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Summary Lung cancer is the leading cause of death among cancers in Taiwan. Although the etiology of lung cancer has yet to be defined,
genetic variability in activities of metabolic enzymes has been correlated with lung cancer. In the present study, the possibility of association
of CYP1A1 and microsomal epoxide hydrolase (HYL1) genetic polymorphisms with lung cancer was examined among 132 lung cancer
patients and 259 controls in Taiwan. No significant association was observed for either CYP1A1 or HYL1 polymorphism alone and the overall
incidence of lung cancer after adjusting for age, gender and smoking status. When cases were stratified according to histological type, there
was significant association between CYP1A1*2A homozygote and squamous cell carcinoma (SCC) (odds ratio (OR) 2.86; 95% confidence
interval (CI) 1.33–6.12). Similarly, the proportion of HYL1 genotypes corresponding to high or normal enzyme activities was higher in SCC
than in controls (OR 1.96; 95% CI 1.04–3.70). A combination of susceptible CYP1A1 and HYL1 genotypes was found to be highly associated 
with lung cancer, especially with SCC (OR 6.76; 95% CI 2.29–19.10). Our results suggest that the combination of CYP1A1 and HYL1
polymorphisms is an important risk factor for lung SCC. © 2000 Cancer Research Campaign
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Cancer is the leading cause of death in Taiwan, and lung cancer is
the leading and the second-leading cause of cancer deaths among
women and men, respectively, in Taiwan (Department of Health,
1996). Genetic variability in metabolic activation or detoxification
of environmental carcinogens partially explains host susceptibility
to chemical-induced cancers (Daly et al, 1994). Carcinogens have
been identified in cigarette smoke (Witschi et al, 1997), and ciga-
rette smoking is thus strongly associated with the risk of lung
squamous cell carcinoma (SCC) (Gazdar and Minna, 1997). High
levels of polycyclic aromatic hydrocarbons (PAHs), such as
benzo[]pyrene (BaP) benzo[]perylene and benzo[]fluoran-
thene, were detected in cigarette smoke (Witschi et al, 1997) and
airborne particulates collected from Taiwan (Kuo et al, 1998).
PAHs are converted into dihydrodiol epoxides by cytochrome
P450 enzymes and epoxide hydrolase in mammalian tissues
(Hughes and Phillips, 1993; Mass et al, 1996; Josephy, 1997).
These dihydrodiol epoxide metabolites attack DNA and form
DNA adducts. As a consequence of DNA adduct formation, gene
mutation and the initiation of carcinogenesis occurrs (Hall and
Grover, 1990). DNA adducts have been detected in humans
exposed to cigarette smoke and other environmental pollutants
(Gallagher et al, 1993; Binkova et al, 1995).

Cytochrome P4501A1 (CYP1A1) metabolizes a range of 
PAHs, including BaP, and is induced by various PAHs through
transcriptional activation (Denison and Whitlock, 1995). Genetic
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differences in human CYP1A1 enzyme inducibility have been
demonstrated (Kellermann et al, 1973). Previous epidemiological
studies have shown that the highly inducible phenotype of
 is more commonly found in lung cancer patients than in
control subjects (Kouri et al, 1982). An I polymorphic site at
the 3′-flanking region of  gene was identified (Kawajiri et
al, 1990) and this allele was called  (Cascorbi et al,
1996). It has been reported that there is an association between the
 allele and lung cancer in Japanese, white, Hawaiian
and Korean populations (Kawajiri et al, 1990; Xu et al, 1996;
Hong et al, 1998; Le Marchand et al, 1998). However, in other
studies, using populations such as Finnish, Norwegian, German
and North American, the relationship between the 
allele and lung cancer was not observed (Tefre et al, 1991;
Hirvonen et al, 1992; Shields et al, 1993; Drakoulis et al, 1994).

Microsomal epoxide hydrolase (HYL1) catalyses the hydrolysis
of reactive aliphatic and arene epoxides generated by cytochrome
P450 enzymes to more water-soluble dihydrodiol derivatives
(Oesch, 1973). This reaction is generally considered a detoxifica-
tion reaction (Oesch, 1973). In certain instances, such as PAHs, 
the reaction products of HYL1 may be further derivatized to
secondary epoxide species by cytochrome P450 enzymes
(Josephy, 1997). However, these dihydrolepoxides are often poor
substrates for HYL1 and are highly reactive, attacking cellular
DNA (Lu and Miwa, 1980). Epidemiological studies show that
HYL1 activity greatly varies between different individuals
(Omiecinski et al, 1993). Two genetic polymorphic sites of 
have been identified (Hassett et al, 1994). A T to C mutation in
exon-3 of  gene changes tyrosine residue 113 to histidine,
which reduces enzyme activity at least 60% (low allele). This
allele is defined as . In addition, an A to G mutation in
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exon 4 changes histidine residue 139 to arginine, which increases
enzyme activity at least 25% (high allele). This allele is defined as
. The level of HYL1 activity may be predicted by 
genotyping (Hassett et al, 1994).  genotypes with low
enzyme activity were found to be associated with high suscepti-
bility to chronic obstructive pulmonary disease and emphysema
(Smith and Harrison, 1997). Recently, a significant association of
high predicted HYL1 activity and lung cancer was found among
French White smokers (Benhamou et al, 1998) Furthermore, the
 allele was associated with an increased risk of lung cancer
in a Chinese population (Persson et al, 1999).

In the present study, we examined the distributions of genetic
polymorphisms of  and  among control and lung
cancer groups in Taiwan. Since CYP1A1 and HYL1 participate in
bioactivation of PAHs, which are found in cigarette smoke and
environmental pollutants, we investigated whether these genetic
polymorphisms play a role in individual susceptibility to lung
cancer in Taiwan. Furthermore, the possibility of an interaction
between  and  genetic polymorphisms in association
with lung cancer risk was also studied.



Study population

Controls were non-cancer patients who visited cardiology,
urology, or endocrinology clinics or who attended for health status
examination, at Chung-Shan Memorial Hospital in Taichung from
November 1997 to January 1998. Chung-Shan Memorial Hospital
is a district hospital centrally located in Taichung city and most
patients are residents of Taichung. In order for the age and gender
distributions of controls to match those of lung cancer patients,
most controls were over 40 and more than 60% of controls were
male. Controls were interviewed and asked about histories of
cancer, occupation and smoking status. Only individuals without
history of cancer were eligible to participate as controls. DNA of
control group was isolated from the whole blood using a DNA
isolation kit (Qiagen, Hilden, Germany). Normal pulmonary
surgical resection was performed in lung cancer patients by the
Department of Thoracic Surgery at Veterans General Hospital-
Taichung from 1995 to 1997. Veterans General Hospital-Taichung
is a medical centre located in Taichung city and attracts people
with severe diseases such as cancers. Patients, who attended
Thoracic Surgery Clinic at Veterans General Hospital-Taichung
from 1995 to 1997, were interviewed and asked about occupation
and smoking status. All controls and cases were citizens of
Taiwan. DNA from the case group was isolated from normal
tissues using proteinase K digestion following phenol and chloro-
form extraction. We collected a total of 276 controls and 169 cases
for this study. Subjects with no data on smoking status were
excluded from the study, leaving 267 controls and 147 cases.
Among 267 controls and 147 cases, eight control subjects and 15
cases had quit smoking. These ex-smokers were excluded from
this study, leaving 259 controls and 132 cases. The histologies of
lung cancer tumour types were determined according to the 
WHO classification method. Adenocarcinomas and squamous cell
carcinomas (SCCs) were the major histological types among 
lung cancer patients. Of eight cases involving other histological
types, three were small-cell carcinoma, two were large-cell carci-
noma, one was adenosquamous cell carcinoma, one was mixed
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adenocarcinoma and small-cell carcinoma, and one was mixed
adenocarcinoma and large-cell carcinoma.

Genotyping of CYP1A1*2A polymorphism

Genotyping of  polymorphism (located at the 264th
base downstream from the polyadenylation signal) was performed
by polymerase chain reaction (PCR) amplification procedure using
the primer set of 5′-TAGGAGTCTTGTCTCATGCCT-3′ and 5′-
CAGTGAAGAGGTGTAGCCGCT-3′ (Hayashi et al, 1991). The
amplified products were digested with I and analysed by elec-
trophoresis on a 2.0% agarose gel. The wild-type allele,
, had no I site at the 3′-end and was characterized
by a 340 base pair (bp) fragment on gel. The mutant allele,
, carried a base substitution of thymidine to cytosine
to form an I site and was characterized by 140 and 200 bp
fragments on gel. The heterozygous genotype, ,
had both alleles and was characterized by 140, 200 and 340 bp
fragments.

Genotyping of HYL1 polymorphism

Two polymorphic sites on  located at exon 3 and exon 4 were
defined as  and  respectively (Smith and Harrison,
1997). Genotyping of  polymorphism was performed
using PCR amplification with the primer set of 5′-GATC-
GATAAGTTCCGTTTCACC-3′ and 5′-ATCCTTAGTCTTGAA-
GTGAGGAT-3′, and genotyping of  polymorphism was
performed with the primer set of 5′-ACATCCACTTCATC-
CACGT-3′ and 5′-ATGCCTCTGAGAAGCCAT-3′ (Smith and
Harrison, 1997). The reaction mixture contained 120 ng of DNA,
0.2 mM of each of the deoxynucleotide triphosphates, 2 mM

magnesium chloride (MgCl2), 0.2 µM primer and 0.6 units of 
DNA polymerase in a volume of 30 µl. The annealing tempera-
tures for exon 3 and exon 4 PCR reaction were 51 and 59°C
respectively. The amplified 162 base pair (bp) of exon 3 PCR
products were digested with V, and the amplified 210 bp
exon 4 PCR products were digested with I. All reactions were
analysed on a 4% mixed agarose gel (agarose:low melting point
agarose = 3:1). The wild-type allele on exon 3, , had an
V site and was characterized by 140 bp and 22 bp fragments
on gel. The mutant allele on exon 3, , carried a T–C substi-
tution resulting in the loss of an V site, and was identified by
a 162 bp fragment on gel. The wild-type allele on exon 4, ,
had no I site, but a 210 bp fragment was observed. The mutant
allele in exon 4, , carried an A–G substitution to form an
I site and was characterized by the presence of 164 and 46 bp
fragments.

Statistical analysis

Multivariate logistic regression analysis was performed to adjust
for age, gender and smoking status and to assess the association
between genotypes and lung cancer risk. For statistical analysis of
, we combined subjects carrying the  allele into
one group. Male gender, smokers and  homozygote
were defined as 1, and the others as 0. For analysis of , 
we combined the following genotypes into one group of
‘high/normal’ genotypes: wild-type exon 3 genotype; 
heterozygote with at least one  allele (Smith and Harrison,
British Journal of Cancer (2000) 82(4), 852–857
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Table 1 Characteristics of controls and lung cancer patients

Cases (%) Controls (%)

Total 132 259
Gender

Male 92 (69.7%) 159 (61.4%)
Female 40 (30.3%) 100 (38.6%)

Age
Mean ± s.d. 63 ± 9 58 ± 12

Smoker 75 (56.8%) 86 (33.2%)
Pack-years 39.14 ± 21.55 29.95 ± 25.32
1997). The ‘low’ group included  homozygote; 
heterozygote with wild-type exon 4 genotype (Smith and
Harrison, 1997). The ‘high/normal’ group was defined as 1. Odds
ratios (ORs) were calculated to assess the relative risk with respect
to genotype and were expressed together with 95% confidence
interval (CI).



In this study, samples were collected from 259 non-cancer controls
and 132 lung cancer patients. The average age was 63 (± 9) years
British Journal of Cancer (2000) 82(4), 852–857

Table 2 Proportions of CYP1A1*2A homozygote amo

Cases Contro
(n = 132) (n = 25

Total 28/132 (21.2%) 35/259
Gender

Male 24/92 (26.1%) 20/159
Female 4/40 (10.0%) 15/100

Smoking status
Smoker 21/75 (28.0%) 10/86 (
Non-smoker 7/57 (12.3%) 25/173

Histology
Adenocarcinoma 10/69 (14.5%)
Squamous 16/55 (29.1%)
Others 2/8 (25.0%)

aOdds ratios were estimated to calculate the associatio
cancer risk. bAdjusted for age, gender and smoking sta
dAdjusted for age and gender.

Table 3. Proportions of high/normal HYL1 genotypes 

Cases Contro
(n = 132) (n = 25

Total 54/132 (40.9%) 101/25
Gender

Male 40/92 (43.5%) 63/159
Female 14/40 (35.0%) 38/100

Smoking status
Smoker 34/75 (45.3%) 38/86 
Non-smoker 20/57 (35.1%) 63/173

Histology
Adenocarcinoma 21/69 (30.4%)
Squamous 31/55 (56.4%)
Others 2/8 (25.0%)

aOdds ratios were estimated to calculate the associatio
risk. bAdjusted for age, gender and smoking status. cAd
age and gender.
for the case group and 58 (± 12) years for the control group (Table
1). More than 60% of lung cancer patients and controls were male
(Table 1). No significant difference in the gender distribution was
observed between case and control groups (data not shown). The
proportion of smokers and cumulative smoking dose (pack-years)
were higher in the case group than in the control group (Table 1).
When we evaluated the effects of age, gender and smoking status
on the lung cancer risk by univariate logistic regression analysis,
all three factors were associated with lung cancer (data not
shown). To assess the association between genetic polymorphisms
of  and  with lung cancer, we carried out multi-
variate analyses adjusted for age, gender and smoking status.

The genotypes of  were determined using a PCR reac-
tion followed by I digestion. We combined individuals
carrying the  allele into one group to estimate the rela-
tive risk of the  homozygote to lung cancer. DNA of
control group was isolated from blood. DNA of lung cancer group
was from normal pulmonary surgical resection, because the
majority of lung cancer patients had no blood sample available. In
our preliminary study, we identified  genotypes with DNA
isolated from blood and normal pulmonary surgical resection from
17 lung cancer patients. Genotypes identified in blood DNA were
exactly the same as those identified from surgical resection (data
© 2000 Cancer Research Campaign

ng controls and lung cancer patients

ls
9) OR (95% CI)a P-value

 (13.5%) 1.60 (0.91–2.89)b 0.101

 (12.6%) 2.29 (1.12–4.66)c 0.023
 (15.0%) 0.64 (0.20–2.07)c 0.454

11.6%) 3.23 (1.29–8.06)d 0.012
 (14.5%) 0.82 (0.33–2.02)d 0.665

1.08 (0.50–2.32)b 0.849
2.86 (1.33–6.12)b 0.007

n between CYP1A1*2A homozygote and lung
tus. cAdjusted for age and smoking status.

among controls and lung cancer patients

ls
9) OR (95% CI)a P-value

9 (39.0%) 0.97 (0.62–1.52)b 0.896

 (39.6%) 0.85 (0.48–1.51)c 0.583
 (38.0%) 1.10 (0.52–2.34)c 0.808

(41.3%) 1.04 (0.52–2.07)d 0.910
 (36.4%) 0.90 (0.48–1.69)d 0.734

0.65 (0.36–1.16)b 0.144
1.96 (1.04–3.70)b 0.038

n of high/normal HYL1 genotypes and lung cancer
justed for age and smoking status. dAdjusted for
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Table 4 Analysis of the interactions between CYPIA1 and HYL1 genotypes on their association with lung
cancer risk

Categoriesa Number ORb (95% CI)
(CYP1A1/HYL1 genotypes) (cases/controls)

Total cases CYP1A1*1/*11CYP1A1*1/*2A/low 66/134 1.00
CYP1A1*1/*1+CYP1A1*1/*2A/high + normal 38/90 0.76 (0.46–1.26)
CYP1A1*2A/*2A/low 12/24 0.93 (0.42–2.06)
CYP1A1*2A/*2A/high + normal 16/11 2.56 (1.08–6.10)c

Adenocarcinoma CYP1A1*1/*1+CYP1A1*1/*2A/low 43/134 1.00
CYP1A1*1/*1+CYP1A1*1/*2A/high + normal 16/90 0.52 (0.27–0.99)
CYP1A1*2A/*2A/low 5/24 0.63 (0.22–1.77)
CYP1A1*2A/*2A/high + normal 5/11 1.375 (0.44–4.28)

Squamous CYP1A1*1/*1+CYP1A1*1/*2A/low 19/134 1.00
CYP1A1*1/*1+CYP1A1*1/*2A/high + normal 20/90 1.58 (0.76–3.27)
CYP1A1*2A/*2A/low 5/24 1.74 (0.54–5.65)
CYP1A1*2A/*2A/high + normal 11/11 6.76 (2.29–19.10)d

aCases and controls were divided into four categories according to CYP1A1 and HYL1 genotypes.
CYP1A1*1/*1 + CYP1A1*1/*2A represented wild-type CYP1A1 and CYP1A1*2A heterozygote respectively;
CYP1A1*2A/*2A represented CYP1A1*2A homozygote. bIndividuals carrying both wild-type CYP1A1 or
CYP1A1*2A heterozygote and low HYL1 genotypes were defined as the baseline group. Odds ratios of the
other three categories were calculated by comparing to the baseline group and adjusting for age, gender and
smoking status. cStatistically significant with P < 0.05. dStatistically significant with P < 0.001.
not shown). The proportion of the  homozygote was
21.2% for the case group and 13.5% for the control group (Table
2). The  genotype distributions within both the control and
the case group fitted Hardy–Weinberg equilibrium. No association
was found between  genotypes and overall lung cancer
after adjustments for age, gender and smoking status (Table 2).
Among males, the  homozygote was more common in
the case group than in the control group (OR 2.29; 95% CI
1.12–4.66). We also stratified the case and control groups by
smoking status. Among smokers, the proportion of the
 homozygote in cases (28.0%) was significantly
higher than in controls (11.6%) (Table 2). Among smoking lung
cancer patients, 54.7% (41 of 75) had SCC, 36.0% (27 of 75) had
adenocarcinoma, and 9.3% (seven of 75) had other histological
types (data not shown). When lung cancer group was further strat-
ified by histological type, there was a strong association between
the  homozygote and SCC (OR 2.86; 95% CI
1.33–6.12;  = 0.007). The proportion of the 
homozygote among SCC cases (29.1%) was much higher than
among controls (13.5%, Table 2). However, the 
homozygote was not associated with adenocarcinoma (Table 2).

The low () and high () genetic polymorphisms
of  were determined among the case and control groups. The
frequencies of both  and  genotypes in the control
and case groups were in Hardy–Weinberg equilibrium. In control
group, the proportion of wild-type  genotypes was 28.1%
and the proportion of wild-type  genotypes was 72.6%.
We divided individuals into high, normal and low  pheno-
types according to their genotypes of  and  poly-
morphisms as described previously (Smith and Harrison, 1997)
and in Materials and Methods. The proportion of high/normal
genotypes was 40.9% for the case group and 39.0% for the control
group (Table 3). As shown in Table 3, no significant difference
was observed in proportion of high/normal genotype between the
control and case groups. When cases were stratified by histolog-
ical type, the proportion of high/normal  genotypes in the
SCC group was significantly higher than in the control group (OR
1.96; 95% CI 1.04–3.70;  = 0.038).
© 2000 Cancer Research Campaign
Since either the  homozygote or high/normal 
genotypes was associated with SCC, we further analysed the inter-
action between these two polymorphisms on their association with
lung cancer. Case and control groups were divided into four cate-
gories according to  and  genotypes. Individuals with
 homozygote and low  genotypes were defined as
the baseline group. The ORs of the other three categories were
estimated by comparison with the baseline group. As shown in
Table 4, the OR for lung cancer with a combination of 
homozygote and high/normal  genotypes was 2.56 (95% CI
1.08–6.10). When cases were stratified by histological type, the OR
for SCC was 6.76 (95% CI 2.29–19.10), a marked increase. A
combination of susceptible  and  genotypes was not
found to associate with adenocarcinoma (Table 4).



Exposure to air pollutants, such as cigarette smoke, asbestos and
PAHs is considered to be at least a partial causal factor in the
development of lung cancers (Coultas and Samet, 1992;
Hemminki and Pershagen, 1994). Many environmental carcino-
gens require metabolic activation by phase I enzymes, which show
genetic variability in activity among individuals. This genetic vari-
ability may be responsible for the individual susceptibility to
chemical carcinogenesis (Daly et al, 1994). Recently, genetic
variation in phase I enzymes has been linked to the occurrence of
lung cancers (Rannug et al, 1995). Here we explored the possible
associations between genetic polymorphisms of phase I enzymes,
including  and , and lung cancer risk in Taiwan. We
found that  and high/normal  genotypes
were associated with lung SCC, with an OR of 2.86 and 1.96
respectively (Tables 2 and 3). The OR for SCC with both suscep-
tible  and  genotypes was further elevated to 6.76
(95% CI 2.29–19.10). These results indicate that the combination
of  and  genetic polymorphisms is an important
genetic risk factor for lung SCC in Taiwan.

Recently, mortality from lung cancers in Taiwan has been
increasing (Department of Health, 1996). Cigarette smoking is
British Journal of Cancer (2000) 82(4), 852–857
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closely associated with the risk of SCC (Gazdar and Minna, 1997)
and cigarette smoke induces lung tumours in mice (Witschi et al,
1997). In addition, epidemiological studies indicate that lung
cancer mortality rate is correlated with the level of air pollution
and mutagenicity of airborne particles (Pershagen and Simonato,
1990). PAHs are important mutagens identified in cigarette smoke
(Witschi et al, 1997) and in airborne particles collected from major
cities in Taiwan (Kuo et al, 1998). PAHs induce CYP1A1 enzyme
activity and also require metabolic activation by CYP1A1 and
HYL1 (Denison and Whitlock, 1995; Josephy, 1997). For
example, BaP is first metabolized by CYP1A1 to form BaP-7,8-
oxide which is further hydrolysed by HYL1 to give the corre-
sponding BaP-7,8-dihydrodiol (Josephy, 1997). This compound is
then oxidized by cytochrome P450 enzymes to the ultimate
carcinogen, 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-BaP
(BPDE) which directly attacks cellular DNA (Binkova et al,
1995). Recently, a correlation was found among smoking lung
cancer patients between  polymorphisms and BPDE adducts
to serum albumin and DNA (Pastorelli et al, 1998). Patients
carrying ‘low activity’  polymorphisms, two  alleles
and no  allele, had a lower frequency of BPDE-serum
albumin adduct and no DNA adducts ( = 0.06). In the present
study, individuals with  homozygote and genotype
corresponding to high HYL1 enzyme activity were more suscep-
tible to lung cancer, especially SCC. It is plausible that individuals
with these specific genotypes have high metabolic activation capa-
bility to convert PAHs into carcinogenic metabolites. Thus, our
results suggest that PAHs play a role in the incidence of lung SCC
in Taiwan. One previous study demonstrated a positive correlation
for CYP1A1 and HYL1 enzyme activities with mortality among
male lung cancer patients (Bartsch et al, 1992). It is worthwhile to
analyse further the effect of  and  genotype combi-
nations on survival rates of lung cancer patients in the future.

The association of the  allele with increased risk of
lung SCC has been observed in Japanese, white and Hawaiian
populations (Kawajiri et al, 1990; Le Marchard et al, 1998). The
proportions of  homozygote reported in the Japanese
population and our present study (10.6% and 13.5% respectively)
were much higher than those reported for Whites (0.7–1.7%).
Hence,  polymorphism may play a more important role 
in Asian populations. Similarly, the relationship between 
genetic polymorphisms and lung cancer risk has been recently
reported (Benhamou et al, 1998; Persson et al, 1999). Benhamou
et al (1998) reported an increased risk of lung cancer among indi-
viduals with high and normal activity genotypes in French White
smokers. We also observed the association of high and normal
genotypes with SCC. The distributions of control subjects with
predicted low, normal and high HYL1 activities were similar
between our study (55.8%, 31.4% and 12.8%, data not shown) and
Benhamou’s study (49.4%, 37.8% and 12.8%). Therefore, it is
unlikely that the ethnic factor contributes to the difference
observed among smokers between the two studies. Alternatively, it
is possible that smoking habits and components in cigarettes may
differ between the two countries, and this may affect the relation-
ship between  genotypes and lung cancer risk among
smokers. Therefore, the role of  polymorphisms in smoking-
associated lung cancer in Taiwan is still unclear.

The functional effect of  polymorphism has been
studied in peripheral mitogen-treated lymphocytes from a
Japanese population (Kiyohara et al, 1998). Among 108 lung
British Journal of Cancer (2000) 82(4), 852–857
cancer patients and 95 healthy control individuals, CYP1A1
inducibility (3-methylcholanthrene-induced/non-induced activity)
in subjects carrying  homozygote was significantly
higher than those of the other two genotypes (Kiyohara et al,
1998). However, no other functional studies for the 
allele have been reported. Alternatively, it is possible that the
 polymorphism may be closely linked to another gene
and its association with lung cancer risk may not be related to the
 itself. More experimental data is required to support the
correlation between genotype and phenotype. The biochemical
mechanism of variation in HYL1 enzyme activity among specific
genotypes has also been studied (Hassett et al, 1994). The variant
amino acid in exon 3 or exon 4 was constructed in  cDNA
and expressed in vitro by transient transfection of COS-1 cells.
The relative amounts of HYL1 proteins and enzyme activities
were markedly different. It has been suggested that  poly-
morphisms alter enzymatic function through modification of
protein stability (Hassett et al, 1994). However, HYL1 enzyme
activity/protein levels failed to correlate with  and
 polymorphisms in human liver tissue (Hassett et al,
1997). New  polymorphic sites identified at 5′-flanking
region might also contribute to the variation in  expression
(Raaka et al, 1998). Therefore, the relationship between HYL1
enzyme activity and exon 3 and exon 4 polymorphisms is still
uncertain. HYL1 enzyme activity is induced by cigarette smoke
(Gielen et al, 1979). A significant increase in HYL1 activities of
human lung tissues was found among smokers, as compared with
non-smokers (Bartsch et al, 1992). Further studies are needed to
clarify the relationship of exon 3 and exon 4  polymorphisms
with HYL1 enzyme activity and inducibility distribution in popu-
lations.

In summary, this is the first study to demonstrate an extremely
strong association of combined  and  genetic poly-
morphisms with lung cancer, especially for SCC. These results
suggest that cigarette smoke and environmental pollutants
contribute to the development of lung SCC in Taiwan.
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