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Background: Stromal cells, including cancer-associated myofibroblasts (CAMs), are recognised to be determinants of cancer
progression, but the mechanisms remain uncertain. The chemokine-like protein, chemerin, is upregulated in oesophageal
squamous cancer (OSC) CAMs compared with adjacent tissue myofibroblasts (ATMs). In this study, we hypothesised that chemerin
stimulates OSC cell invasion.

Methods: Expression of the chemerin receptor, ChemR23, in OSC was examined by immunohistochemistry. The invasion of OSC
cells was studied using Boyden chambers and organotypic assays, and the role of chemerin was explored using siRNA,
immunoneutralisation and a ChemR23 receptor antagonist. Matrix metalloproteinases (MMPs) were detected by western blot,
enzyme assays or immunohistochemistry.

Results: Immunohistochemistry indicated expression of the putative chemerin receptor ChemR23 in OSC. It was also expressed in
the OSC cell line, OE21. Chemerin stimulated OE21 cell migration and invasion in Boyden chambers. Conditioned medium (CM)
from OSC CAMs also stimulated OE21 cell invasion and this was inhibited by chemerin immunoneutralisation, the ChemR23
antagonist CCX832, and by pretreatment of CAMs with chemerin siRNA. In organotypic cultures of OE21 cells on Matrigel seeded
with either CAMs or ATMs, there was increased OE21 cell invasion by CAMs that was again inhibited by CCX832. Chemerin
increased MMP-1, MMP-2 and MMP-3 abundance, and activity in OE21 cell media, and this was decreased by inhibiting protein
kinase C and p44/42 MAPK kinase but not PI-3 kinase.

Conclusions: The data indicate that OSC myofibroblasts release chemerin that stimulates OSC cell invasion. Treatments directed
at inhibiting chemerin–ChemR23 interactions might be therapeutically useful in delaying progression in OSC.

The role of stromal cells in promoting tumour growth is well
recognised (Hanahan and Weinberg, 2011; Quail and Joyce,
2013). In addition to inflammatory and immune cells (Wang and
DuBois, 2015), there has been increasing recognition of the role
of cells of fibroblastic lineages (Orimo et al, 2005; De Wever et al,
2008). The heterogeneity of the latter and in particular differences
between cancer-associated fibroblasts (CAFs) and normal tissue
fibroblasts has attracted increasing interest (Jiang et al, 2008;
Ohlund et al, 2014). Cancer-associated myofibroblasts (CAMs)
are an important subgroup of CAFs, and have been shown to

differ from both normal tissue myofibroblasts (NTMs) and
tumour adjacent tissue myofibroblasts (ATMs), notably promot-
ing a more aggressive cancer cell phenotype both in vivo in
xenografts and in vitro in proliferation, migration and invasion
assays (De Wever et al, 2008; De Wever et al, 2014). These
differences may be attributable to decreased production of
tumour inhibitory factors (Holmberg et al, 2012a), increased
expression and activation of matrix metalloproteinases (MMPs;
Holmberg et al, 2013) and increased production of growth factors
and chemokines (Orimo et al, 2005).
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Cancers of the oesophagus account for approximately half a
million deaths worldwide per annum and are the sixth commonest
cause of mortality due to cancer (Jemal et al, 2011). Adenocarci-
noma of the oesophagus is increasing in incidence and is
particularly common in white males; it is associated with the
preneoplastic condition of Barrett’s metaplasia of the oesophagus
that arises following chronic reflux of bile salts and gastric acid
(Reid et al, 2010; Pennathur et al, 2013). In contrast, squamous
cancer of the oesophagus (OSC) is particularly common in South
East Asia. There is an association between OSC and smoking,
alcohol and poor diet. In both cancers, the outlook after diagnosis
is poor. Epithelial–stromal interactions in oesophageal cancer have
been recognised but are not well studied (Grugan et al, 2010).

The chemokine-like peptide chemerin is expressed in a variety
of cell types and has a role in the recruitment of NK and dendritic
cells via activation of the G-protein-coupled receptor, ChemR23
(chemokine-like receptor-1) (Meder et al, 2003; Wittamer et al,
2003). We recently reported increased expression of chemerin in
OSC CAMs compared with paired ATMs and demonstrated roles
in the recruitment of mesenchymal stromal cells (MSCs) and in
their regulated secretion (Kumar et al, 2014; Kumar et al, 2015a).
In addition, increased chemerin expression has been identified in
oesophageal adenocarcinoma compared with adjacent Barrett’s
tissue (Somja et al, 2013). In the present study, we hypothesised
that chemerin might also have a role within the oesophageal
tumour microenvironment by acting on cancer cells. We report
here the expression of ChemR23 in OSC, and show that chemerin
stimulates OSC cell invasion.

MATERIALS AND METHODS

Cells. Myofibroblasts generated from tumours and adjacent tissue
of patients with OSC, or from normal oesophagus of transplant
donors, were used as previously described (Balabanova et al, 2014;
Kumar et al, 2014). The OSC cell line, OE21, was obtained from
American Type Culture Collection (Manassas, VA, USA).
Myofibroblasts and OE21 cells were maintained as previously
described (Kumar et al, 2014).

Patients. Primary tissue was obtained from 13 patients with OSC
(12 male; age, 64.7±2.7 years, range 56–85). No patient had
distant metastases; most patients had low lymph node involvement
(pN0, n¼ 6; pN1 n¼ 5; pN2, n¼ 2) and most had invasive
tumours (pT1, n¼ 3; pT2, n¼ 3; pT3, n¼ 7). Tumour and
adjacent tissue were fixed in 10% neutral-buffered formalin for
paraffin embedding. All patients gave informed consent and the
study was approved by the University of Szeged ethics committee.

Immunohistochemistry. Tissue sections were processed for
immunohistochemical detection of ChemR23 using rabbit poly-
clonal antibody (Novus Biologicals, Littleton, CO, UAS); for
comparison, adjacent sections were processed for MMP-1 using
mouse monoclonal antibody, MMP-2 using goat polyclonal
antibody (R&D Systems, Minneapolis, MN, USA) and MMP-3
using rabbit monoclonal antibody (Abcam, Cambridge, UK). En
Vision FLEX/HRP (Dako, Carpinteria, CA, USA) was used for
secondary antibody. Antigen retrieval was performed by incubating
at pH 9.0, 93 1C, for 15min as previously described (Kumar et al,
2015b). Organotypic cultures were processed for immunohisto-
chemistry using the same method and antibodies to MMP-1,
MMP-2 and MMP-3, followed by En Vision FLEX/HRP (Dako)
visualisation. Cultured cells were processed for immunocyto-
chemistry after fixation with paraformaldehyde (4% w/v).
They were permeabilised with 0.2% Triton X-100 and processed
using primary antibody to ChemR23 (Novus Biologicals) or
GPR1 (Abcam), followed by incubation with the appropriate
fluorescein-labelled secondary antibody raised in donkey (Jackson

Immunoresearch, Soham, UK) and mounted with Vectashield
containing DAPI (Vector Laboratories, Peterborough, UK) as
previously described (Kumar et al, 2014). Slides were viewed using
a Zeiss Axioplan-2 microscope (Zeiss Vision, Welwyn Garden City,
UK) and images were captured using a JVC-3 (Yokohama-shi,
Kanagawa, Japan) charge-coupled device camera at � 40 magni-
fication as previously described (Kumar et al, 2014).

Conditioned media. Myofibroblasts (1.5� 106 cells) were plated
in T-75 falcon flasks and maintained at 37 1C in 5% v/v CO2 for
24 h in full media (FM). Cultures were then washed three times
and incubated in 15ml serum-free media for 24 h. CM was
collected, centrifuged (7min, 800 g, 4 1C) and aliquots were stored
at � 80 1C until further use as previously described (Kumar et al,
2014).

Cell migration and invasion assays. Transwell migration assays
and invasion assays were performed using 8-mm pore size BD
inserts and BD BioCoat Matrigel invasion chambers respectively
(BD Bioscience, Franklin Lakes, NJ, USA) as previous described
(Holmberg et al, 2012b) employing chemerin (R&D Systems) or
undiluted CM in the lower well. The effects of chemerin-
neutralising antibody (MAb2325, R&D Systems) and the ChemR23
antagonist CCX832 or its inactive enantiomer, CCX826 (generous
gifts of ChemoCentryx, Mountain View, CA, USA), were studied.
Migrated cells were fixed, stained and quantified for a total of five
fields per membrane, and experiments were performed in
triplicate. Scratch-wound migration assays were performed as
previously described (Kumar et al, 2014).

Proliferation assays. Proliferation of OE21 cells with or without
chemerin was assessed by incorporation of EdU (10 mM) using the
Click-iT EdU Alexa Fluor 488 Imaging kit (Invitrogen, Paisley,
UK) as described previously (Holmberg et al, 2012a) and by
measurement of colony formation units (CFUs). In the latter, 500
cells per well were seeded in six-well plates and incubated in FM
for 24 h. After the cells attached, fresh media was added to the well
and incubated for 8–10 days as appropriate to reach the threshold
colony size (X50 cells). Media was changed once on the fourth
day. After incubation, cells were washed and stained with
clonogenic reagent containing 50% ethanol and 0.25% 1,9-
dimethyl-methylane blue. Experiments were performed in
triplicates.

Chemerin and ChemR23 knockdown. Myofibroblasts were
transfected using Amaxa Fibroblast Nucleofector kits (Amaxa,
Köln, Germany) with scrambled controls (Sigma-Aldrich, Dorset,
UK) or previously validated silencing RNAs (siRNA) for chemerin,
or ChemR23, using nucleofection as previously described (Kumar
et al, 2014). The efficiency of chemerin knockdown had previously
been established by western blotting and was further demonstrated
in this study using ELISA (Kumar et al, 2014). The efficiency of
ChemR23 knockdown was demonstrated by immunohistochem-
istry (see above) using GPR1 as a negative control.

Organotypic culture. Organotypic cultures were grown as
described previously (Smola et al, 1993; Nystrom et al, 2005). In
brief, OE21 cells (1� 106) were seeded on top of 1 : 1 Matrigel
(Corning, Tewksbury, MA, USA)/collagen-I (Millipore, Watford,
Hertfordshire, UK) with or without myofibroblasts (0.5� 106)
suspended in the gel. On day 3, the culture was raised on wire
gauze and maintained at an air medium interface for 21 days,
changing medium every 48 h. Cultures were fixed in 10% neutral-
buffered formalin and paraffin-embedded sections were stained
with haematoxylin and eosin. Invasion was determined by
measuring the depth of invading cancer cells into the Matrigel. A
total of eight measurements were taken per field and eight fields
were captured per treatment at � 10 magnification. Experiments
were performed in triplicate.
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Gel contraction. Gel contraction assays were performed using
myofibroblasts as described (Ngo et al, 2006). In brief, 500 ml of
collagen lattice was prepared by mixing two parts of cell
suspension and eight parts of cold collagen gel solution (Millipore),
at a final concentration of 1.5� 105 cells per well in 24-well plates.
To initiate contraction, collagen gels were gently released from the
sides of the culture dishes using a sterile spatula. Images of gels
were taken with a Canon digital camera (Reigate, Surrey, UK) at
multiple time points (0, 24, 48 and 72 h). Gel contraction was
calculated as a percentage of the initial area of the gel.

Western blotting. Media was concentrated using Strataclean resin
(Agilent Technologies, Santa Clara, CA, USA; Holmberg et al,
2012a). Cell extracts were prepared in RIPA buffer containing
protease and phosphatase inhibitors (Calbiochem, Darmstadt,
Germany), resolved by SDS-PAGE electrophoresis and processed
for western blotting, as previously described using antibodies to
MMP-1, MMP-2, MMP-3 (R&D Systems) and MMP-7 (Cam-
bridge Research Biochemicals, Billingham, UK).

MMP activity assays. The activity of MMP-1, MMP-2/9 and
MMP-3 in OE21 cell media was determined in response to
chemerin for 24 h by a selective fluorescence substrate (Merk
Biosciences, Beeston, UK) as previously described (Holmberg et al,
2013).

Statistics. The results are expressed as the mean±s.e.m. and
comparisons were performed using Student’s t-test or ANOVA as
appropriate using Systat Software (Systat Software Inc., London,
UK) unless otherwise stated.

RESULTS

ChemR23 expression in squamous oesophageal cancer. Immu-
nohistochemical studies indicated the expression of ChemR23 in
OSC cells. In normal oesophagus, there was some staining in the
deeper layers of the squamous epithelium (Figure 1A). However, in
dysplastic cells (Figure 1B) and in all of 13 tumours examined,
there was strong expression (Figure 1C). Over 75% of tumour cells
were scored as staining at the highest intensity. In addition, there

was staining of spindle-shaped stromal cells (Figure 1D). For
comparison, we also examined the distribution of MMP-1 and
MMP-3 in these tumours that showed strong expression in both
cancer and stromal cells (Figure 1E and F).

OE21 cells express functional ChemR23. The OSC cell line,
OE21, also expressed ChemR23 (Figure 2A). To validate the
specificity of the antibody used in immunohistochemistry, we
showed that knockdown of ChemR23 in OE21 cells using siRNA
substantially and significantly reduced the number of cells
exhibiting ChemR23 expression, whereas expression of GPR1,
used as a negative control, was unaffected (Figure 2A). In
functional assays, chemerin stimulated the migration of these cells
in Boyden chamber and scratch-wound assays (Figure 2B and C).
In addition, it increased OE21 cell growth measured in CFU or
EdU incorporation assays (Figure 2D and E). The Chem23
receptor antagonist, CCX832, dose dependently reversed the action
of chemerin (Figure 2F), whereas an inactive control compound,
CCX826, did not (Figure 2G).

Chemerin released by myofibroblasts acts on OE21 cells. To
determine whether chemerin released from myofibroblasts influ-
enced OE21 cell function, we recovered CM from OSC CAMs and
ATMs, and from oesophageal NTMs. In each case, CM stimulated
migration of OE21 cells in Boyden chambers, but the response to
CAM-CM was significantly greater than that to ATM-CM or
NTM-CM (Figure 3A). Evidence to support a role for chemerin in
mediating the effect of myofibroblast CM is provided by the
observations that (a) siRNA inhibition of chemerin expression in
CAMs, which reduced concentrations in media from 1.7 to
0.1 ngml� 1, also reduced the activity of CAM-CM in stimulating
OE21 cell migration (Figure 3B); (b) immunoneutralising antibody
to chemerin inhibited the effect of CAM-CM on OE21 cell
migration (Figure 3C); (c) the ChemR23 antagonist CCX832
inhibited the OE21 cell migratory response to CAM-CM
(Figure 3C).

Chemerin released by myofibroblasts stimulates OE21 cell
invasion. We then asked whether chemerin has a part in
myofibroblast stimulation of OSC cell invasion. Initially, using
Matrigel-coated Boyden chambers, we found that OE21 cell

NormalA B C

D E F

Dysplastic ESC

ESC (MMP-3)ESC (MMP-1)ESC (ChemR23)

Figure 1. Immunohistochemical localisation of chemR23, MMP-1 and MMP-3 in oesophageal squamous cancer. (A) Staining for chemR23 in
normal oesophagus. (B) Staining for chemR23 in dysplasia in the same patient. (C) Staining for chemR23 in cancer in the same patient.
(D) ChemR23 expression in tumour cells at higher power. (E) Staining for MMP-1 in OSC. (F) Staining for MMP-3 in OSC. (A–C) � 10 magnification.
(D–F) �20 magnification.
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invasion was stimulated by chemerin and this was inhibited by
CCX832 but not CCX826 (Figure 4A). We then explored invasion
in organotypic cultures in which the Matrigel/collagen gels were
seeded with myofibroblasts and OE21 cells layered on the gel
surface. There was marked invasion of the gel by OE21 cells after 7
days, which further increased at 14 and 21 days. The presence of
myofibroblasts in the gel increased OE21 cell invasion, and CAMs
were more active in this assay than ATMs or NTMs (Figure 4B and
C). We considered the possibility that the differences between
CAM, ATMs and NTMs might in some way be a consequence of
different contractile effects on the gel layer. However, in gel
contraction assays, there was no difference in activity between the
three types of myofibroblast (Figure 4D). The invasion of OE21
cells in the absence of CAMs was not influenced by CCX832
(or the inactive compound CCX826). However, the invasion in the

presence of CAMs was inhibited by CCX832, but not CCX826,
pointing to a role for ChemR23 in mediating the invasive response
(Figure 4E and F).

Chemerin stimulates MMP expression. As invasion involves
proteolytic digestion of extracellular matrix, we examined the
expression of MMP-1, MMP-2 and MMP-3 in organotypic
cultures. All three MMPs were expressed and could be found in
both OE21 cells and myofibroblasts (Figure 5A). There was
evidence of increased expression in OE21 cells in cultures that
contained CAMs, as the number of fields exhibiting the most
intense staining in OE21 cells was significantly higher in this case
compared with OE21 cells alone (Figure 5B). Evidence that directly
supports the action of chemerin on MMP expression by OE21 cells
was provided by western blots, showing increased abundance of
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bands stained with antibodies to MMP-1, MMP-2 and MMP-3
(Figure 5C). As a negative control, MMP-7 (which is poorly
expressed by OE21 cells) exhibited no detectable bands. The main
bands of MMP-1, MMP-2 and MMP-3 corresponded to the
enzyme precursors; however, there were minor bands correspond-
ing to the active species. The effect of chemerin on MMP-1, MMP-
2 and MMP-3 expression was mediated by protein kinase C (PKC),
as the protein kinase inhibitor, Ro31822, fully inhibited MMP
responses. An inhibitor of MAP kinase activation also reduced
chemerin-induced MMP expression, whereas a PI-3 kinase

inhibitor had no effect (Figure 5D). In addition, enzyme activity
assays revealed that chemerin significantly increased the activity of
MMP-1, MMP-2 and MMP-3 in OE21 cell media (Figure 5E).

DISCUSSION

Squamous oesophageal cancer myofibroblasts exhibit increased
expression of the chemokine-like peptide, chemerin (Kumar et al,
2014). The present study shows that the putative receptor,
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ChemR23, is expressed by OSC cells; moreover, chemerin
stimulates migration, invasion and proliferation of these cells by
a pathway sensitive to the ChemR23 antagonist CCX832. The data
further show that CAMs have enhanced capacity for stimulation of
OE21 cell invasion, via chemerin, and that these effects are
mediated in part by chemerin via induction of MMPs. Collectively,
the data raise the prospect that inhibition of ChemR23 may help
delay progression in OSC.

In addition to increased expression in cancer-derived myofi-
broblasts, chemerin is also expressed by epithelial cells in the
developing intestine (Maheshwari et al, 2009) and at the sites of
inflammation in the alimentary tract (Dranse et al, 2015). In
models of intestinal inflammation using ChemR23 null and w/t
mice, there is a delayed progression with evidence for a local rather
than systemic role of chemerin (Dranse et al, 2015). Previous
studies have suggested that chemerin might contribute to the
recruitment of dendritic cells in Barrett’s oesophagus that promote
a tolerogenic environment (Somja et al, 2013). However, aside
from an involvement in immune mechanisms, it also appears that

chemerin may directly influence cancer cell invasion. In gastric
cancer AGS cells, there is evidence that chemerin contributes to
invasion in part via MMP-7 (Wang et al, 2014); however, these
effects seem to be mediated by an alternative receptor, GPR1
(Rourke et al, 2015). The present data show that in OSC, increased
expression of chemerin in cancer myofibroblasts leads to invasion
of cancer cells, but in this case mediated by ChemR23 and
amenable to inhibition by ChemR23 antagonists. The data
therefore add novel dimensions to the recognised property of
stromal cells in accelerating tumour invasion.

In organotypic cultures, OE21 cells have been shown to exhibit
an invasive phenotype resembling that of primary tumours
(Underwood et al, 2010). The capacity of ATMs or NTMs to
promote cancer cell invasion is relatively modest, but a strong
effect is obtained with CAMs. By comparison, gel contraction—
which is a defining property of myofibroblasts—did not differ
between CAMs, ATMs and NTMs. The invasion response is
accompanied by the expression of multiple MMPs including
MMP-1, MMP-2 and MMP-3, both in cancer cells and in
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myofibroblasts, and at least for MMP-1 and MMP-3 this resembles
the pattern of expression in OSC in vivo. Increased expression of
MMP-1, MMP-2 and MMP-3 in response to chemerin is mediated
by PKC and MAP kinase, and in the case of MMP-1 is thought to
act via the PEA3 transcription factor family (Keld et al, 2010).

Multiple extracellular proteases are likely to be involved in the
invasion response to chemerin. It has been known for some time
that MMP-1 expression in oesophageal cancer is associated with
poor outcome (Murray et al, 1998; Groblewska et al, 2012; Tao
et al, 2012). The potential role of chemerin in driving expression of
MMP-1 and other MMPs in these cells is consistent with a larger
body of evidence showing, for example, that chemerin stimulates
MMP-2 expression in MSCs (Kumar et al, 2014), and MMP-2 and
MMP-9 expression in endothelial cells (Kaur et al, 2010). The latter
are implicated in angiogenic responses that may enhance the
tumourigenic effects in vivo. Even so, the present data show that
chemerin may mediate the interaction of just two classes of cells,
myofibroblast and cancer cells, to promote an aggressive
phenotype.

The outcome for OSC remains dismal not least because
diagnosis is made relatively late. In addition to issues around
early detection, an understanding of what promotes the early
progression of the disease is likely to help in the development of
novel therapeutic strategies. The present findings build on the
general idea (Kalluri and Zeisberg, 2006; De Wever et al, 2014) that
stromal cells, and specifically modified myofibroblasts, promote
cancer invasion by showing that these effects may be mediated, at
least in part, via chemerin acting at the ChemR23 receptor. In the
case of OSC, other mechanisms are likely to be involved, as a
variety of strategies directed at inhibiting chemerin/ChemR23
interactions (immunoneutralisation, siRNA and receptor antago-
nists) did not fully suppress the effects of myofibroblasts; these
may include both other mediators and possibly chemerin action at
other receptors, for example, GPR1. Further work is clearly needed
in this area. The importance of chemerin/ChemR23 interactions,
however, lies in the fact that in several different models these are
clearly a component in the myofibroblast effects on cancer cells
and, crucially, antagonists at ChemR23, including CCX832, have
now been characterised. The findings therefore raise the prospect
of new therapeutic approaches directed at limiting the invasion of
this cancer.
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