994; Desjardins
and MacManus, 1995). Recent studies indicate that intracellular
proteases are important mediators of apoptosis (Alnemri et al,
1996; Tewari et al, 1995), and that protease inhibitors are
involved in the regulation of cell death. Among the serpin family,
a viral serpin (CrmA) and a human serpin (PAI-2) have been
reported to inhibit apoptosis induced by cytolytic effector cells
(CTL) and other stimuli (Tewari and Dixit, 1995; Tewari et al,
1995) or by tumour necrosis factor-α (TNF-α) (Dickinson et al,
1995; Gan et al, 1995), respectively. However, these two serpins
function as a part of inflammatory or infectious processes and, to
the best of our knowledge, no report exists which indicates that the
level of expression of serpins is related to tumour growth or that
serpins have inhibitory effects on drug-induced apoptosis of
tumour cells.
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In this manuscript, we report that overexpression of the SCC
Ag-1 attenuates apoptosis induced in human SCC cells by anti-
cancer drugs, TNF-α or human interleukin (IL)-2-activated natural
killer (NK) cells in vitro. Tumour cells overexpressing the SCC
Ag-1 grow more rapidly in vivo in experimental animals than
control cells. Our results suggest that the SCC Ag-1 has a stimula-
tory effect on progression of SCC due to its ability to attenuate
tumour cell apoptosis, possibly at the level of caspase-3 or of the
proteases operating upstream from caspase-3.



Cell lines and reagents

PCI-51, a human head and neck squamous cell carcinoma (SCC)
cell line, was established in our laboratory as previously described
(Hirabayashi et al, 1995). K562, a human NK-sensitive cell line,
derived from a patient with chronic myelogenous leukaemia, was
maintained as described (Vujanovic et al, 1995). Human A-NK
cells were purified from peripheral blood mononuclear cells
(PBMC) obtained from normal donors, using a negative selection
method described previously (Vujanovic et al, 1993). A SCC cell
line, SKG IIIa, used as a positive control, was a gift from Dr S
Nozawa (Keio University, Japan). A mouse lung SCC cell line,
KLN-205, used for in vivo experiments, was purchased from
American Type Culture Collection (Rockville, MD, USA).
Restriction enzymes and T4 DNA ligase were purchased from
Boehringer Mannheim (Indianapolis, IN, USA). Recombinant
human TNF-α, 7-ethyl-10-hydroxycamptothecin (SN-38) and
etoposide were gifts from Knoll Pharmaceuticals (Whippany, NJ,
USA), Daiichi Pharmaceutical Corp. (Tokyo, Japan) and Nippon
Kayaku Corp. (Tokyo, Japan) respectively.

Construction of the expression vector and transduction
of the SCC Ag-1 cDNA

The coding region of   cDNA was amplified by poly-
merase chain reaction (PCR) from pKK-SCC-1 (Suminami et al,
1991) using the following primers: 5′-CAGACCATGGAT-
TCACTCAGT-3′ (sense) and 5′-TCTGTTGTTGCCAGCAA-
TCAG-3′ (antisense).

To create an I site at the translation start codon for insertion
into the MFG retroviral vector (Ohashi et al, 1992), a nucleotide
was changed from A to G at position 65, which introduced Asp
instead of Asn at the 2nd residue. PCR was performed with 30
cycles of 94°C, 55°C and 72°C (each for 1 min). The amplified
fragment was cut completely with 700 and partially with I.
HI adapter (Boehringer Mannheim, Indianapolis, IN, USA)
was ligated to the blunt end of the fragment created by 700 and
digested with HI. This fragment was ligated to the I and
HI cloning sites in the MFG retroviral vector. Next, the IRES-
 cassette, containing HI site on both ends (Zitvogel et al,
1994), was inserted into the HI site of the MFG vector, and
the direction of the insert was confirmed. This construct (MFG-
SCC1-Neo), and the control construct without the SCC Ag-1
cDNA, were used for transfection of the retrovirus packaging cell
line, CRIP (Danos and Mulligan, 1988) by the calcium–phosphate
method. PCI-51, K562 and KLN-205 were incubated with super-
natants of CRIP, infected and selected in G-418 medium (Gibco-
BRL, Gaithersburg, MD, USA) in bulk cultures. The resulting
transduced cells (PCI-51-SCC, K562-SCC and KLN-SCC) and
British Journal of Cancer (2000) 82(4), 981–989
control tumour cells transduced only with the neomycin resistance
() cDNA (PCI-51-NEO, K562-NEO and KLN-NEO) were
used for the experiments described below. In the case of PCI-51,
transfection was repeated to obtain tumour cells which expressed
high levels of the SCC-Ag-1 (PCI-51 SCCre).

Expression of the SCC Ag-1 cDNA in transduced cells

Semi-quantitative reverse transcription PCR (RT-PCR) was
performed using a RNA-PCR kit (Perkin-Elmer, Norwalk, CT,
USA) following the manufacturer’s protocol with the SCC Ag-1
primer pair: 5′-CCAACAAGCTCTTCGGAGA-3′ (sense), 
5′-TCTACGGGGATGAGAATCT-3′ (antisense) or the β-actin
primer pair: 5′-GGGTCAGAAGGATTCCTATG-3′ (sense), 5′-
GGTCTCAAACATGATCTGGG-3′ (antisense).

Reverse transcription was performed with 1 µg (SCC Ag-1) or
0.05 ng (β-actin) of total RNA at 42°C for 15 min. PCR amplifica-
tion (35 cycles; confirmed in preliminary experiments to be in the
exponential phase) was performed with denaturation at 94°C,
annealing at 58°C and extension at 72°C (each for 1 min), adding
0.1 µl of [α-32P] dCTP. Radioactivity of the amplicon band was
counted in an image analyser (Phosphor Imager, Molecular
Dynamics, Sunnyvale, CA, USA), and the ratio of the counts
obtained with the SCC Ag-1 and β-actin was calculated. Western
blotting was performed using the enhanced chemiluminescence
(ECL) detection system (Amersham, Arlington Heights, IL, USA)
with a monoclonal antibody (mAb-13) to SCC Ag-1 (Suminami
et al, 1991). The expression level of the SCC Ag-1 protein was
also analysed by a sensitive immunoassay method (IMx, Dainabot,
Tokyo, Japan), as described previously (Takeshima et al, 1990).

Expression of TNF-α receptors (p55 and p75) was analysed by
flow cytometry, using the receptor-specific mAbs and FACScan
(Becton Dickinson, San Jose, CA, USA).

Inhibition of SCC Ag-1 expression in the SCC cell line

RT-PCR was performed using total RNA from cervical cancer
tissue and the following primers for SCC Ag-1: 5′-ACGAG-
GTACCTCACCATGAATTCACTCAG-3′ and 5′-AGCACTC-
GATCTACGGGGATGAGAATCT-3′ with 30 cycles at 94°C,
55°C, and 72°C (each for 1 min) followed by ligation with TA
cloning vector (Invitrogen, Carlsbad, CA, USA). I fragment of
the insert was cut out and ligated with I site of pCEP4 vector
(Invitrogen, Carlsbad, CA, USA), and the antisense direction of
the insert was confirmed. The antisense construct (pCEP4-
SCCAS) or pCEP4 (control) was used to transduce SKG IIIa cells.
After selection with hygromycin, the expression level of the SCC
antigen in each clone was analysed in the IMx system.

Apoptosis assays

Transduced cells were incubated with apoptosis-inducing drugs,
SN-38 or etoposide (at the indicated concentrations), or TNF-α
(10 ng ml–1) after 4 h of preincubation with cycloheximide 
(10 ng ml–1). Apoptotic tumour cells were identified morphologi-
cally after staining with Hoechst 33342 dye. Inhibition of apop-
tosis was determined by counting viable cells and expressed as the
percentage of viability.

IL-2 activated NK cells (A-NK cells) used as effector cells were
purified from PBMC obtained from normal donors and cultured as
described previously (Vujanovic et al, 1993). Killing of transduced
© 2000 Cancer Research Campaign



Suppression of apoptosis by the SCC antigen-1 983

A

C

D

B

5

4

3

2

1

110

100

90

80

70

60

50

40

R
at

io

V
ia

bi
lit

y 
(%

)

1 2 3 4 5

1 2 3 4 5

0 1 10 100 1000

SN38 ng ml

16.3 0 0.4 33.6 80.0
SCC antigen (ng 10 –6 cells)

-1

Figure 1 Expression of the SCC Ag-1 in tumour cell lines transduced with the SCC Ag-1 cDNA and its effect on SN-38-induced apoptosis. (A) Expression
levels of SCC Ag-1 mRNA were determined by semi-quantitative RT-PCR. The data shown are the ratio of cpm obtained in Phosphor Imager with the SCC Ag-1
and β-actin PCR bands. (B) The SCC Ag-1 protein was detected by Western blot analysis of cell lysates probed with anti-SCC Ag mAb. The level of the SCC
Ag-1 in each lysate was quantitated by the IMx method and is given below each lane. SKGIIIa cells, which express the endogenous SCC Ag-1, were used as a
positive control. Lane 1, SKG IIIa; lane 2, PCI-51; lane 3, PCI-51-NEO; lane 4, PCI-51-SCC; lane 5, PCI-51-SCCre. (C) Tumour cells (PCI-51-SCC) were
treated with various concentrations of SN-38 for 24 h. Few apoptotic cells were observed after staining with the Hoechst 33342 dye (original magnification
×400). (D) The percentages of viable tumour cells after 24 h incubation with SN-38 are shown. Open circles, PCI-51-SCCre; open triangles, PCI-51-SCC;
closed circles, PCI-51-NEO; closed triangles, PCI-51. The results are means of triplicate cultures. The standerd deviations were less than 10% of mean values.
A representative experiment of three performed is shown. *P < 0.05 compared to PCI-51 and PCI-51-NEO. **P < 0.05 compared to PCI-51
tumour cells by A-NK cells was analysed in 4 h 51Cr-release
(CRC) and 3H-TdR-release (JAM) assays, which measure
perforin-mediated membrane lysis and DNA fragmentation,
respectively, as described by us previously (Vujanovic et al, 1996).
An MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5 diphenyl-tetrazolium
bromide) assay was also performed, as previously described
(Nagashima et al, 1997), to evaluate cell death attributable to both
killing mechanisms. Each effector cell preparation was tested in
the same assay against PCI targets transduced with the 
or with  cDNA. The percentage of cell death was determined
for each assay as previously described (Nagashima et al, 1997),
and lytic units (LU) were calculated, using a computer program
based on the formula of Pross et al (1981). The percentages of
suppression of cytotoxicity or apoptosis was calculated according
to the following formula:

% suppression = (1-Ls/Ln)×100

where Ls are LU of activity obtained with PCI-51-SCC targets,
while Ln are LU of activity obtained with PCI-51-NEO (control)
targets tested in the same assay. DNA fragmentation of transduced
cells was also analysed by the terminal deoxynucleotidyl trans-
ferase-mediated dUTP-biotin nick end labelling (TUNEL)
method, using reagents purchased from Boehringer Mannheim.
© 2000 Cancer Research Campaign
Caspase-3 assay

Increases in caspase-3 activity were measured using ApoAlert
CPP32 protease assay kit (Clontech, Palo Alto, CA, USA)
according to the manufacturer’s recommendations. After 4 h
preincubation with cycloheximide (10 ng ml–1), each of the trans-
duced cell lines was incubated with or without TNF-α (10 ng ml–1)
in the presence of cycloheximide (10 ng ml–1) for 15 h. The cells
were harvested, counted, lysed with the lysis buffer and
centrifuged. After incubation with the substrate (DEVD-pNA) for
1 h, the ratio of caspase-3 activity was obtained by measuring
OD405 of TNF-α (+) cells and TNF-α (–) cells minus OD405
values for the cells incubated in the absence of the substrate.

In vivo experiments with SCC Ag-1-transduced cells

A murine SCC cell line, KLN-205, able to grow in nude mice was
used for in vivo experiments. Tumour cells transduced with the
  and  cDNAs (KLN-SCC) or  cDNA alone
(KLN-NEO) were injected subcutaneously into Balb/c nude mice
using 4 × 106 tumour cells per mouse ( = 6). Mice were observed
for 1 month. The size of each subcutaneous (s.c.) tumour was
measured with calipers, and the product of two dimensions of the
British Journal of Cancer (2000) 82(4), 981–989
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Figure 2 Effects of the inhibition of the SCC Ag-1 expression by antisense cDNA in SKGIIIa cell line. Expression of the SCC Ag-1 was inhibited after
transfection of the antisense construct. Expression level of SCC Ag-1 in each tumour cell clone was determined using the IMx system (A) and Western blotting
(B). (C) The percentages of tumour cells surviving apoptosis after a 26 h incubation period in the presence of 10 µg ml–1 of etoposide are shown. Lane 1,
parental SKGIIIa cells; lane 2, SKGIIIa cells transduced with pCEP4 (SKGIIIa-CEP4); lanes 3 and 4, SKGIIIa cells after transduction with pCEP4-SCCAS and
selection in the presence of hygromycin (SKGIIIa-AS-1 and SKGIIIa-AS-2, respectively). Asterisks indicate significant differences (P < 0.05) between the
antisense-transduced and control cell lines
tumour was defined as tumour cross-section area. Tumours were
excised, sectioned and examined for the presence of apoptotic
cells following staining with TUNEL reagents. The study was
approved by the Institutional Animal Care and Use Committee of
the University of Pittsburgh.

Statistical analysis

Statistical analysis was done by the Student’s -test,
Mann–Whitney’s test or Wilcoxon’s test, as appropriate.



Establishment of tumour cells expressing
the SCC Ag-1

To be able to analyse function of the SCC Ag-1 in tumour cells, it
was first necessary to establish tumour cell lines stably expressing
this protein. To this end, PCI-51 cell line, which is derived from
human SCC of the head and neck and does not express the SCC
Ag-1, was transduced with a retroviral vector (MFG-SCC-1-neo)
containing cDNA for this protein and  cDNA (PCI-51-SCC,
PCI-51-SCCre) or with  cDNA alone as a control (PCI-51-
NEO). To evaluate the expression level of the SCC Ag-1 in these
transduced and selected cell lines, semi-quantitative RT-PCR for
the SCC Ag-1 was performed. The cells transduced with 
 cDNA expressed considerably higher levels of  
mRNA, in comparison to very low levels of expression in control
cells, which were transduced with  cDNA alone (Figure 1A).
The expression level of  message was also determined using
the same method, and was found to be comparable for both groups
(data not shown). Additional analyses, using Western blots and the
IMx (immunoassay) method (Figure 1B), showed a large increase
British Journal of Cancer (2000) 82(4), 981–989
in the level of SCC Ag-1 protein expression in tumour cells trans-
duced with the   cDNA. Furthermore, the cells which
were transduced repeatedly (PCI-51-SCCre) expressed more 
 mRNA as well as protein compared to PCI-51-SCC. The
protein levels seen in transduced cells were still within the physio-
logical range (Numa et al, 1996). No differences in growth were
observed in culture between PCI-51-SCC, PCI-51-SCCre and
PCI-51-NEO cell lines (not shown).

The SCC Ag-1 attenuates apoptosis induced by SN-38

The transduced and selected tumour cells (PCI-51-SCC, PCI-51-
SCCre and PCI-51-NEO) were incubated with the anticancer 
drug, 7-ethyl-10-hydroxycamptothecin (SN-38), which normally
induces apoptosis in tumour cells (Yoshida et al, 1993; Nakatsu
et al, 1997). In fact, when these transduced cells were treated with
various concentrations of SN-38, some of the cells underwent
DNA fragmentation (Figure 1C). However, as shown in Figure
1D, when tumour cells expressing the SCC Ag-1 were treated with
SN-38, their viability was significantly improved compared with
PCI-51-NEO. Furthermore, tumour cell viability correlated with
the expression level of the SCC Ag-1, as SCC cells expressing
high levels of the SCC Ag-1 had significantly better viability than
those expressing low levels of this protein (see Figure 1B and D).

In an attempt to more directly demonstrate the involvement of
the SCC Ag-1 in the protection of tumour cells from apoptosis,
antisense   cDNA was transfected into SKGIIIa cells,
which normally express SCC Ag-1 protein. As shown in Figure
2A and B, expression of the SCC Ag-1 was significantly
suppressed in independently transfected tumour cell clones (SKG-
AS-1 and SKG-AS-2). These clones were then incubated with
apoptosis-inducing drug, etoposide (10 µg ml–1), for 26 h. In
comparison to the control clone transfected with the pCEP4 or to
© 2000 Cancer Research Campaign
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Figure 3 Effects of the SCC Ag-1 expression on TNF-α-induced apoptosis.
After preincubation of tumour targets with 10 ng ml–1 of cycloheximide for 4 h,
the cells were incubated in the presence of 10 ng ml–1 of TNF-α and 
10 ng ml–1 of cycloheximide for the additional 24 h (A) or 36 h (B). The
presence of apoptotic cells was confirmed after staining with Hoechst 33342
dye, and the percentages of viable cells in each culture was determined. (A)
Lane 1, PCI-51; lane 2, PCI-51-NEO; lane 3, PCI-51-SCC; lane 4, PCI-51-
SCCre (B). Lane 1, SKGIIIa; lane 2, SKGIIIa-CEP4; lane 3, SKGIIIa-AS-1; lane
4, SKGIIIa-AS-2. The data were obtained from three experiments, and means +
standard deviation are shown. Significance of differences from controls (lanes 1
and 2) are indicated as follows: *P < 0.05; **P < 0.01. A double asterisk also
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Figure 4 Effects of the SCC Ag-1 cDNA on the susceptibility of tumour cell
targets to perforin-mediated lysis or to apoptosis mediated by A-NK cells.
The data were obtained from six independent experiments, in which human
A-NK cells were used as effector cells and PCI-51-SCC or PCI-51-NEO as
transduced target cells. These A-NK cells were generated from different
donors and had different levels of baseline activity measured with control
(Neo-transduced) targets. The data are expressed as the percentage
suppression of perforin-mediated lysis (CRA), apoptosis (JAM assays) or cell
death (MTT assays), calculated according to the formula given in Materials
and Methods. A dotted line at ‘0’ indicates no suppression or enhancement
of lysis/apoptosis in the SCC-transduced targets vs. the neo-transduced
targets tested simultaneously with each A-NK cell preparation. The asterisks
indicate a significant inhibition of tumour cell apoptosis detected in the JAM
and MTT assays, as determined by Wilcoxon’s test (P < 0.05)
parental cells, tumour cells expressing low levels of the SCC Ag-1
following antisense treatment were significantly more susceptible
to apoptosis induced by etoposide (Figure 2C).

The SCC Ag-1 attenuates apoptosis induced by TNF-α

Previous experiments showed that SCC cells are susceptible to
effects of exogenous TNF-α, which binds to p55 TNF-α receptor
(TNFR1), inducing apoptosis (data not shown). We, therefore,
wished to determine whether expression of the SCC Ag-1 in
tumour cells protected them from TNF-α-induced apoptosis. First,
using flow cytometry, we confirmed that surface expression of
TNFR1 was not altered in PCI-51 cells after transduction with the
  cDNA (data not shown). Next, we incubated these
transduced tumour cells in the presence of cycloheximide 
(10 ng ml–1) and TNF-α (10 ng ml–1) and after 24–36 h determined
the level of apoptosis. As shown in Figure 3A, tumour cells trans-
duced with the   cDNA (PCI-51-SCC, PCI-51-SCCre)
showed significantly less apoptosis ( < 0.05) compared to PCI-
51-Neo or parental PCI-51 cells, depending on the intracellular
level of SCC Ag-1. This effect of SCC Ag-1 was confirmed using
tumour cells transduced with antisense  cDNA, which
express low levels of the SCC Ag-1 (see Figure 2). The percentage
of apoptotic cells of SKG IIIa-AS-1 or SKGIIIa-AS-2 tumour
clones were significantly increased significantly relative to mock
(pCEP4) or parental control cells (Figure 3B).

The SCC Ag-1 attenuates apoptosis induced by A-NK
cells

Inhibitory effects of the SCC Ag-1 on apoptosis in tumour cells
were further analysed using A-NK cells. Co-incubation of tumour
cell targets with IL-2-activated NK (A-NK) cells for 1 h was
previously shown to result in apoptosis in a significant proportion
of these targets (Vujanovic et al, 1995). Tumour cells 
transduced with the   cDNA were co-incubated with
A-NK cells at different effector to target (E:T) cell ratios, and
© 2000 Cancer Research Campaign
poptosis was determined in JAM assays. The SCC Ag-1
ransduced targets (PCI-51-SCC) showed significantly lower
evels of apoptosis than controls transduced with the NEO gene.
s shown in Figure 4, apoptosis mediated by A-NK cells, was

nhibited in 5/6 experiments. The MTT assays also indicated that
he expression of the SCC Ag-1 inhibited apoptosis of tumour cell
argets. In contrast, the inhibitory effect of the SCC Ag-1 was not
ignificant when 51Cr-release assays (CRA) were used to measure
erforin-mediated lysis (Figure 4). Nevertheless, in 2/6 CRA,
onsiderable suppression of lysis in the presence of the SCC Ag-1
as evident. The protective effect of the SCC Ag-1 on apoptosis in

umour targets was also confirmed by the TUNEL assay
Figure 5), which showed that significantly fewer tumour cells
ere undergoing DNA fragmentation in PCI-51 targets transduced
ith the  cDNA than in controls.

echanisms of apoptosis inhibition by the SCC Ag-1

o begin to elucidate the mechanisms involved in the observed
nhibitory effects of the SCC Ag-1 on drug-, cytokine- or effector
ell-induced apoptosis in tumour cells, we measured caspase-3
ctivity in these cells before and after their incubation with TNF-
. As shown in Figure 6, increase of caspase-3 activity was always
ignificantly higher in control tumour cells than in tumour cells
ransduced with the  cDNA. Therefore, it is likely that
hen present in tumour cells, the SCC Ag-1 protein acts upstream
f caspase-3.
British Journal of Cancer (2000) 82(4), 981–989
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Figure 7 In vivo growth of murine SCC cell line, KLN-205, in nude mice
was transduced with SCC Ag-1 and neor cDNAs (KLN-SCC), or neor cDNA
alone (KLN-NEO). (A) Expression level of SSC Ag-1 mRNA was determined
by semi-quantitative RT-PCR (see legend to Figure 1). (B) The SCC Ag-1
protein was detected by Western blot analysis of cell lysates probed with
anti-SCC antigen mAb (mAb-13). The level of the SCC Ag-1 in each lysate
was quantitated by IMx method and is given below each lane. (C) The size of
the tumours established by s.c. injection of 4 × 106 tumour cells was
measured 1 month after injection. The data show mean tumour size +
standard error of six animals studied in three experiments. Lane 1, KLN-
NEO; lane 2, KLN-SCC. The asterisk indicates a significant difference in
tumour size (P < 0.05)
Effects of the SCC Ag-1 on tumour growth in vivo

The observation that SCC Ag-1-mediated protection of tumour
targets from apoptosis in vitro prompted us to analyse this effect in
vivo. To this end, nude mice were injected s.c. with KLN-SCC or
KLN-NEO. The transduced KLN-SCC cells expressed the SCC
Ag-1, as shown in Figure 7A and B, and the growth rate of
British Journal of Cancer (2000) 82(4), 981–989
KLN-SCC and KLN-NEO was the same in vitro (data not shown).
The size of tumours induced by injection of 4 × 106 KLN-SCC
cells was significantly greater than that induced by injections of
control cells (KLN-NEO), as shown in Figure 7C. When the
© 2000 Cancer Research Campaign
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tumours induced by KLN-NEO were biopsied, sectioned and
stained for TUNEL, apoptotic nuclei were detectable in a propor-
tion of tumour cells, with fewer apoptotic nuclei seen in sections of
KLN-SCC tumours (data not shown). Thus, ectopic expression of
the SCC Ag-1 protected tumour cells from apoptosis in vivo and
favored their survival, thereby enhancing tumour growth.



The resistance of cancer cells to apoptosis is thought to contribute
to tumour progression. One of the mechanisms responsible for
resistance of tumour cells to apoptosis involves endogenous
expression and activation of protease inhibitors. A number of
physiologic inhibitors of apoptosis has been identified recently,
including the Bcl-2 family members, FLIP, IAPs and serpins. The
latter constitute a heterogenous superfamily which includes the 
ov-serpin family and its member, the SCC Ag-1. The biologic role
of this tumour-associated protein has remained unknown, although
its presence in tumours and sera of patients with SCC has been
well documented (Kato et al, 1979; Mino et al, 1988; Kato, 1992).
The results of our study show that ectopic expression of the SCC
Ag-1 in cancer cells significantly attenuates apoptosis mediated by
anti-cancer drugs, TNF-α or A-NK cells and promotes in vivo
growth of the tumour.

Current data indicate that various anti-cancer drugs cause apop-
tosis of cancer cells and that activation of cellular proteases is
involved in the drug-induced apoptotic pathway (Fisher, 1994;
Ormerod et al, 1994; Desjardins and MacManus, 1995). Therefore,
it is reasonable to predict that protease inhibitors might be respon-
sible for regulation of apoptosis induced by anticancer drugs in
vivo. We demonstrated that when the SCC Ag-1 was ectopically
expressed in cancer cells, their apoptosis induced by SN-38 was
significantly attenuated. Furthermore, inhibition of drug-induced
apoptosis was related to the expression level of the SCC Ag-1 in
cancer cells. Transfection of antisense  cDNA into SCC
Ag-1 positive tumour cell line (SKGIIIa) resulted in the inhibition
of the SCC Ag-1 expression, and it also significantly increased
susceptibility of these cells to drug-induced apoptosis. This
observation is clinically important, because it illustrates that the
resistance of tumour cells to anticancer drugs may be, in part,
mediated by overexpression of the SCC Ag-1 in tumour tissues
and that it might be prevented or decreased by the use of agents
capable of blocking expression of the SCC Ag-1 gene.

Bcl-2 is a known inhibitor of apoptosis induced by various
stimuli (Reed, 1997), which has also been reported to inhibit
apoptosis induced by anticancer drugs (Miyashita and Reed, 1993;
Ohmori et al, 1993). But expression of Bcl-2 may not be sufficient
to down-regulate apoptosis in tumour cells, and Bcl-2-positive
tumours were observed to have a favourable prognosis in some
cases (Fontanini et al, 1995; Herod et al, 1996; Nakanishi et al,
1997). It is possible that Bcl-2 itself may be cleaved in some cells
by caspases into fragments which are pro-apoptotic, as reported
recently (Cheng et al, 1997). From our preliminary experiments, it
appeared that function of SCC Ag-1 might not be related to that of
Bcl-2 in tumour cells. Thus, overexpression of the SCC Ag-1 did
not alter expression of Bcl-2 in transduced PCI-51 cells, as
measured in Western blots, in comparison to that in control tumour
cells (data not shown). In addition, newer evidence suggests that
various pathways of apoptosis may be differentially regulated by
various protease inhibitors, which target different caspases (Datta
et al, 1997; Hu et al, 1998; Pan et al, 1998). In this respect, the
© 2000 Cancer Research Campaign
SCC Ag-1 appears to interfere with the apoptotic pathway in
tumour cells upstream from caspase-3. When the level of SCC 
Ag-1 expression was up-regulated by transduction of SCC Ag-1
cDNA into PCI-51 cells, an increase in caspase-3 activity was
significantly smaller upon induction with TNF-α than in control
cells. Further studies are in progress to determine which of the
upstream caspases or proteases are targets for this serpin.

Apoptosis of cancer cells can also be induced by cytokines, such
as TNF-α, or by immune killer cells, e.g. cytotoxic T lymphocytes
(CTL) or NK cells. The inhibitory effect of the SCC Ag-1 on apop-
tosis induced by TNF-α in vitro was demonstrated in our experi-
ments and further confirmed by inhibiting its expression with
antisense  cDNA. Our previous data indicated that expo-
sure of tumour cells to TNF-α up-regulated expression of the SCC
antigen (Numa et al, 1996). Therefore, increased expression of the
SCC Ag-1 in tumour cells could represent a protective mechanism
from TNF-α-induced apoptosis. IL-2-activated NK cells (A-NK
cells) have been demonstrated to be able to kill targets by apop-
tosis (Vujanovic et al, 1993) through the TNF family receptor-
ligand pairs, such as Fas/FasL or TNFR1/TNF-α (Vujanovic et al,
1995) as well as by the perforin-granzyme pathway. Tumour cells
transduced with the SCC Ag-1 were partially inhibited from
undergoing apoptosis mediated by A-NK cells, although there was
no significant effect on perforin-mediated lysis. These data
suggested that the presence of the SCC Ag-1 in carcinoma cells
might contribute to the defence system of tumour cells, protecting
them from apoptotic death mediated by immune killer cells.

Viral serpin, CrmA (a cowpox virus protein), is a potent
inhibitor of caspases 1 and 8, and it is known to inhibit apoptosis
induced by TNF-α, Fas or CTL (Enari et al, 1995; Tewari and
Dixit, 1995; Tewari et al, 1995). Under physiologic conditions,
this serpin is primarily involved in blocking apoptosis of virus-
infected cells. PAI-2 which, like the SCC Ag-1, is also a member
of human ov-serpin family and is coded for by the gene located 
on chromosome 18q21.3, has been reported to inhibit apoptosis
induced by TNF-α or   (Dickinson et al,
1995; Gan et al, 1995). Dickinson et al suggested that the mecha-
nism of inhibition of TNF-α-induced apoptosis by this serpin was
attributable to the regulation by the host of an inflammatory
process. Thus, the reported inhibitory effects of PAI-2 and CrmA
on apoptosis seem to operate in the inflammatory process or infec-
tions respectively, and not in tumour growth. Several reports indi-
cate that PAI-2 expression may be increased in certain tumours
(Scherrer et al, 1991; de Vries et al, 1994). However, overexpres-
sion of PAI-2 reduces extracellular matrix degradation by uro-
kinase-type plasminogen activator (u-PA) produced by tumour
cells (Sumiyoshi et al, 1992; Nagayama et al, 1994). Thus, this
process is distinct from apoptosis or its regulation. Furthermore,
expression of PAI-2 appears to restrict the metastatic potential of
tumour cells, resulting in a favourable prognosis (Bouchet et al,
1994; Foekens et al, 1995). In contrast, expression of the SCC Ag-
1 attenuates apoptosis and promotes tumour progression.
Therefore, the biologic function(s) of the SCC Ag-1 is distinct
from that of CrmA and PAI-2.

Inhibition of apoptosis in tumour cells by transduction of the
  cDNA and increased susceptibility to apoptosis by
transfection of the antisense cDNA, although clearly documented
and significant, were not overly impressive when compared with
the change in the protein level of the SCC Ag-1. This discordance
could be explained by the possibility that the SCC Ag-1 might
inhibit only one of several apoptotic pathways inducible by
British Journal of Cancer (2000) 82(4), 981–989
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apoptotic signals. Alternately, the SCC Ag-1 may be only one of
many cellular factors involved in the regulation of apoptotic path-
ways in tumour cells. In any event, it is highly likely that the
inhibitory function(s) of the SCC Ag-1 is not restricted to a single
squamous cell carcinoma cell line (PCI-51), because transduction
of SCC Ag-1 cDNA to non-squamous cell line (e.g. K562) gave
analogous results (data not shown).

In summary, our results suggest that the SCC Ag-1, a member of
the human serpin family and a tumour-associated protein, is func-
tionally linked to the apoptotic pathway(s) in squamous cell carci-
noma and other tumour cells. The expression level of the SCC
Ag-1 in cancer cells appears to be, in part, responsible for resis-
tance of these cells to apoptosis in vitro and to tumour progression
and growth in vivo.
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