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Background: Albumin-bound paclitaxel (nab-paclitaxel, nab-PTX) plus gemcitabine (GEM) combination has demonstrated efficient antitumour
activity and statistically significant overall survival of patients with metastatic pancreatic ductal adenocarcinoma (PDAC) compared with GEM
monotherapy. This regimen is currently approved as a standard of care treatment option for patients with metastatic PDAC. It is unclear whether
cremophor-based PTX combined with GEM provide a similar level of therapeutic efficacy in PDAC.

Methods: We comprehensively explored the antitumour efficacy, effect on metastatic dissemination, tumour stroma and survival advantage
following GEM, PTX and nab-PTX as monotherapy or in combination with GEM in a locally advanced, and a highly metastatic orthotopic model of
human PDAC.

Results: Nab-PTX treatment resulted in significantly higher paclitaxel tumour plasma ratio (1.98-fold), robust stromal depletion, antitumour
efficacy (3.79-fold) and survival benefit compared with PTX treatment. PTX plus GEM treatment showed no survival gain over GEM monotherapy.
However, nab-PTX in combination with GEM decreased primary tumour burden, metastatic dissemination and significantly increased median
survival of animals compared with either agents alone. These therapeutic effects were accompanied by depletion of dense fibrotic tumour stroma
and decreased proliferation of carcinoma cells. Notably, nab-PTX monotherapy was equivalent to nab-PTX plus GEM in providing survival
advantage to mice in a highly aggressive metastatic PDAC model, indicating that nab-PTX could potentially stop the progression of late-stage
pancreatic cancer.

Conclusions: Our data confirmed that therapeutic efficacy of PTX and nab-PTX vary widely, and the contention that these agents elicit similar
antitumour response was not supported. The addition of PTX to GEM showed no survival advantage, concluding that a clinical combination of PTX
and GEM may unlikely to provide significant survival advantage over GEM monotherapy and may not be a viable alternative to the current
standard-of-care nab-PTX plus GEM regimen for the treatment of PDAC patients.
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Pancreatic ductal adenocarcinoma (PDAC) is well known for its
aggressive clinical course and remains as one of the most deadly
malignancies in the world with a 5-year mortality of 95% (Hidalgo,
2010; Oettle, 2014). The unusually poor prognosis of the disease is
due to the aggressively invasive and metastatic nature of these
tumours, and their being impervious to chemotherapy and
radiotherapy. A constant hallmark of PDAC is the presence of a
dense desmoplastic reaction that consists largely of fibroblasts,
myofibroblasts and extracellular matrix proteins including fibro-
nectin and collagens (Maitra and Hruban, 2008). The stromal
compartment is conscripted to provide protection to carcinoma
cells and contributes to cancer progression and therapeutic
resistance (Ijichi et al, 2011; Kadaba et al, 2013; Whatcott et al,
2013). Gemcitabine (GEM; Gemzar) has been established as the
standard first-line chemotherapeutic drug for the treatment of
patients with advanced PDAC (Burris et al, 1997). Despite
laboratory evidence of robust combination activity, numerous
phase III trials of GEM in combination with different cytotoxic or
molecularly targeted agents have resulted in no substantial clinical
improvement over the use of GEM alone (Van Cutsem et al, 2009;
Colucci et al, 2010; Philip et al, 2010). Combinations focused to the
tumour cell compartment have not proven clinically impactful,
perhaps reflecting the invulnerability of this highly KRAS-mutated
tumour to signaling inhibitors. This has led to an increased focus
on targeting the desmoplastic stroma to improve clinical outcomes
of patients with this deadly disease (Beatty et al, 2011; Provenzano
et al, 2012; Kadaba et al, 2013).

We previously performed pilot studies in which several advanced
PDAC patients were successfully treated on the basis of robust
anticancer response in the xenografts (patient-derived xenografts;
PDXs) derived from the resected primary tumours of those patients
(Hidalgo et al, 2011; Villarroel et al, 2011). Preclinical and early
clinical studies conducted by us confirmed that albumin-bound
cremophor-free formulation of Paclitaxel (nab-PTX, Abraxane)
exerts substantial antitumour activity in PDAC (Maitra et al, 2009;
Von Hoff et al, 2011). Our previous studies, conducted in mice with
established PDXs (subcutaneous) derived from 11 individual PDAC
patients, confirmed that nab-PTX treatment in combination with
GEM provided a high antitumour efficacy compared with GEM
alone (Maitra et al, 2009; Von Hoff et al, 2011). This synergy was
later confirmed by another group of researchers, utilising a
genetically engineered mouse model of PDAC (Frese et al, 2012).
Positive findings from these studies later led to a large randomised
phase III clinical trial (N¼ 861 metastatic PDAC patients) showed
that nab-PTX plus GEM was superior in efficacy to GEM alone in
terms of progression-free survival and overall survival in the
treatment of metastatic PDAC (Von Hoff et al, 2013; Goldstein
et al, 2015). In addition, our studies showed that one of the
mechanisms by which nab-PTX works in PDAC is by eliminating
the extensive desmoplastic reaction, which is considered as a key
hallmark of PDAC and barrier to drug diffusion and treatment
efficacy (Von Hoff et al, 2011; Xie and Xie, 2015).

Cremophor EL (CreEL)-based Paclitaxel (PTX, Taxol) is a key
chemotherapy component for the treatment of several human
malignancies (Von Hoff, 1997). Despite the clinical benefit achieved
with solvent-based taxanes, the treatment often produce significant
side effects (Gradishar et al, 2009). Nab-PTX is a cremophor-free and
water-soluble albumin-based formulation of PTX consisting of 130nm
albumin-paclitaxel nanoparticles. Nab-PTX treatment showed higher
response rates and improved tolerability compared with solvent-based
formulations in patients with advanced metastatic breast cancer and
non-small cell-lung cancer (Montana et al, 2011; Viudez et al, 2014).
Clinical experience with solvent-based traditional taxanes such as PTX
and docetaxel in PDAC patients were disappointing (Saif et al, 2010).

Nab-PTX plus GEM combination is currently being implemen-
ted in national and international guidelines as a standard of care
treatment option for patients with metastatic PDAC. It is unclear

whether PTX when combined with GEM provide similar therapeutic
efficacy in PDAC. Since PTX is widely available and the treatment
cost of nab-PTX is relatively higher than PTX, clinicians, third party
payers and regulatory agencies have a substantial interest in under-
standing whether these drugs share a similar level of pharmacological
activities in PDAC.

In the present study, we utilised orthotopic models of human
PDAC, which were shown to better recapitulate the histologic and
metastatic characteristics of disease than the subcutaneous cell line
xenograft models (Hoffman, 2015), and directly compared the
anticancer activity, effect on tumour stroma modulation, meta-
static spreading to distant organs and survival following GEM,
PTX, nab-PTX and combinations of GEM plus PTX or nab-PTX.
To our knowledge, this is the first study which used a large number
of mice (300) with established orthotopic tumours, and compre-
hensively explored the therapeutic efficacy of PTX and nab-PTX
alone and in combination with GEM in human PDAC models.

MATERIALS AND METHODS

Establishment of orthotopic PDX models of pancreatic cancer.
Eight- to ten-week-old male athymic (nu/nu) nude mice (Harlan)
were used for the study. Animals were maintained in a sterile
environment and had access to autoclaved laboratory rodent diet and
water ad libitum. All animal experiments were conducted following
approval and in accordance with the Animal Care and Use
Committee guidelines of the Johns Hopkins University, which is in
line with guidelines for the welfare and use of animals in cancer
research (Workman et al, 2010). Two human pancreatic cancer
xenografts (Panc185 and Panc265) from the ‘PancXenoBank’, a
collection of patient-derived human pancreatic cancer xenografts
established from the resected primary tumours of patients with
PDAC, were used for the present study (Rubio-Viqueira et al, 2006).
We used Panc185 tumour as a representative model of locally
advanced primary PDAC and Panc265 tumour as a representative
model of highly aggressive and metastatic PDAC. Briefly, subcuta-
neously maintained Panc185 and Panc265 tumours in mice were
resected aseptically at the exponential growth phase and used as the
source of tumours for surgical orthotopic implantation into the
pancreas. Tumours were minced with a sterile razor and cut into
cubes of B1.5mm3. Mice were anaesthetised using isoflurane
inhalation. A 1-cm left lateral abdominal incision was made on the
splenic silhouette, without injury to underlying organs, with a sterile
microscissor. The pancreas was identified and laterally externalised. A
small cut was made at the middle of pancreas and a 1.5-mm3 tumour
fragment, dipped in Matrigel (BD Biosciences, Bedford, MA, USA),
was immediately implanted into the middle of the pancreas and
sutured using 3-0 surgical sutures. The pancreas was returned into the
peritoneal cavity. The abdominal wall and skin were sutured in two
layers using 3-0 surgical sutures (Kim et al, 2009). Orthotopic tumour
establishment was assessed initially by transabdominal palpations,
confirmed by an ultrasound scan (Vevo 660 VisualSonics, Toronto,
ON, Canada).

Drugs. Gemcitabine (Eli Lilly, Indianapolis, IN, USA) and
cremophor-based paclitaxel (Bristol-Myers Squibb Company,
Princeton, NJ, USA) were purchased from the Johns Hopkins
Hospital Pharmacy (Baltimore, MD, USA). Nab-paclitaxel
(Abraxis BioScience, LLC, a wholly owned subsidiary of Celgene
Corporation) was supplied by Celgene Corporation (Summit, NJ,
USA). All three drugs were reconstituted separately in normal
saline, prepared fresh daily as required and administered to tumour
harbouring mice within 1 h of preparation.

Evaluation of the in vivo efficacy of drug regimens in orthotopic
PDAC harbouring mice. Mice were orthotopically implanted
with Panc185 and Panc265 tumours. Engrafted tumours were
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allowed to grow over a period of 2–7 weeks (Panc265 and Panc185,
respectively). In order to confirm orthotopic tumour growth in
mouse pancreas, determine the weight of primary tumours and any
metastatic dissemination (baseline), five animals in Panc185 and
Panc265 were randomly selected and exploratory laparotomy was
performed. Mice were screened visually for metastatic lesions in
the spleen, liver, lungs, kidneys, lymph nodes and peritoneum
using a � 2.5 lens. Primary tumour was excised from pancreas,
weighed and measured using a digital caliper. Spleen, liver, lungs,
kidneys, lymph nodes were excised. Tumours and tissues were
formalin-fixed, paraffin-embedded, sectioned and were used for
haematoxylin and eosin (H&E) staining.

In order to determine the efficacy of treatment regimens, mice
with demonstrable primary tumours (200–300mm3) were selected
and randomly allocated into following arms: (1) Control
(untreated); (2) GEM (100mg kg� g, i.p. twice weekly for 4 weeks);
(3) PTX (13.4mg kg� 1, i.v, once daily for 5 consecutive days, only
on first week); (4) nab-PTX (22.3mg kg� 1, i.v, once daily for 5
consecutive days, only on first week); (5) PTX and GEM at the
above-mentioned dose and schedule; (6) nab-PTX plus GEM at the
above-mentioned dose and schedule (N¼ 8–10 mice/group).
Drug doses were selected based on previous studies (Desai et al,
2006; Rajeshkumar et al, 2011). Mice were evaluated for signs
of discomfort or morbidity. Tumour growth was monitored by
periodic transabdominal palpations. Animals were killed on day
28. Upon autopsy, mice were screened visually for metastatic
lesions in the spleen, liver, lungs, kidneys, lymph nodes and
peritoneum using a � 2.5 lens. After excision, the suspected
metastatic lesions in organs were fixed in 10% buffered formalin,
paraffin-embedded, sectioned and stained with H&E. Visible
macroscopic metastatic lesions verified histologically were counted
towards metastatic incidence. Primary tumours were excised from
the pancreas, weighed and measured using a digital caliper.
Tumour volume was calculated using the following formula:
tumour volume¼ (length�width2)/2. Tumour pieces fixed in 10%
buffered formalin were used for histological and immunohisto-
chemical analysis.

Treatment effect on desmoplastic stroma, tumour cell
proliferation and angiogenesis. We performed H&E staining on
formalin-fixed, paraffin-embedded primary tumours and tissues
(spleen, liver, lungs, kidneys and lymph nodes) harvested at the
termination of experiment one (day 28). Tumours and tissues were
sectioned (5mm) and de-paraffinised. H&E staining was conducted
using standard procedures. Evaluable tumours from four to five
separate animals were used for assessing the intratumour
vascularity, tumour cell proliferation and stromal desmoplasia.
Intratumour vascularity and tumour cell proliferation were
assessed using anti-CD31antibody (Cat # DIA 310, Dianova
GmbH, Hamburg, Germany) and Ki-67 staining (Cat # 790-4286,
Ventana Medical Systems Inc., Tucson, AZ, USA), respectively, as
previously described (Yabuuchi et al, 2013). Masson’s trichrome
(Rajeshkumar et al, 2015) and collagen IV staining (Cat # M0785,
Dako, Carpinteria, CA, USA) were used to assess the extent of
stromal desmoplasia. After staining, sections were observed under
a light microscope and photographed using a digital camera.

Evaluation of the survival benefit of drug regimens in
orthotopic PDAC harbouring mice. A separate study was
conducted for assessing the survival advantage of treatment
regimens. Mice with established orthotopic Panc185 and Panc265
tumours (200–300mm3) were randomly allocated to six groups
and treated with drug doses and schedule as mentioned in the
in vivo efficacy study design (N¼ 10 mice/group). Animals
were monitored twice daily. Survival end points were reached
and recorded when mice began to appear moribund with cachexia,
abdominal distension, showed signs of hunched posture, hindlimb
paralysis or laboured breathing, whichever occurred first. Mice

were humanely killed by standard CO2 asphyxiation. Median
survival was estimated and compared using Kaplan–Meier method.

Determination of the plasma and intratumour concentration of
paclitaxel. Mice harbouring established Panc265 orthotopic
tumours (B200–300mm3) were either untreated or treated with
PTX (13.4mg kg� 1) or nab-PTX (22.3mg kg� 1), i.v, once daily for
five consecutive days (N¼ 9 mice per group). On day 5, blood and
tumour samples were collected 2 h after the dosing of nab-PTX
or PTX. Paclitaxel concentration was analysed by liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS) as described
elsewhere (Zhang et al, 2013). For the calibration curve, an aliquot
of paclitaxel stock solution (0.2mgml� 1 in acetonitrile)
was spiked into plasma to make the initial plasma stock at
4000 ngml� 1, which was then diluted to make calibration
standard samples at concentrations ranging from 2 to
4000 ngml� 1 in plasma. Quality control (QC) samples were made
similarly with concentrations of low QC at 6 ngml� 1, medium QC
at 100 ngml� 1 and high QC at 3200 ngml� 1. Dilution QC at
20 000 ngml� 1 was made by spiking the stock solution into blank
plasma and then diluted 10-fold with blank plasma. Aliquots
(50 ml) of plasma and tumour samples (including standards,
blanks, QCs) were transferred into a 96-well plate. To each well,
150 ml of a solvent mixture of acetonitrile : methanol (9 : 1)
containing 100 ngml� 1 of d5-paclitaxel (as the internal standard)
was added. The plate was capped, vortex mixed and centrifuged. A
150 ml aliquot of the supernatant was transferred into a clean 96-
well plate for LC-MS/MS analysis. Chromatographic separation
was carried out using a Shimadzu LC20 system equipped with an
Agilent Pursuit XRs 3 C18 column (100� 2mm). Mobile phases
consisted of 5mM ammonia acetate in water containing 0.1% formic
acid (A) and 5mM ammonia acetate in acetonitrol : water (9 : 1)
mixture containing 0.1% formic acid (B), at a flow rate of
0.35mlmin� 1. The column was eluted with a gradient of 25%
B for 0.9min, linearly increased to 100% B over 1.5min and then
maintained at 100% B for another 3.5min. The LC elute was
connected directly to a Sciex API4000 QTrap mass spectrometer
(Ab Sciex, Framingham, MA, USA) equipped with an electrospray
ionisation (ESI) ion source. The ratio of intratumoral vs plasma
concentrations of paclitaxel was calculated and compared between
nab-PTX and PTX treatment groups.

Evaluation of the acute effect of taxanes on tumour desmoplastic
stroma. Mice harbouring established Panc185 and Panc265 ortho-
topic tumours (B200–300mm3) were either untreated or treated with
PTX (13.4mgkg� 1) or nab-PTX (22.3mgkg� 1), i.v, once daily for
five consecutive days (N¼ 5 mice per group). Tumours were resected
24h post the last dose of PTX or nab-PTX. Tumours were formalin-
fixed, paraffin-embedded, sectioned and stained with Mason’s
Trichrome or Collagen IV. Sections were evaluated under a light
microscope and photographed using a digital camera.

Statistical analysis. Data were analysed using GraphPad Prism 6
software (GraphPad Software Inc., La Jolla, CA, USA). Primary
tumour volumes were compared and analysed using Mann–
Whitney U-test. Survival data were estimated and compared using
Kaplan-Meier method and statistical significance was determined
using Log-rank (Mantel-Cox) test. Differences and associations
were considered statistically significant where Po0.05.

RESULTS

Characteristics of orthotopic PDAC mouse models. Upon
orthotopic implantation in mouse pancreas, Panc185 tumours
grew as locally advanced primary tumours, lacking metastatic
dissemination to other organs. In contrast, Panc265 tumours
showed aggressive tumour growth and metastatic spreading to
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Figure 1. Characteristics of orthotopically implanted PDAC tumours in mice and therapeutic efficacy of treatment regimens. Upon implantation in
mouse pancreas, untreated Panc265 tumour showed more aggressive tumour growth and metastatic dissemination in mouse organs. (A) Photographs
of resected liver, spleen and mesenteric lymph nodes from an untreated Panc265 tumour harbouring mouse showing prominent metastatic lesions in
organs (upper panel). Yellow arrows point towards metastatic lesions. Representative photomicrographs (H&E, � 40) showing primary tumour growth in
mouse pancreas, metastatic dissemination in liver, spleen and lungs. Black arrows point towards metastatic deposits in organs. (B) Gross morphology
representative of the resected primary tumours at the termination of efficacy experiment (D28). Primary tumour volumes in different treatment regimens
are shown in (C). Data represent mean primary tumour volumes ±s.e.m. N¼9–10 mice per group in Panc185 and 8–10 mice per group in Panc265.
Baseline mean tumour volumes (N¼ 5) are shown on the left side of graphs. Statistical comparison of primary tumour volumes and P-values are shown in
Supplementary Table S3. (D) Representative photomicrographs (H&E, �20) of primary tumour sections. Histological evaluation of Panc185 and
Panc265 tumours showed moderately differentiated and poorly differentiated pancreatic ductal adenocarcinoma, respectively. Blue arrows point
towards desmoplastic stroma. Red arrows point towards areas of neutrophil infiltrate. Green arrows point towards normal pancreatic acinar cells.
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liver, spleen, lungs, kidneys, lymph nodes and peritoneum
(Figure 1A and B and Table 1). Cachexia was evident in control
animals harbouring Panc265 tumours and their abdomens were
enlarged due to tumour burden and ascites. There was a 11.47-fold
increase in primary tumour volumes of control animals compared
with baseline tumour volumes, indicating the highly aggressive
phenotype of Panc265 tumours (Figure 1C and Supplementary
Table S2). Both Panc185 and Panc265 tumours harbour activating
mutations of KRAS oncogene and inactivating mutations in p53
tumour suppressor gene, the two most frequently found genetic
alterations in human PDAC (Jones et al, 2008; Biankin et al, 2012;
Rajeshkumar et al, 2015).

Determination of the therapeutic efficacy of treatment
regimens. We first determined the antitumour efficacy of each
drugs alone and in combination with GEM. Mean primary tumour
volumes, tumour weights and complete response of treatment
groups are shown in Supplementary Tables S1 and S2. All
treatment regimens tested in both Panc185 and Panc265 tumour
models showed statistically significant reductions in primary
tumour volume compared with control animals (Figure 1B and
C and Supplementary Tables S1–S3). The primary tumour volumes
increased substantially in the control and PTX-treated animals
of Panc185 (P¼ 0.0007 and 0.0007, respectively) compared with
the baseline (pre-treatment) tumour volumes (Figure 1C and
Supplementary Tables S1 and S3). GEM and nab-PTX mono-
therapy were highly effective in reducing the primary tumour
volumes (Po0.0001) compared with the tumour volumes of
control animals (Figure 1C and Supplementary Tables S1 and S3).
Although the both combination treatments were remarkably
effective in abolishing primary tumour growth, the rate of complete
responses were higher in the GEM plus nab-PTX (89%) vs GEM
plus PTX (22%) treatment, supporting the higher efficacy of GEM
plus PTX regimen (Supplementary Table S1).

Baseline mean tumour volume of Panc265 tumours increased
from 273 to 3123mm3 (P¼ 0.0007) and 751mm3 (P¼ 0.008) by
day 28 in the control and PTX-treated groups, respectively
(Figure 1C and Supplementary Tables S2 and S3). Treatment of
the combination regimens resulted in statistically significant
reductions in tumour size, but neither combination induced
complete regressions (Supplementary Tables S2 and S3). GEM pus
nab-PTX treatment produced statistically significant reduction in
tumour volumes compared with GEM treatment (P¼ 0.0004).

In both Panc185 and Panc265 tumour models, nab-PTX mono-
therapy resulted in primary tumour regression compared with
baseline tumours (Figure 1C). Nab-PTX treatment was remarkably
effective in blocking primary tumour progression compared with
PTX monotherapy (3.944- and 3.645-fold; Po0.0001 and
P¼ 0.0001, respectively; Figure 1C and Supplementary Tables
S1–S3). In both tumour models, one mouse each treated with
nab-PTX achieved a complete response, whereas no complete

responses were observed with PTX treatment (Supplementary
Tables S1 and S2). Results of exploratory laparotomies conducted
in mice before randomisation (baseline) confirmed the tumour
growth confined only in pancreas.

Tumour histology. Histological evaluation of Panc185 and
Panc265 tumours revealed moderately differentiated and poorly
differentiated pancreatic ductal adenocarcinoma, respectively
(Figure 1D). Tumours of control mice showed cribriform pattern
of neoplastic cells admixed with necrotic debris, moderate to
severe nuclear atypia, nuclear overcrowding, aberrant mitoses and
abundant desmoplastic stroma (Figure 1D). While there was a
reduction in neoplastic cells, desmoplastic stroma persisted in the
tumours of animals treated with GEM or PTX. Depletion of
desmoplastic stroma was clearly evident in the tumours of animals
treated with nab-PTX alone and in combination with GEM.
Tumours harvested from animals treated with nab-PTX alone and
in combination with GEM displayed mild to moderate neutrophil
infiltration in tumour microenvironment compared with control
tumours and other treatment regimens. Nab-PTX alone and in
combination with GEM treatment culminated in a sharp reduction
of tumour cellularity and progressive loss of desmoplastic stroma.
Islands of mouse pancreatic acinar cells were frequently noticed in
the Panc185 and Panc265 tumours harvested from the animals
administered with GEM plus nab-PTX (Figure 1D), indicating the
therapy effectiveness of this regimen in destroying tumour cells
and desmoplasia. H&E staining performed on the organs (spleen,
liver, lungs, kidneys, lymph nodes) of mice killed prior to
randomisation (baseline) did not show any metastatic infiltration
(data not shown).

Effect of drug treatments on metastatic dissemination to organs
and peritoneum. Panc265 tumours are highly metastatic when
implanted orthotopically into mouse pancreas, showing metastatic
dissemination in spleen, liver, lungs, kidneys, lymph nodes and
peritoneum with frequencies ranging from 10 to 100% of animals
(Figure 1A and Table 1). Treatment effects of agents alone and in
combination with GEM on metastatic dissemination to distant
organs and peritoneum are summarised in Table 1. All animals
untreated or treated with PTX developed metastasis in at least one
organ (Table 1). GEM treatment was ineffective in controlling
metastatic spreading as evidenced by metastatic lesions in the
spleen of nine out of ten (90%) mice (Table 1). However, nab-PTX
prevented the metastatic spreading to spleen in 5 out of 10 mice
(50%). Combined treatment of GEM and nab-PTX decreased
metastatic tumour burden compared with either agent used alone
(Table 1).

Impact of drug treatments on carcinoma cell proliferation,
tumour vascularity and desmoplastic tumour stroma. We
determined the treatment effects of agents alone and in combina-
tion with GEM on tumour cell proliferation and desmoplastic
stroma. Previous studies conducted by us revealed the presence of
desmoplastic stroma in subcutaneously grown PDXs and meta-
static lesions of human PDAC (Rajeshkumar et al, 2015; Whatcott
et al, 2015). Tumours harvested from untreated animals
of Panc265 PDX showed higher number of carcinoma cells
expressing Ki-67, compared with tumours in Panc185, indicating
the aggressiveness of Panc265 tumours (Figure 2A). The GEM plus
nab-PTX combination effectively suppressed tumour cell prolif-
eration in both Panc185 and Panc265 PDXs (Figure 2A).
Comparable CD31-positive endothelial cell populations were
noticed in the blood vessels of untreated and drug treated tumours,
indicating that drug treatments did not alter the tumour vascularity
(Figure 2B). Abundance of desmoplastic stroma, a hallmark of
human PDAC, was evident in tumours harvested from untreated
animals (Figure 3A and B). While GEM and PTX treatments were
largely ineffective in reducing tumour stroma, nab-PTX

Table 1. Treatment effect of regimens on metastatic
dissemination to organs and peritoneum in the Panc265
PDAC model

Group Spleen Liver Lungs Kidneys LN Peritoneum
Vehicle 10/10 4/10 1/10 5/10 10/10 8/10

GEM 9/10 1/10 0/10 0/10 6/10 3/10

PTX 10/10 0/10 0/10 0/10 3/10 1/10

nab-PTX 5/10 0/10 0/10 0/10 1/10 0/10

GEMþ PTX 5/10 0/10 0/10 0/10 1/10 0/10

GEMþ nab-PTX 3/8 0/8 0/8 0/8 0/8 0/8

Abbreviations: GEM¼gemcitabine; LN¼ lymph nodes; nab-PTX¼ nab-paclitaxel;
PTX¼paclitaxel. N¼ 8–10 mice/group.
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monotherapy and in combination with GEM facilitated the
destruction of dense tumour stroma (Figure 3A and B). These
results are in agreement with our previous preclinical and clinical
results (Maitra et al, 2009; Alvarez et al, 2013).

Therapeutic effect of regimens on the survival of mice
harbouring human PDAC. We evaluated the impact of drug
treatments on the survival of mice harbouring established PDAC.
Kaplan–Meier survival curves of different treatment groups and

the comparisons are shown in Figure 4 and Supplementary Figures
S1 and S2. In the locally advanced model (Panc185), GEM
monotherapy prolonged the median survival from 58 to 114 days
(Figure 4A). PTX monotherapy also showed a positive, albeit
smaller effect and extended median survival to 81.5 days. Nab-PTX
monotherapy showed significant advantage compared with PTX
monotherapy by extending the median survival to 115 days
(P¼ 0.0024; Figure 4A and Supplementary Figure S1).The
combination of PTX and GEM showed a median survival of 125
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days. The combination of nab-PTX and GEM was the most
effective treatment. Median survival in this group was 161 days
(Figure 4A), and the increase was statistically significant compared
with PTX plus GEM treatment (P¼ 0.0455; Figure 4A). Finally, the
nab-PTX plus GEM combination treatment resulted in a
statistically significant improvement in median survival compared
with GEM treatment (P¼ 0.0039; Figure 4A and Supplementary
Figure S1).

Mice implanted with Panc265 tumours showed a more aggressive
disease course with a median survival of 38 days in untreated mice
(Figure 4B). Both GEM and PTX monotherapy resulted in the

median survivals of 56 days (Figure 4B and Supplementary Figure
S2). Nab-PTX treatment resulted in a near doubling in median
survival to 75.5 days (Figure 4B), and the difference was statistically
significant compared with PTX monotherapy (P¼ 0.0121; Figure 4B
and Supplementary Figure S2). Neither GEM plus PTX nor GEM
plus nab-PTX combination was better than single agent nab-PTX
(Figure 4B). The nab-PTX plus GEM combination treatment resulted
in a statistically significant improvement in median survival
compared with GEM treatment (P¼ 0.0228; Figure 4B and
Supplementary Figure S2). Remarkably, the survival of animals in
the nab-PTX monotherapy was equivalent to those of animals
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received nab-PTX plus GEM treatment in the highly aggressive
metastatic Panc265 PDAC model, indicating that nab-PTX could
potentially stop the progression of late-stage pancreatic cancer and its
utility as a backbone for combinations with existing or investigational
agents.

Acute effect of taxanes on plasma and intratumour paclitaxel
concentrations and desmoplastic stroma. We determined the
plasma and intratumour concentrations of paclitaxel following 5-
day PTX or nab-PTX treatment in the Panc265 tumour model.
Plasma paclitaxel concentrations in animals administered with
PTX or nab-PTX were 280.9 and 265.8 ngml� 1, respectively.
Plasma paclitaxel concentrations did not statistically differ between
the two treatment groups (P¼ 0.8357; Figure 5A). However,
animals receiving nab-PTX treatment was associated with
significantly higher (30.158%) tumour paclitaxel concentrations
compared with PTX treatment (P¼ 0.0014; Figure 5B). As shown
in Figure 5C, the paclitaxel tumour plasma ratio was significantly
higher (1.98-fold) in animals administered with nab-PTX com-
pared with PTX treatment (P¼ 0.0311). While PTX treatment
failed to impart stromal depletion, nab-PTX treatment drastically
lowered the levels of desmoplastic stroma in the tumour
microenvironment (Figure 5D).

DISCUSSION

Advanced PDAC is deadly and difficult to treat with success
(Wolfgang et al, 2013). The incidence of PDAC is increasing and is
expected to be the second deadliest malignancy in the USA by 2020

(Garrido-Laguna and Hidalgo, 2015). Recently, an intensive
cytotoxic regimen comprising oxaliplatin, irinotecan, fluorouracil
and leucovorin (FOLFIRINOX) compared with GEM as first-line
therapy in patients with metastatic PDAC has been shown to
significantly improve the survival in patients with good perfor-
mance status (Conroy et al, 2011). However, the safety profile of
FOLFIRINOX was less favorable than that of GEM and many
patients are not eligible to receive FOLFIRINOX because of poor
performance status and advanced age (Ko, 2011).

The taxanes, PTX and docetaxel, were introduced more than
two decades ago. These two drugs represented a revolution in
cancer chemotherapy and have become core components of
standard-of-care treatments in several cancer types such as breast,
lung and ovary (Chiorean and Von Hoff, 2014). One of the
drawbacks of PTX is the cremophor-ethanol, which has been
shown to alter the pharmacokinetics of this agent and contribute
to side effects such as hypersensitivity reactions in humans (Yared
and Tkaczuk, 2012). In an effort to develop more effective and safe
taxanes, nab-PTX was created as a solvent-free albumin-paclitaxel
nanoparticle (Hawkins et al, 2008). Nab-PTX has demonstrated
higher response rates and improved tolerability when compared
with solvent-based formulations of PTX in patients with advanced
metastatic breast cancer and advanced non-small-cell lung cancer
and approved in certain settings and combinations for the
treatment of these malignancies (Viudez et al, 2014).

Preclinical and early clinical trials conducted by us showed
promising antitumour activity of nab-PTX and its potential to
modulate dense desmoplastic stroma (Maitra et al, 2009; Von Hoff
et al, 2011). These studies were followed by MPACT trial, a large
randomised phase III study, which demonstrated the superior
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efficacy of nab-PTX in combination with GEM vs GEM alone
(Von Hoff et al, 2013). Positive results from this study have led to
the regulatory approval of this regimen, which is currently being
implemented as a standard of care regimen for the treatment of
patients with metastatic PDAC (Von Hoff et al, 2013). While the
clinical efficacy of nab-PTX in PDAC is beyond any doubt, the
mechanism of action is less clear. The extracellular matrix protein
secreted protein, acidic and rich in cysteine (SPARC) had been put
forward as a potential biomarker associated with superior nab-PTX
activity. Despite support from a Phase I/II study (Von Hoff et al,
2011), a post hoc exploratory study of the MPACT trial did not
detect any association between SPARC positivity in tumour tissue
or plasma and treatment outcomes (Hidalgo et al, 2015). Two

independent preclinical investigations using SPARC knockout
mice and genetically engineered mice have corroborated this result
(Alvarez et al, 2013; Neesse et al, 2014). Thus the notion that nab-
PTX is effective in pancreatic cancer because the albumin binds to
SPARC may not be correct (Hidalgo et al, 2015). A recent study
demonstrated that efficacy of nab-PTX in metastatic breast cancer
do not appears to be associated with expression of SPARC in
primary or metastatic tumour tissue or in the serum (Schneeweiss
et al, 2014). We recently showed that nab-PTX and GEM
treatment effectively decreased the density of cancer-associated
fibroblasts and induced a marked alteration in cancer stroma that
results in primary tumour softening of patients with operable
PDAC (Alvarez et al, 2013).
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We performed studies to explore the efficacy and survival benefit
of taxanes alone and in combination with GEM and determined the
treatment effect on tumour cell proliferation, tumour desmoplasia
and metastatic spreading to distant organs. We utilised orthotopic
PDX models, which have been shown to better mimic metastasis
than subcutaneously grown xenografts (Herreros-Villanueva et al,
2012; Hoffman, 2015; Hwang et al, 2016). Our results showed that
PTX as a single agent was not significantly effective in reducing
primary tumour burden or enhancing mouse survival compared
with the activity of nab-PTX or GEM monotherapy. When
compared with either agent used alone, combined treatment of
GEM plus nab-PTX decreased metastatic tumour burden and
increased median survival of animals (Table 1 and Figure 4).
Masson’s trichrome and Collagen IV staining performed on
tumours harvested from untreated animals showed abundant levels
of fibrotic tissue in tumour microenvironment (Figure 3). Visually
striking reduction in fibrotic tissue was observed in tumour tissues
harvested from the nab-PTX-treated animals compared with the
tumours harvested from PTX-treated animals (Figure 3). As
previously reported in mouse models and patient tissues (Maitra
et al, 2009; Von Hoff et al, 2011), nab-PTX treatment effectively
dismantled PDAC stroma (Figure 3). Nab-PTX treatment reduced
the number of proliferating carcinoma cells compared with PTX
treatment as evidenced by reduced number of carcinoma cells
expressing Ki-67, a nuclear protein, expressed in proliferating cells
(Figure 2A). GEM plus nab-PTX treatment was highly effective in
reducing the Ki-67-positive carcinoma cells compared with GEM
plus PTX treatment (Figure 2A).

In order to explore the potential mechanism of enhanced
therapeutic efficacy of nab-PTX over PTX, we determined the
plasma and intratumour concentrations of paclitaxel following
nab-PTX or PTX treatment. We also evaluated the acute effect of
taxanes on tumour desmoplastic stroma. Our results showed a
30.158% increase in tumour paclitaxel concentration and 1.98-fold
higher paclitaxel tumour plasma ratio, following 5-day nab-PTX
treatment compared with PTX treatment (Figure 5B and C).

Nab-PTX treatment was associated with higher depletion
desmoplastic stroma in the tumour microenvironment compared
with untreated or PTX-treated tumours. Considerable evidence
from both preclinical and clinical studies demonstrated that
multiple factors including favorable pharmacokinetics contribute
to the augmented antitumour efficacy of nab-PTX over cremo-
phor-based PTX (Gardner et al, 2008; Ma and Hidalgo, 2013).
A previous preclinical study demonstrated that tumour paclitaxel
area under the curve was 33% higher for nab-PTX treated mice
compared with PTX treatment in a breast tumour model (Desai
et al, 2006). Recent reports demonstrated that human pancreatic
cancer cells display macropinocytosis and albumin internalisation
occur through tumour macropinocytosis (Commisso et al, 2013;
Kamphorst et al, 2015). Our in vivo studies did not investigate
whether tumour macropinocytosis contribute to the uptake of
albumin cocoon from nab-PTX or facilitate the bioavailability
of paclitaxel in tumour microenvironment. Our data demonstrated
that nab-PTX treatment resulted in a higher intratumour paclitaxel
concentration, leading to enhanced killing of neoplastic cells and
depletion of tumour desmoplastic stroma, which may be
responsible for the significant therapeutic advantage of nab-PTX
over PTX treatment in pancreatic cancer.

Our results convincingly demonstrated that nab-PTX treatment
was remarkably effective in blocking primary tumour progression,
depletion of dense tumour stroma and consistently achieved greater
antitumour response, resulting in enhanced survival of tumour
harbouring animals compared with PTX treatment. Combined
treatment of GEM plus nab-PTX decreased metastatic tumour
burden and increased overall survival of animals when compared
with either agent used alone. Our findings clarified no benefit of
adding PTX to GEM therapy for locally advanced and metastatic

pancreatic cancer. Our studies confirmed that therapeutic efficacy of
PTX and nab-PTX vary widely, and the contention that these agents
elicit similar antitumour response was not supported. In this regard,
clinical investigation of PTX alone and in combination with GEM in
PDAC is not supported by our results.
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