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The rational development of new diagnostic or prognostic tumour
markers and the identification of novel cellular targets for anti-
cancer chemotherapy relies on a more definitive understanding
of tumour biology. Classical approaches using cellular pharma-
cology, and more recently molecular pharmacology, have led to
the discovery of a number of growth factors and their receptors as
well as other proteins which has resulted in novel therapies (e.g.
inhibitors of epidermal growth factor receptor tyrosine kinase) and
prognostic markers (e.g. oestrogen receptor levels in breast
cancer) (Levitzki et al, 1995; Dowsett et al, 1997). Using classical
metaphase cytogenetic techniques, many chromosomal aberra-
tions have been identified in human cancer cell lines and primary
culture of haematological malignancies. This chromosomal infor-
mation has facilitated identification of a number of impor–
tant genes associated with tumorigenesis (e.g. loss of
chromosomal material on 13q led to identification of tumour
suppressor gene RB1; Vogel, 1979). However, the use of
metaphase cytogenetic analysis has been limited in solid tumours,
mainly due to the difficulties in growing primary cultures in which
to generate tumour metaphase chromosomes. However, this
changed with the development of comparative genomic hybridiza-
tion (CGH) and its ability to globally assess the genome of solid
tumours for areas of loss and/or gain without the need for tissue
culture (Kallioniemi et al, 1992; Forozan et al, 1997; Ried et al,
1997). CGH involves a competitive in situ hybridization of
fluorescently labelled tumour DNA and healthy control DNA to
normal metaphase chromosomes (Figure 1). Computer-assisted
fluorescence microscopy is then used to assess the intensity of
fluorochrome across each human chromosome. The differences in
tumour and control fluorescence intensity along each chromosome
on the reference metaphase spread are a reflection of the copy
number changes of corresponding sequences in the tumour DNA.
If chromosomes or chromosomal subregions are present in iden-
tical copy number within both the tumour and the normal DNA, an
equal contribution from each fluorochrome is seen. However, a
change in the fluorescent signal is seen if certain chromosomal
subregions are gained or lost in the tumour DNA (Figure 1). The
intensity of this signal is proportional to the amount of gain and
loss seen for each region in the tumour DNA (Kallioniemi et al,
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1992; Forozan et al, 1997). Regions with a high level of
heterochromatin and centromeric regions are not informative with
CGH. CGH data for the p regions of acrocentric chromosomes
(e.g. 13p, 14p and 15p) must be interpreted with caution as
repetitive sequences in these regions can affect the efficiency of
competitive hybridization. With current technology, CGH has a
theoretical limit of detection for gain and loss of genetic material
of 5–10 Mb. However, gain of DNA in regions as small as 50 kb
have been described in situations where high level amplification
has occurred (Ried et al, 1997).

Initial studies with CGH were restricted to DNA prepared from
fresh or snap-frozen tumour material. More recently, technical
advances have allowed the extraction of DNA from formalin-
fixed paraffin-embedded sections through the use of degenerate
oligonucleotide primed polymerase chain reaction (DOP-PCR)
(Isola et al, 1994; Kuukasjarvi et al, 1997). The DOP-PCR
technique allows genome-wide amplification of tumour DNA
from nanogram quantities to the micrograms needed for CGH,
and has enabled retrospective analysis of genomic loss and gain
to be performed using DNA from archival material.

Although CGH analysis has been performed in a wide variety of
adult and paediatric tumours, these results have not been exten-
sively interpreted in the context of the CGH findings from other
tumour types. In this review, the results of CGH analysis in
27 tumour types are evaluated to identify regions of loss or gain
which are common to all malignancies as well as those which
are specific for a given tumour type or tumour subtype. In
addition, the degree of overall genomic instability for specific
tumour types has been assessed.



The Institute for Scientific Information (ISI) database from March
1992 to August 1998 identified 100 papers which described CGH
findings in 2210 solid tumours of 27 cancer types (Appendix).
This included common tumours (colon, breast, lung), gender-
specific tumours (ovarian, cervix, testicular, prostate), paediatric
tumours (neuroblastoma, rhabdomyosarcoma) and less common
tumours (brain, renal, uveal melanoma). For each paper, the
patterns of loss and gain in the p and q arms of each chromosome
were recorded separately. Such an approach may not always be
sufficient, as variation in subregions of the same chromosomal
arm could be masked in some cases. However, a narrower
definition for regions of gain and/or loss was not possible due to
differences in the way CGH results have been presented in the



CGH in solid tumours 863

Normal DNA Tumour DNA

Hybridization

Normal human metaphase spread

Fluorescence microscopy

Digital image analysis

Amplification in tumour

Loss in tumour

Tumour DNA vs normal DNA

Figure 1 A typical CGH experiment. Fluorescently labelled tumour DNA and reference DNA are competitively hybridized to donor human chromosomes.
Using fluorescent microscopy the level of signal from the fluorescent DNA is assessed for each chromosome. For each chromosome a profile of the level of
fluorescence is generated on CGH interpreting software. In most cases at least 10 chromosomes are assessed and an average of the fluorescence is
generated. This allows regions of loss and gain that are consistently changed to be detected for a particular tumour sample
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literature. Studies of CGH in patients with leukaemia, lymphoma
or studies with incomplete details of results for individual chromo-
somes were not included in this review. Cell line data were not
included due to the difficulty in differentiating between initial
chromosomal aberrations and those ‘acquired’ during cell culture.
The frequency of overall loss or gain for each chromosome arm
was determined by pooling the data from all tumours, from a given
tumour type and from specific tumour subtypes.
© Cancer Research Campaign 1999
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Solid tumours

The frequency of loss or gain for each chromosome arm was
determined for all the solid tumours by pooling the data found in
the literature for 2210 tumours (Table 1). Gain of chromosomal
material was found more frequently than loss among the solid
British Journal of Cancer (1999) 80(5/6), 862–873
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Table 1 Loss and gain for each chromosomal arm when available CGH data from 2210 tumours (including 27 different solid tumour
types) were pooled

Chromosomal region Total tumour Gain (%) Chromosomal region Total tumour Loss (%)
n = 2210 n = 2210

8q + gains 616 27.7 13q – losses 363 16.3
1q + gains 558 25.1 9p – losses 357 16.1
7q + gains 513 23.1 8p – losses 333 15
7p + gains 477 21.5 10q – losses 304 13.7
17q + gains 412 18.5 3p – losses 297 13.4
3q + gains 365 16.4 4q – losses 297 13.4
20q + gains 344 15.5 6q – losses 296 13.3
5p + gains 292 13.2 17p – losses 260 11.7
12q + gains 290 13.1 18q – losses 245 11
12p + gains 277 12.5 1p – losses 226 10.2
11q + gains 252 11.3 11q – losses 218 9.8
6p + gains 246 11.1 5q – losses 206 9.1
20p + gains 223 10 10p – losses 202 9.1
19q + gains 223 10 16q – losses 196 8.8
2p + gains 214 9.6 4p – losses 188 8.5
13q + gains 205 9.2 22q – losses 184 8.3
19p + gains 203 9.1 14q – losses 183 8.2
1p + gains 201 9 9q – losses 170 7.7
14q + gains 201 9 11p – losses 167 7.5
2q + gains 198 8.9 15q – losses 161 7.2
17p + gains 179 8.1 2q – losses 153 6.8
16p + gains 176 7.9 Xp – losses 152 6.8
8p + gains 175 7.9 Xq – losses 126 5.7
15q + gains 174 7.8 21q – losses 122 5.5
5q + gains 168 7.6 Y – losses 122 5.5
6q + gains 164 7.4 18p – losses 119 5.4
9q + gains 156 7 19p – losses 112 5
18p + gains 153 6.9 17q – losses 105 4.7
16q + gains 140 6.3 3q – losses 102 4.6
18q + gains 136 6.1 12q – losses 98 4.4
22q + gains 133 6 19q – losses 96 4.3
10p + gains 131 5.9 1q – losses 89 4
Xq + gains 129 5.8 6p – losses 84 3.8
4q + gains 118 5.3 16p – losses 83 3.7
10q + gains 117 5.3 5p – losses 83 3.7
9p + gains 116 5.2 2p – losses 82 3.7
Xp + gains 115 4.7 8q – losses 64 2.9
3p + gains 104 4.7 7q – losses 56 2.5
21q + gains 101 4.5 20q – losses 53 2.4
11p + gains 97 4.4 20p – losses 53 2.4
4p + gains 95 4.3 12p – losses 52 2.3
Y + gains 55 2.5 7p – losses 50 2.3
14p + gains 24 1.1 22p – losses 36 1.6
21p + gains 22 1 15p – losses 21 0.9
13p + gains 17 0.8 14p – losses 10 0.5
15p + gains 9 0.4 13p – losses 9 0.4
22p + gains 6 0.3 21p – losses 3 0.1

Total gains 9320/2210 4.2 per tumour Total losses 6988/2210 3.1 per tumour
tumours (mean 4.2 gain per tumour vs 3.1 loss per tumour). A vari-
able pattern of chromosomal gain was observed, with the highest
frequency of gain found in 8q (27.7%) and 1q (25.1%) (Table 1).
This contrasts with chromosome 22p (0.3%) and 15p (0.4%)
where gain of chromosomal material was rarely observed (Table
1). The most common regions of chromosomal loss were found on
13q (16.3% of all tumours), 9p (16.1%) and 8p (15.0%) (Table 1).
Loss of chromosomal material was rarely seen on chromosome
21p (0.1%), 13p (0.4%) and 14p (0.5%). From Figure 2 it can be
seen that levels of loss and gain are not uniform across all chromo-
somal regions. Certain chromosomal regions, such as 8q, are
often gained (27.7%) but rarely lost (2.9%). Similarly, loss in
British Journal of Cancer (1999) 80(5/6), 862–873
chromosome 4q was more common (13.4%) than gain (5.3%).
This pattern was not seen for all chromosomes, with loss of
13q (16.3%) only 1.8 times more common than gain (9.2%).
Patterns of nearly equal frequency of loss and gain were also
observed for chromosomes 14q (9% gain vs 8.2% loss) and
15q (7.8% gain vs 7.2% loss). However, this does not take into
account the specific region of a chromosomal arm to which the
genetic loss or gene amplification in solid tumours is mapped.
It also does not account for tumour-specific patterns of chromo-
somal gain and loss (Table 2), where the same chromosomal arm is
rarely lost and gained to an equal extent for a particular tumour
type.
© Cancer Research Campaign 1999
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Figure 2 The overall number of gains and losses detected in 2210 solid tumours from 27 different tumour types
Specific tumour types

The frequency of chromosomal loss and gain varied between the
individual tumour types, ranging from multiple regions per tumour
(average gains: head and neck 12.2 per tumour, testicular 8.2 per
tumour; loss: liver 7.5 per tumour, prostate 4.5 per tumour) to
relatively rare events (average gains: neuroblastoma 0.5 per
tumour, Wilms’ 1.6 per tumour; loss: sarcoma 0.8 per tumour,
Wilms’ 1.3 per tumour (Table 3). The specific chromosomal
regions of loss and gain differ substantially between specific
tumour types. For example, gain in chromosome 12p occurred in
96.3% of testicular cancers and 0% of renal cancers (Table 2).
New information on chromosomal loss or gain (Table 1) can be
further specified amongst the various tumour types. For example,
gain in chromosome 8q occurred in 27.7% of all tumours evalu-
ated. However, on closer examination, frequency of 8q gain was
high in tumours of the testis (40.7%), ovary (42.8%) and
endometrium (45.5%), but was rarely found in renal tumours
(1.3%) and neuroblastoma (3.0%). There is no chromosomal arm
which demonstrated a consistent pattern of gain for all tumour
types. Similar findings were demonstrated for chromosomal loss.
For instance, 9p was lost in 16.1% of all tumours, but varied from
a high frequency event (cutaneous melanoma 58.2%, pancreas
50.1%, brain 36.3%) to low (colon 7.5%, gastric cancer 7%)
depending on the tumour type (Table 2).

Specific tumour subtypes

For several tumours, CGH analysis was available for multiple
histological subtypes (Table 4). This allowed assessment of both
the frequency at which loss and gain occurred and the extent to
which each specific chromosomal arm is involved for each
subtype.
© Cancer Research Campaign 1999
Colon

Information on genomic alterations in colon cancer was available
for low- and high-grade adenoma, primary carcinomas, liver
metastases, and also carcinomas for which replication error repair
status was known (Table 4). Ried et al (1995) found the frequency
and degree of genetic aberrations increases with progression from
low-grade adenoma through high-grade adenoma to carcinoma
(Table 4). For example, gain in chromosome 7p was 7.1% in
low-grade adenoma, 33.3% in high-grade adenoma and 50%
in carcinoma. Similarly, gain in chromosome 20q was not detected
in low-grade adenoma, but was at 33.3% and 75% in high-grade
adenoma and carcinoma respectively. The frequency of alterations
also increased with tumour progression: 3/47 chromosomal arms
in low-grade adenoma, 21/47 high-grade adenoma, 32/47 carci-
nomas. A separate study by Paredes-Zaglul et al (1998) comparing
primary carcinomas and liver metastases from patients with
colorectal cancer found that the frequency of alteration remained
constant at ~ 35/47 chromosomal arms between these two stages.
However, a change was noted in the extent to which these arms
were involved. The most obvious change being the increase in loss
of genetic material between primary tumour and liver metastases.
For example, loss at 8p was 30% in primary carcinomas compared
with 80% in metastases. Similarly, loss of 18q was found in 50%
of primary cases, but 90% of liver metastases. Changes in gain did
not always follow the same pattern seen for loss. An increase in
genetic instability was seen for some chromosomal regions in the
transition from primary to metastases (e.g. 13q was gained in 30%
of primary tumours compared with 50% in metastases). However,
this was not the case for other regions, such as 12q, which was
gained in 20% of primary carcinomas, but was normal in liver
metastases. A difference in genetic instability was also seen
between tumours with intact mismatch repair genes compared to
British Journal of Cancer (1999) 80(5/6), 862–873
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Table 3 The number of altered chromosomal arms observed among the different tumour types

Cancer type Gains/tumour Losses/tumour Total instability
(loss + gain) per tumour

Gastric carcinoma 365\68 5.4 128\68 1.9 7.3
Gastrointestinal stromal 52\32 1.6 71\32 2.2 3.8
Head and neck 588\47 12.5 245\47 5.2 17.7
Pancreatic 231\51 4.5 188\51 3.7 8.2
Colorectal 204\80 2.6 190\80 2.4 5
Prostate 312\100 3.1 447\100 4.5 7.6
Testicular 337\41 8.2 171\41 4.2 12.4
Breast 752\187 4 549\187 2.9 6.9
Ovarian 1136\203 5.6 499\203 2.5 8.1
Endometrial 186\33 5.6 50\33 1.5 7.1
Cervical 163\30 5.4 124\30 4.1 9.5
Cutaneous melanoma 203\67 3 227\67 3.4 6.4
Merkel cell carcinoma 23\3 8 13\3 4.3 12.3
Uveal melanoma 23\11 2.1 27\11 2.5 4.6
Renal 346\151 2.3 530\151 3.5 5.8
Bladder 222\96 2.3 278\96 2.9 5.2
Wilms’ 89\54 1.6 71\54 1.3 2.9
Connective tissue sarcoma 530\193 2.7 154\193 0.8 3.5
Rhabdomyosarcoma 158\24 6.6 61\24 2.5 9.1
Lung 845\142 6 599\142 4.2 10.2
Liver 201\43 4.7 322\43 7.5 12.2
Neuroblastoma 56\118 0.5 439\118 3.7 4.2
Brain 1152\325 3.5 1076\325 3.3 6.8
Gastro-oesophageal 100\15 6.7 50\15 3.3 10
Parathyroid 38\53 7.2 121\53 2.3 9.5
Pituitary 92\23 4 22\53 4.2 8.2
Neuroendocrine* 162\20 8.1 57\20 2.9 11

*Sporadic neuroendocrine tumours of the digestive system.
those with deficient repair ability (Table 4). As expected, the
tumours lacking repair function had a higher frequency of insta-
bility. For example, gain of 7p and 7q was seen in 33% of tumours
with non-functioning repair genes, while these aberrations were
absent in tumours with intact DNA repair phenotype. Although a
relationship between genomic instability and both tumour progres-
sion and repair deficiency had been previously suggested, CGH
has provided strong data to support this hypothesis in tumour
specimens.

Ovary
Several studies have been published assessing the genomes of
ovarian cancer cases. The available data were split into ovarian
cancers derived from the epithelia and those derived from germ
cells. Cancers of the epithelia were then further subdivided into
sporadic and hereditary cases. The hereditary cases were defined
as such based on BRCA1 and BRCA2 status. It is appreciated that
some papers did not assess their cases for BRCA1 and BRCA2
and that a small percentage of the sporadic cases may have altered
BRCA genes. Overall, however, this division of ovarian tumours
has yielded some useful observations. Firstly, it was found that the
frequency of genetic aberrations was greatest in the sporadic cases
at 41/47 chromosomal arms, compared with 33/47 in hereditary
cases and 30/47 in the germ cell tumours. The greatest level of
concordance was at 1q and 8q where gains occurred at approxi-
mately 30% and 50%, respectively, in all three tumour types. Both
hereditary and sporadic cases had a high degree of gain at 3q
(40.6% in sporadic and 50% in inherited cases). This is in contrast
to the same region being gained in only 5.3% of germ cell
© Cancer Research Campaign 1999
tumours. However, all three tumour subtypes are likely to have
some common genetic origin based on the observation that regions
such as 1q and 8q are gained to an equal extent in all ovarian
cancer types so far studied by CGH.

Prostate
The data on prostate cancer allowed comparison of CGH results in
patient cohorts with primary resected carcinomas or tumours that
recurred after hormone therapy. It has been speculated that further
genetic damage allows a subclone of tumour cells to acquire resis-
tance to chemotherapy and such studies can test this hypothesis.
Very little change in the frequency of genetic aberration between
primary carcinoma and recurrent carcinoma was seen (39/47 in
primary vs 42/47 in recurrent). However, differences were seen in
the degree of genetic aberration when specific chromosomal
regions were considered. For example, gain in chromosome 8q
was seen in 25.9% primary carcinomas compared with 73.9% in
recurrent cases. Similarly, 19p was lost in 3.7% of primary
tumours and 34.8% in recurrent cases. Gain in the region
containing the androgen receptor gene, Xp, increased from 7.4%
in primary tumour to 28.3% in patients with recurrent disease.
This is consistent with androgen receptor gene amplification as a
mechanism of resistance to hormone therapy. However, this was
not always the case with some regions of the genome only slightly
changed in the degree of the aberration between primary and
recurrent. For example, 3p was lost in 1.9% of primary tumours
and 4.3% in recurrent cases. Generally, the data support the
hypothesis that increased tumour aggression is the phenotype of a
more unstable genome.
British Journal of Cancer (1999) 80(5/6), 862–873
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Table 4 Patterns of loss(2) and gain in specific tumour subtypes shown as the percentage of tumours with involvement for selected
chromosomes

Tumour type Colon†

lga Hga Carcinoma Min– Min+ Primary Metastases
CR n=14 n=12 n=16 n=6 n=12 n=10 n=10

7p 7.1 33.3 50 0 33.3 10 10
7q 0 25 31.3 0 33.3 30 30
8p 0 0 0 0 0 10&–30 10&–80
12q 0 8.3 6.3 0 0 20 0
13q 0 8.3 50 –16.7 41.7 30&–10 50
18q 0 –16.7 –37.5 0 –25 –50 –90
20q 0 33.3 75 0 25 50 40
Involved arms 3\47 21\47 32\47 3\47 22\47 34\47 35\47

Tumour type Ovary
Sporadic* Inherited OGCT

CR n=148 n=20 n=19
1q 34.8&–0.7 30 31.6
2q 18.1&–1.4 50&–5 0
3q 40.6 50 5.3&–5.3
8q 52.9&–0.7 55 42.1
21q 5.8&–7.2 0 47.4
Involved arms 41\47 33\47 30\47

Tumour type Prostate
Primary Recurrent

CR n=54 n=46
3p –1.9 4.3&–4.3
7p 3.7 34.8&–2.2
7q 13&–1.9 34.8&–2.2
8p –46.5 8.7&–60.9
8q 25.9 73.9
19p 7.4&–3.7 –34.8
Xp 7.4&–1.9 28.3&–8.7
Xq 14.8 15.2&–6.5
Involved arms 39\47 42\47

Tumour type Sarcoma
Osteosarcoma RMS-E RMS-A Liposarcoma ASPS Ewing’s

CR n=14 n=10 n=14 n=14 n=13 n=20
2p 0 50 50 0 0 5
6p 28.6 0 7.1 0 0 10
2q 7.1 60 –14.3 14.3 0 5
13q 14.3 60&–10 35.7&–7.1 7.1&–21.4 0 5
16q 0 2&–30 7.1&–7.1 7.1 –7.7 5&–5
Involved arms 19\47 38\47 35\47 38\47 14\47 28\47

In several tumour subtypes both loss and gain were observed on the same chromosomal arm. Variation in the number of chromosomal
arms involved in genetic instability was also observed between subtypes. *Contains tumours which were not evaluated for BRCA1 and
BRCA2 status. † represents data from three separate studies evaluating tumour progression, microsatellite instability and metastasis
respectively. CR = chromosomal region; Iga = low-grade adenoma; Hga = high-grade adenoma; OGCT = ovarian germ cell tumours;
MIN+ = without microsatellite instability; MIN– = with microsatellite instability; RMS-E = rhabdomyosarcoma embryonal; RMS-A =
rhabdomyosarcoma alveolar; ASPS = alveolar soft part sarcoma
Connective tissue tumours
CGH data were available for several tumour types (liposarcoma,
alveolar soft part sarcoma, osteosarcoma, Ewing’s, rhabdomyosar-
coma and osteochondroma). Unlike the other subtypes discussed
(colon, ovary and prostate), tumours of the connective tissue are
found in many different sites throughout the body. Considering the
frequency of genetic aberration, the widest range of variation
between subtypes among any tumour type in the literature is
observed in the sarcomas. At one end of the spectrum a study on
osteochondromas reports no genetic aberrations in 15 cases of this
benign tumour type (Larramendy et al, 1997). Such a paper is
unique in the CGH literature as all other investigations report some
genomic change detectable by CGH. The alveolar soft part- and
British Journal of Cancer (1999) 80(5/6), 862–873
osteosarcomas show low to moderate frequency of genetic aberra-
tion at 14 and 19 out of 47 chromosomal arms respectively. While
the other subtypes showed moderate to high numbers of arms
involved (range 28–38 of 47). Another unique observation in the
CGH literature was seen in an osteosarcoma study where only gain
of genetic material was detected (Forus et al, 1995). Caution must
be exercised when interpreting such results as it is unlikely that
this cancer is the exception where no loss of genetic material is
required for its development. More likely any loss, such as that
of a tumour suppressor gene, is below detection by CGH.
Rhabdomyosarcomas are further subdivided histologically into
alveolar and embryonal types. Generally, a higher degree of gain
and loss is seen in the embryonal rhabdomyosarcoma compared
© Cancer Research Campaign 1999
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with alveolar rhabdomyosarcoma (Weber-Hall et al, 1996). For
example, a sub-chromosomal region of 13q is gained in 60% and
lost in 10% of embryoneal, while the same region is gained in
35.7% and lost in 7.1% of alveolar, rhabdomyosarcomas. The
exception is 2p, which is lost in 50% of cases in both subtypes.
Comparing both subtypes of rhabdomyosarcoma with other
sarcomas it is observed that a gain of 2q is not present in a high
proportion in all sarcomas. In fact no change in 2q is detected in
liposarcoma or alveolar soft part sarcoma and gain in Ewing’s
sarcoma is detected in less than 10% of all cases. This pattern of a
certain chromosomal region commonly occurring in a specific
subtype, but not in any other, continues for many chromosomal
regions, suggesting that sarcomas are very distinct in terms of their
genetic origin, with each subtype having its own marker chromo-
somal aberrations. This may be due to the variation in tissue type
in which these tumours arise. No single chromosomal aberration
was found to be present in a high proportion of all sarcomas.




The degree of genomic imbalance detectable by CGH differs
significantly between the various solid tumours (Table 3).
Chromosomal gain varied from 0.5 to 12.5 chromosome arms per
tumour with a median of 4.5, while loss varied from 0.8 to 7.5
chromosomal arms per tumour with a median of 3.3. Total insta-
bility (chromosomal loss + chromosomal gain per number of
tumours) was highest in head and neck tumours (17.7 lesions per
tumour) and testicular (12.4 lesions per tumour) and lowest in
Wilms’ (2.9 lesions per tumour) and sarcoma (3.5 lesions per
tumour) tumours. These frequencies represent an overall value for
each specific tumour type, as information on the chromosomal
alterations found within an individual tumour was not available in
most literature reports of CGH in human solid tumours. Difference
in the degree of loss or gain was also observed between the various
solid tumours (Table 3). For example, chromosomal gain was
observed more frequently than loss in the sarcomas and endome-
trial tumours, while loss was more frequently observed for renal
and liver tumours. It is unknown whether these patterns represent
coincidental changes from generalized genomic instability or
suggest that some cancers are more likely to be influenced by the
loss of tumour suppressor genes (genomic loss), while others are
more frequently influenced by oncogene over expression (genomic
gain). In addition, several studies have identified an association
between the acquisition of genetic aberrations and patient survival
(Iwabuchi et al, 1995; Tanner et al, 1995). However, there are
discrepancies in this association found in Table 3, and any correla-
tions between biological markers and patient survival need to be
interpreted cautiously in the context of modern therapy.




Classical karyotyping of metaphase chromosomes has been
successfully performed for some solid tumours. A recent review
reported the frequencies and distribution of chromosomal imbal-
ances detected in 3185 solid tumours from 11 tumour types using
chromosomal banding (Merkel et al, 1997). Overall, deletions were
more common than gains in this analysis. Our review has found the
opposite, with gains more commonly detected by CGH than losses.
© Cancer Research Campaign 1999
This difference may reflect the difficulties with using tumour kary-
otyping to identify the chromosomal changes that have occurred in
tumours with highly complex rearrangements and will be influ-
enced to some extent by amplified segments being hidden among
unidentified marker chromosomes. CGH should be more sensitive
for the detection of the presence of gains than losses and therefore
the discrepancies with the above study are likely to reflect technical
limitations of the two methods. By restricting analysis to common
alterations (i.e. the gain or loss was detected in at least 15% of the
tumours studied for that particular tumour type), the classical kary-
otyping studies described fewer regions of gain and loss than CGH
for every tumour type evaluated. CGH appeared to identify the
same alterations described using the karyotyping approach (with
the exception of balanced translocations which are not detectable
by CGH), but also observed additional regions of loss or gain. For
example, only two regions of gain were detected in ovarian carci-
noma by traditional cytogenetic analysis compared with 26 regions
of gain seen by CGH. However, there have been too few studies of
solid tumour cytogenetics using both CGH and chromosome
banding for any firm conclusions regarding concordance between
the two techniques. Nevertheless, the accumulating body of
evidence in the literature suggests that CGH is more sensitive than
other current technologies available for global assessment of loss
and/or gain in solid tumour genomes.



From this review, it is apparent that no specific chromosomal
imbalances are found in all cancers, with the most frequently
identified regions of gain or loss occurring in 27.7% and 16.3% of
tumours respectively. This reflects the heterogeneity in genomic
alterations identified in different tumour types. In addition, much
variation within tumour subtypes was observed.

The development of CGH has provided the technology to iden-
tify many new areas of genomic alteration which were not previ-
ously recognized to be altered in tumorigenesis. This has now
expanded the number of areas of the genome for which more
detailed molecular study is required to give a clearer more
complete understanding of cancer biology.

Other areas where CGH could potentially make a significant
contribution include its application in tumour diagnosis, as a prog-
nostic tool, or for investigations into chemoresistance. The ability
to assess the entire genome in a single experiment makes this tech-
nique potentially useful as an adjunct to routine histopathology.
Several studies have established the feasibility of using CGH to
detect genomic regions involved in the acquisition of resistance in
human cancer cell lines and have detected novel regions of the
genome not previously recognized to be involved in drug resis-
tance (du Manoir et al, 1997; Wasenius et al, 1997; Leyland-Jones
et al, 1998; Rooney et al, 1998). This provides the impetus to apply
CGH to human tumour specimens in the context of modern drug
therapy to assess its role in optimizing patient treatment.


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