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Background: The mTOR-inhibitor everolimus improves progression-free survival in advanced pancreatic neuroendocrine tumours
(PNETs). However, adaptive resistance to mTOR inhibition is described.

Methods: QGP-1 and BON-1, two human PNET cell lines, were cultured with increasing concentrations of everolimus up to 22
weeks to reach a dose of 1 mM everolimus, respectively, 1000-fold and 250-fold initial IC50. Using total DNA content as a measure of
cell number, growth inhibitory dose–response curves of everolimus were determined at the end of resistance induction and over
time after everolimus withdrawal. Response to ATP-competitive mTOR inhibitors OSI-027 and AZD2014, and PI3K-mTOR inhibitor
NVP-BEZ235 was studied. Gene expression of 10 PI3K-Akt-mTOR pathway-related genes was evaluated using quantitative real-
time PCR (RT–qPCR).

Results: Long-term everolimus-treated BON-1/R and QGP-1/R showed a significant reduction in everolimus sensitivity. During
a drug holiday, gradual return of everolimus sensitivity in BON-1/R and QGP-1/R led to complete reversal of resistance after 10–12
weeks. Treatment with AZD2014, OSI-027 and NVP-BEZ235 had an inhibitory effect on cell proliferation in both sensitive and
resistant cell lines. Gene expression in BON-1/R revealed downregulation of MTOR, RICTOR, RAPTOR, AKT and HIF1A, whereas
4EBP1 was upregulated. In QGP-1/R, a downregulation of HIF1A and an upregulation of ERK2 were observed.

Conclusions: Long-term everolimus resistance was induced in two human PNET cell lines. Novel PI3K-AKT-mTOR pathway-
targeting drugs can overcome everolimus resistance. Differential gene expression profiles suggest different mechanisms
of everolimus resistance in BON-1 and QGP-1.

Neuroendocrine tumours (NETs) are a diverse group of neoplasms,
mainly found in the gastrointestinal tract, lung and pancreas.

Pancreas NETs (PNETs) are relatively rare, with an incidence of 0.43
per 100 000 according to the Surveillance, Epidemiology and End
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Results (SEER) registry (Yao et al, 2008). However, this rate has
doubled during the last 20 years (Lawrence et al, 2011; Fraenkel et al,
2012). Primary therapy for localised PNET remains surgical excision.
However, up to 60% of all patients present with unresectable disease
(Halfdanarson et al, 2008). In these patients, systemic treatment has
an essential role in controlling the disease (Falconi et al, 2012).
The role of traditional cytotoxic therapies in PNET remains a matter
of debate, with only small series showing response to streptozocin-
based chemotherapy (Calender, 1997; Hansel et al, 2004; Schonhoff
et al, 2004). Newer chemotherapy regimens with temozolomide
alone (Ekeblad et al, 2007), or in combination with capecitabine
(Strosberg et al, 2011), show promise. The low response rate for
streptozocin-based chemotherapy and the associated side effects
underscore the need for targeted drugs.

The phosphoinositide-3-kinase/Akt/mammalian target of rapa-
mycin (PI3K-Akt-mTOR) signalling pathway has a major role in
NET by regulating cell growth, proliferation, survival and protein
synthesis (Figure 1A). Furthermore, elevated mTOR expression
and activity is associated with a higher proliferative capacity
and worse prognosis (Missiaglia et al, 2010). Recently, exome
sequencing of primary PNET tumour samples revealed mTOR
pathway genes to be mutated in 16% of all PNETs, in addition
to highlighting mutations in other genes, including MEN1 (44% of
all patients), DAXX (25%) and ATRX (18%) (Jiao et al, 2011).
mTOR acts as the catalytic subunit of two functionally distinct
complexes, named mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2) (Capdevila et al, 2011). mTOR proves to be
an interesting target for therapy of PNET with mTOR-inhibiting
rapamycin and analogues (rapalogues) such as everolimus
(RAD001). Rapamycin, everolimus and other rapalogues form a
complex with the 12 kD FK506-binding protein FKBP12 (Lach
et al, 1999; Helpap and Kollermann, 2001). This rapalogue-
FKBP12 complex allosterically inhibits mTOR when it is part of
mTORC1. However, rapalogues only have limited effect on mTOR
when mTOR is part of mTORC2 because of steric hindrance by
the Rictor mTORC2-subunit (Goto et al, 2001). A phase III trial
with everolimus was conducted in 410 patients with well- and
moderately differentiated PNETs and showed an improvement in
median progression-free survival (PFS) in the everolimus-treated
group compared with the placebo group (Yao et al, 2011). Similar
results were seen in the phase III trial with sunitinib, a pan-tyrosine
kinase inhibitor (Raymond et al, 2011). On the basis of these
results everolimus and sunitinib became the first FDA and EMA
approved drugs in 30 years for the treatment of locally advanced,
unresectable or metastatic PNETs. However, an objective partial
response was only seen in 5% of the patients receiving everolimus
or sunitinib. The significant effect on PFS was thus mainly due
to disease stabilisation and minor reductions in tumour growth.
As PFS in phase III study with everolimus is still limited to 11
months, adaptive resistance to mTOR inhibition with rapalogues
was described (Yao et al, 2013). To overcome this resistance, novel
PI3K-AKT-mTOR targeting drugs have been developed, such as
NVP-BEZ235, OSI-027 and AZD2014. Exploiting the homology
between the kinase domain of mTOR and PI3K, NVP-BEZ235
docks in the active pocket of both molecules and reduces kinase
activity of PI3K and mTOR by competing with ATP-binding.
The selective mTOR inhibitors AZD2014 and OSI-027 target the
kinase domain of mTOR, blocking both mTORC1 and mTORC2
in an ATP-competitive manner, without blocking PI3K kinase
activity (Maira et al, 2008; Yu et al, 2009). Although the efficacy
of novel drugs in PNET cell line model of short-term adaptive
resistance to everolimus has been studied (Passacantilli et al, 2014),
no data are currently available about long-term adaptive resistance
in everolimus-treated PNET. A better understanding of the
mechanisms underlying resistance to rapalogues is thus necessary
for a predictive biomarker for everolimus resistance to be
identified.

MATERIALS AND METHODS

Cell lines and culture conditions. BON-1 and QGP-1, two human
PNET cell line models, were used in this study. The BON-1 cell line
was a kind gift from Dr Townsend (University of Texas Medical
Brachn, Galveston, TX, USA; Townsend et al, 1993). The QGP-1 cell
line was purchased from the Japanese Collection of Research
Bioresources Cell Bank (JRCB, Osaka, Japan; Kaku et al, 1980).
BON-1 and QGP-1 cell line identity was confirmed using short
tandem repeat profiling (Vandamme et al, 2015). The BON-1 cell
line was cultured in 1 : 1 mixture of Dulbecco’s modified Eagle
medium (DMEM) and F12 medium, supplemented with 10% fetal
calf serum (FCS), penicillin (1� 105 units per l), fungizone
(0.5mg l� 1), and L-glutamine (2mmol l� 1). The QGP-1 cell line
was cultured in Roswell Park Memorial Institute (RPMI) 1640
medium, supplemented with 10% FCS and penicillin-streptomycin
(1� 105 units per l penicillin and 1� 105 units per l streptomycin).
All cell lines were incubated in an atmosphere of 95% humidity and
5% CO2 at 37 1C. Media and supplements were obtained from Life
Technologies Bio-cult Europe (Invitrogen, Breda, The Netherlands).

Drugs and reagents. Everolimus (RAD001), AZD2014, OSI-027
and NVP-BEZ235 were purchased from Selleckchem (Selleck
Chemicals, Houston, TX, USA). Rapamycin was purchased from
LG Laboratories (Woburn, MA, USA). All inhibitors were dissolved
in 100% dimethylsulfoxide (DMSO) to a 1mM concentration and
stored in � 20 1C. All drugs were diluted to working concentrations
in 40% DMSO before use. In all the experiments, controls were
treated with a vehicle DMSO concentration equivalent to the 0.4%
final DMSO concentration in the treatment dilutions.

Cell proliferation assay using total DNA content. Cells were
plated in 1ml medium in 24-well plates at the density necessary to
obtain a 70–80% cell confluence in the control groups at the end of
the experiment. Medium was refreshed and the tested compounds
were added to wells in quadruplicate after 24 h for QGP-1 and 72 h
for BON-1. Time points were chosen to reduce inter- and intra-
experiment variability. The concentrations of compounds tested
ranged between 0,1 nM and 1 mM for everolimus, rapamycin and
NVP-BEZ235. Given the narrow therapeutic margin of AZD2014
and OSI-027, the used concentrations ranged from 10 nM to 1mM
with an added 250 nM and 500 nM concentration. Every 3 days, the
cells were supplied with fresh medium and compounds. After 7
days of treatment, the cells were harvested for DNA measurement.
Measurement of total DNA content, as a measure of cell number,
was performed with the bisbenzimide DNA-intercalating fluor-
escent dye (Hoechst 33258; Boehring Diagnostics, La Jolla, CA,
USA) as previously described (Barrett et al, 1995).

Quantitative real-time PCR of PI3K-AKT-mTOR pathway
genes. The tested cell line conditions were plated in 3ml medium
in six-well plates at the density required to obtain 70–80% cell
confluence at the end of the experiment. Twenty-four hours later for
QGP-1 cell line conditions and 72h later for BON-1 cell line
conditions, medium was replaced and cells were incubated for 72h with
vehicle. One-step reverse transcription quantitative PCR (RT–qPCR)
was performed on total RNA from six biological replicates in
a single reaction using the Power SYBR Green RNA-To-CT 1-Step
kit (Life Technologies, Thermo Fisher Scientific, Waltham, MA,
USA) on a LightCycler 480 instrument (Roche Applied Science,
Penzberg, Germany). Primers were designed using QuantPrime
software (Arvidsson et al, 2008) and RTPrimerDB (http://
www.rtprimerdb.org) and have been obtained from Integrated
DNA Technologies (Leuven, Belgium) (Supplementary Table 1).
All reactions have been performed in triplicates in 384-well plates
with 2 ml total RNA (prediluted to 15 ngml� 1) as input in a total
reaction volume of 10 ml, further comprising 5ml Power SYBR
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Green RT-PCR Mix (2� ; Life Technologies, Thermo Fisher
Scientific), 0.08 ml RT Enzyme Mix (125� ; Life Technologies,
Thermo Fisher Scientific) and 200 nM of each primer (final
concentration).

Statistical analysis. All cell proliferation assays were performed
at least twice at different times. The repeated experiments gave
comparable results. The comparative statistical evaluations
between the different cell line conditions were performed by
two-way ANOVA with treatment concentration and cell line
condition as variables. For post hoc testing, a multiple comparative
test with Dunn–Šidák correction was used. For RT–qPCR
experiments, normalised relative gene expression values were
calculated using qBasePLUS software version 1.5 (Biogazelle,

Zwijnaarde, Belgium). Messenger RNA expression was normalised
to household gene expression (GAPDH and RPL13A for BON-1;
HPRT and YWAZ for QGP-1) according to the geNorm algorithm
(Mestdagh et al, 2009). Comparison between gene expression levels
was done by Student’s t-test and adjusted for multiple testing using
Holm–Bonferroni correction. All statistical analyses were done
using GraphPad Prism 5.0 for Windows (GraphPad Software,
La Jolla, CA, USA).

RESULTS

Inducing everolimus resistance. In untreated human PNET
cell lines BON-1 and QGP-1, the everolimus concentration that
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Figure 1. Simplified representation of the PI3K-AKT-mTOR pathway in pancreatic neuroendocrine tumours. Constitutional activation of the
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reduces growth by 50% (IC50) after 7 days of treatment was 1 and
4 nM, respectively (data not shown). Starting from this IC50

concentration, QGP-1 and BON-1 were continuously cultured in
increasing concentrations of everolimus. The everolimus concen-
tration was progressively doubled every 14 days during 8–10 dose
doublings until a final concentration of 1mM was reached. In
parallel, clonal BON-1 and QGP-1 cells were long-term vehicle
treated. The established long-term everolimus-treated cell lines
(BON-1/R and QGP-1/R) were maintained in the maximally
achieved everolimus concentration. No morphological changes
were seen between the long-term vehicle-treated cell lines and the
long-term everolimus-treated cell lines (Supplementary Figure 2).
After the establishment of the long-term everolimus-treated BON-
1/R and QGP-1/R, both showed a statistically significant reduced
growth inhibitory response to everolimus in comparison with long-
term vehicle-treated BON-1 and QGP-1 at everolimus concentra-
tions between 10 nM and 1 mM for BON-1/R and at 1 nM and 1 mM
for QGP-1/R, respectively (Figure 2A and B). In addition, BON-1/
R and QGP-1/R had a significantly reduced sensitivity to
rapamycin in concentrations ranging from 1 nM to 1mM when
compared with their long-term vehicle-treated BON-1 and QGP-1
counterparts (Figure 2C and D).

Evolution of everolimus-resistance over time. In order to study
reversibility of everolimus-resistance, the BON-1/R and QGP-1/R
cell lines were cultured without everolimus maintenance treatment
during 10 and 12 weeks, respectively, showing a gradual return
of everolimus sensitivity (data not shown). After 10–12 weeks,
this resulted in the BON-1/R STOP and QGP-1/R STOP cell line
conditions. When comparing these cell line conditions with
BON-1/R and QGP-1/R, maintained during 10–12 weeks at
maximum 1 mM everolimus concentration, and vehicle-treated
BON-1 and QGP-1, a return of BON-1/R STOP and QGP-1/R

STOP to the sensitivity levels of BON-1 and QGP-1 was observed
(Figure 3A and B).

Overcoming everolimus-resistance. A dose–response study in
both everolimus-resistant and -sensitive BON-1 and QGP-1 cells
to the growth inhibitory effect of AZD2014, OSI-027 and
NVP-BEZ235 was executed in parallel. After a 7-day-treatment
with AZD2014, cell proliferation was significantly less reduced
at the 250 nM and 500 nM concentration of AZD2014 in BON-1/R
when compared with long-term vehicle-treated BON-1. When
exposing QGP-1/R and QGP-1 to AZD2014 during 7 days, growth
reduction was significantly more pronounced in long-term vehicle-
treated QGP-1 when compared with QGP-1/R in all tested
AZD2014 concentrations above 100 nM. A maximal inhibition
of 480% of cell proliferation was obtained at 1 mM of AZD2014 in
all cell lines tested (Figure 4A and B). BON-1/R and long-term
vehicle-treated BON-1 did not respond significantly different to
OSI-027, while QGP-1/R was more resistant to OSI-027 than
QGP-1 in all concentrations tested above 100 nM. The maximum
inhibition with OSI-027 reached in BON-1/R, BON-1 and QGP-1
cells was a 50% reduction of cell proliferation (Figure 4C and D).
No statistically significant difference in the inhibition of cell
proliferation was observed after 7 days of treatment with NVP-
BEZ235 in BON-1/R when compared with long-term vehicle-
treated BON-1 in the 1 nM to 1 mM NVP-BEZ235 concentration
range. In both everolimus-sensitive and -resistant BON-1 cells,
a maximum inhibition of 492% of control cell proliferation was
reached at 100 nM of NVP-BEZ235. When comparing the QGP-1/
R and QGP-1, NVP-BEZ235 was less potent at 10 nM, compared
with QGP-1/R cells. Maximal cell growth inhibition was achieved
a 100 nM in both QGP-1/R and long-term vehicle-treated QGP-1
(Figure 4E and F).
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Gene expression changes in everolimus resistance. Differential
gene expression of MTOR, RAPTOR, RICTOR, AKT, S6K1, 4EBP1,
ERK1, ERK2, BCL2 and HIF1A between BON-1/R and long-term
vehicle-treated BON-1 showed a significant downregulation of
MTOR, RICTOR, RAPTOR, AKT and HIF1A, whereas 4EBP1 was
significantly upregulated (Po0.05) (Figure 5). When comparing
QGP-1/R and QGP-1, a significant downregulation of HIF1A and
a significant upregulation of ERK2 were observed (Po0.05).

DISCUSSION

In this study, to the best of our knowledge, the first two PNET
models for long-term acquired everolimus resistance were
established. Both QGP-1 and BON-1 were cultured during more
than 20 weeks in increasing concentrations of everolimus and
continued to grow under a 250 and 1000-fold IC50 growth
inhibitory concentration of everolimus, respectively. Correspond-
ing in vivo concentrations are not reachable in patients (O’Donnell
et al, 2008). Continued cell growth under these high everolimus
concentrations, unreachable in patients, hence indicates an ever-
olimus resistance with possible clinical implications. Both the
resulting BON-1/R and QGP-1/R show a significantly decreased
response to everolimus in comparison with long-term vehicle-
treated BON-1 and QGP-1, even in the highest concentrations
tested (1mM). Similar results were seen when comparing BON-1/R
and QGP-1/R and its vehicle-treated counterparts for response to
rapamycin. This indicates that BON-1/R and QGP-1/R are not
only everolimus-resistant, but are also resistant to other rapalogues.
A previous study looked at everolimus-resistance in BON-1
(Passacantilli et al, 2014). However, this study treated BON-1
cells during 8 weeks with a dose of 10 nM, which is a much shorter
period and a lower dose than used in this study. In addition,
the authors did not perform a resistance induction experiment
with QGP-1. Given the long duration of treatment, the resulting
BON-1/R and QGP-1/R cell lines in our study could be considered
as a representative model for rapalogue resistance seen in PNET
patients, where median time to treatment failure and, thus,
acquired everolimus resistance is 11 months (Yao et al, 2011).

Various mechanisms have been proposed for the limited
response to everolimus in PNET (Figure 1B). Not all

phosphorylation sites of mTORC1 downstream proteins such as
p70 ribosomal S6 kinase 1 (S6K1), growth factor receptor bound
protein 10 (GRB10) and eukaryotic translation initiation factor 4E
binding protein 1 (4E-BP1) respond to the same extent to allosteric
inhibition of mTORC1 by rapalogues(Kang et al, 2013), thereby
diminishing rapalogue efficacy. Adaptive resistance may also
be caused by induction of activated phosphorylation of AKT.
This occurs through the lifting of negative feedback of the
mTORC1 downstream p70 ribosomal S6 kinase 1 (S6K1) on the
PI3K-AKT-mTOR pathway(Ohike et al, 2003; O’Reilly et al, 2006;
Julien et al, 2010). S6K1 effects this negative-feedback on insulin
receptor substrate-1 (IRS-1), which regulates insulin-like growth
factor I (IGF-1; O’Reilly et al, 2006). Furthermore, mTORC1
activates GRB10, which negatively regulates IGF-1 signalling.
When mTORC1 is inhibited by rapalogues, this negative feedback-
loop of IGF-1 is suppressed, synergistically adding to the effect
of mTOR inhibition of the S6K1-feedback loop (Emerling and
Akcakanat, 2011). As rapalogues effectively block mTORC1 but
only have a limited, dose-dependent action on the mTORC2, the
effect of rapalogues on mTOR signalling may be circumvented
through increased activity of mTORC2 (O’Reilly et al, 2006; Julien
et al, 2010). Furthermore, a direct role of S6K1 on mTORC2-
mediated AKT phosphorylation has been described since S6K1
might be instrumental in the inhibitory phosphorylation of Rictor,
the rapalogue-insensitive component of mTORC2 (Julien et al,
2010). Novel mTOR inhibitors, blocking both mTORC1 and
mTORC2 by competitively binding the ATP-binding mTOR
kinase pocket, have been developed to overcome these escape
mechanisms. AZD2014 is an ATP-competitive mTOR inhibitor,
currently undergoing phase II evaluation in different tumour types
(Pike et al, 2013; Basu et al, 2015a) (Figure 1C). In our study,
AZD2014 effectively reduces cell proliferation both in the
everolimus-sensitive QGP-1 and BON-1, as well as in the
everolimus-resistant BON-1/R and QGP-1/R. This is the first time
that AZD2014 shows efficacy in PNET models. In addition, these
results indicate that AZD2014 overcomes everolimus resistance in
PNET in concentrations reachable in patients (Basu et al, 2015a).
Further development of this drug in PNET could hence benefit
PNET patients. In addition, OSI-027, a drug from the same ATP-
competitive mTOR inhibiting class was tested. In contrast with the
other tested compounds, the growth inhibitory effect of OSI-027 in
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the concentration ranges tested reaches growth inhibition by only
50% at 1 mM in vehicle-treated BON-1 and QGP-1 cell lines.
In a xenograft mouse model, concentrations of up to 2mM could
be reached, but further studies on pharmacokinetics in humans are
needed (Bhagwat et al, 2011). Although resistant and sensitive
BON-1 responded equally to OSI-027 treatment, only limited
efficacy in overcoming everolimus resistance with OSI-027 was
observed in the QGP-1 cell line. This difference in response to OSI-
027 between BON-1/R and QGP-1/R suggests two distinct
molecular mechanisms of resistance. NVP-BEZ235 is a dual
blocker of mTOR, blocking both mTORC1 and mTORC2, and the
upstream PI3K (Doglioni et al, 1998) (Figure 1D). NVP-BEZ235
has proven efficacy in in vitro and in vivo PNET models (Doglioni
et al, 1998; Paireder et al, 2013). Dual inhibition of the PI3K-
mTOR pathway could prevent cross-talk activation of the mitogen-
activated kinase and extracellular signal-regulated kinase (MAPK-
ERK pathway) through PI3K-mediated feedback loop (Helpap and
Kollermann, 1999; Carracedo et al, 2008; Zitzmann et al, 2010;
Svejda et al, 2011; Paireder et al, 2013). This cross-talk could lead
to an escape of mTORC1 inhibition and, hence, to rapalogue
resistance. Although NVP-BEZ235 has completed phase II studies,

clinical development of this drug might not progress to phase III
because of the drug’s safety profile (Fazio et al, 2016). However,
our current study demonstrates that dual blocking of PI3K and
mTOR could be an attractive strategy to overcome long-term
acquired everolimus resistance. In addition, maximum inhibition
in both resistant and sensitive cell lines was reached with
NVP-BEZ235 concentrations more than 10-fold lower than dose-
limiting plasma concentrations obtained in phase I studies (Bendell
et al, 2015). As this is in line with previously reported in vitro
results and an in vivo study with lower dose NVP-BEZ235 in a
glioblastoma model demonstrated efficacy, it could hence be
interesting to evaluate low-dose NVP-BEZ235 in PNET (Maira
et al, 2008; Passacantilli et al, 2014).

Another possible mechanism for everolimus resistance is
tumour heterogeneity. Within-patient and within-tumour hetero-
geneity in proliferation, genomic alterations and functional
imaging characteristics have been demonstrated in neuroendocrine
tumour patients (Gebauer et al, 2014; Shi et al, 2015; Basu et al,
2015b). This heterogeneity could be caused by tumoural subclones
with different phenotypes and responses to treatement (Marusyk
et al, 2014). By treating a patient with everolimus, selection of
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everolimus-resistant subclones could occur, leading to resistance.
Although short-term everolimus resistance is mainly driven by
phosphorylation changes in PI3K-AKT-mTOR pathway proteins
(O’Reilly et al, 2006), a shift in clonal population could be a driving
force in long-term everolimus resistance. This is illustrated by the
gradual reversal of everolimus resistance in BON-1/R and QGP-1/R,
with a complete return of everolimus sensitivity only after 42
months of culturing without everolimus. If this resistance would only
be caused by phosphorylation and dephosphorylation of proteins, a
faster reversal of everolimus resistance could be expected. Long-term
treatment with everolimus might hence select or induce subclones
with a different genetic, epigenetic or transcriptional make-up that
makes them more resistant to everolimus. Future studies using next

generation sequencing would be a good strategy to identify these
resistant subclones and yield biomarkers for everolimus resistance.
Given the long timeframe of sustained resistance, alterations in gene
expression were studied to elucidate possible resistance mechanisms.
In BON-1/R, the main components of both mTORC1 and mTORC2
and the important upstream protein AKT were downregulated,
whereas effector protein 4EBP1 expression was upregulated, hinting
at a compensatory mechanism in which 4EBP1 is less dependent on
mTORC1 and mTORC2. On the other hand, the main upregulated
gene in QGP-1/R was ERK2, part of the MAPK-ERK pathway,
illustrating a possible escape through this pathway. Interestingly,
both cell lines seem to have a differential gene expression profile after
developing resistance to everolimus. This is corroborated by their
different response to novel PI3K-AKT-mTOR pathway targeting
drugs. QGP-1/R is more resistant to treatment with the two tested
ATP-competitive mTOR inhibitors, AZD2014 and OSI-027, than
BON-1/R. Similarly, although full inhibition of proliferation with
NVP-BEZ235 could be reached in both BON-1/R and QGP-1/R,
a higher concentration of NVP-BEZ235 is needed to overcome
resistance in QGP-1/R. Hence, we could conclude that the underlying
mechanisms of everolimus resistance in BON-1/R and QGP-1/R
might be different. If our data can be extrapolated to PNET patients,
our study could provide an insight in the mechanisms determining
resistance to mTOR inhibition in the clinic. Ultimately, this might
lead to a better selection of patients and true personalised medicine.

In conclusion, the first PNET models for long-term everolimus
treatment, resulting in acquired rapalogue-resistance, are presented
here. Both the ATP-competitive mTOR blocker, AZD2014, as the
dual PI3K-mTOR blocker NVP-BEZ235 are able to overcome this
rapalogue resistance. Further evaluation of both drugs in in vivo
and patient studies, targeted at overcoming everolimus resistance,
could hence be challenging. In addition, both models allow the
study of the detailed mechanisms of acquired resistance in PNET.
Expanding these studies with advanced genetic and genomic
techniques, such as next generation sequencing, could lead to the
identification of biomarkers for everolimus resistance.
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