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Background: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research.
Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but
manual I[HC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated
analyses of TMAs have the potential to lessen the burden of expert pathologist review.

Methods: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of
hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated
segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were
used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software.

Results: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks
(kx =0.81) than between pathologists’ masks (x =0.91), this had little impact on computed IHC scores (Allred; &k =0.91, Quickscore;
k=0.92).

Conclusions: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows
promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials.

With the improvements in clinical outcome in women treated for in diameter with a mix of tumour, normal and other tissues

breast cancer such that 5 year survival now approaches 90% and 10
year survival 80%, adjuvant clinical trials require very large
numbers of patients and tissue samples for biomarker studies to
drive changes in clinical practice. Many such large clinical trials
have moved towards generating tissue microarrays (TMAs; Ilyas
et al, 2013) in an attempt to speed up the process of identifying and
analysing biomarkers for which patients will, or will not, benefit
from a particular therapeutic strategy. Such TMAs may contain
multiple cores of tissue from each tumour measuring 0.6-1.0 mm

incorporated in the core.

Although immunohistochemical (IHC) staining or molecular
analyses of a single TMA slide with representation from 20-40
patients and multiple samples per patient is an efficient use of
human tissue, antibodies and laboratory processes, there remains
the problem of skilled detection and assessment of biomarkers.
Such reading of the biomarker status is laborious and time
consuming, requiring expert assessment. Thus, there has been
increasing attention paid to the potential for automated reading of
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breast TMA biomarker slides rather than relying on pathology
review (Madabhushi, 2009). However, accepting that expert
specialist breast pathologist review is the ‘gold standard’ for
interpretation of biomarkers such as oestrogen receptor (ER) in
breast cancer, any automated approach needs to be comparable to
and consistent with such expert assessment.

In previous studies comparing automated and manual IHC
scores (Arihiro et al, 2007; Fasanella et al, 2011; Rizzardi et al,
2012), evaluations were performed based on measurements
retrieved after cell analysis. However the bottleneck in current
image analysis algorithms lies in distinguishing healthy from
cancerous tissue (Gurcan et al, 2009). In the digital pathology
pipeline, tumour localisation is essential to focus scoring of cellular
proteins to particular regions of interest. It is typically performed
as a pre-processing step whereby the operator traces tumour
regions manually. However advancements in image analysis in the
last decade introduce prospects of using machines to automatically
locate tumour in images of tissue with little or no human
intervention. In this study we show the benefits of using such a
system. The system adopted here has been designed to operate on
a range of nuclear, cytoplasmic and membrane biomarkers. We use
a nuclear THC stain, ER, as an exemplar, and report comparisons
between specialist breast pathologists and computational
approaches for IHC assessment.

ER was selected as an exemplar as it is the most common target
for THC in breast cancer, provides clear nuclear staining with
antibodies in clinical use, and is the basis for IHC scoring with
clinical and research utility. ER thus presents a good exemplar for
testing the methodological approaches used here.

In this study, manual segmentations replicated the current
manner with which pathologists interacted with a widely used
FDA-approved IHC scoring algorithm. Specifically, IHC ER Allred
scores (Allred et al, 1990) and Quickscores (Detre et al, 1995) from
computer-generated and manually obtained segmentation masks
were compared. Here we report the development and evaluation of
such software and the potential generalisability of the approach.

MATERIALS AND METHODS

Tissue microarrays. Breast TMAs were generated, for research
purposes, from primary, previously untreated breast cancers using
excess tissues from routine clinical practice after written, informed
consent from the donor patients. Ethical permission was granted
by Tayside Tissue Bank, Dundee, UK, under delegated authority of
the Tayside Local Research Ethics Committee. In brief, surgically
resected primary breast cancer from otherwise unselected patients
was fixed in buffered formalin, stored at controlled temperature
(18-22°C) overnight and processed to formalin-fixed paraffin-
embedded blocks. Whole mount sections stained with Haematox-
ylin and Eosin were marked to highlight relevant invasive cancer or
normal tissue to allow TMA generation of up to six 0.6 mm cores
per cancer. TMAs were then constructed using a manual tissue
arrayer (Beecher Instruments Inc., Sun Prairie, WI, USA). Four
micron TMA sections were cut, mounted onto poly-L-lysine-coated
glass slides and subjected to staining for ER alpha localisation
(6F11, 1:200; Novocastra Laboratories Ltd). Stained slides were
scanned with lossy compression using an Aperio Scanscope XT
(Aperio Technologies, Vista, CA, USA) on a X 20 objective with
the optical doubler in place (equivalent to x 40 optical objective).
Each slide was then segmented into the individual constituent
stained spots, each spot representing a section from a tissue core.

Thirty-two uncompressed TIFF format images of TMA spots
from thirty-two breast cancers were used. The perimeter of each
spot was delineated and pixels exterior to this perimeter were
excluded from subsequent analyses. Each spot image was ~ 3000
pixels in diameter and contained invasive cancer.

Manual segmentation of tumour regions. Tumour regions in the
TMA spots were manually segmented using Aperio Technologies
Spectrum Software with TMA Lab and the Webscope interface
(Aperio Technologies). Segmentation involved manually tracing
the boundaries of invasive tumour regions on a Wacom Bamboo
Fun tablet (model CTH-461) using the stylus for precision; the
software tool displayed filled regions overlaid on the TMA spot
images as they were annotated. Each spot was annotated
independently by two specialist breast pathologists (pathologist A
and pathologist B), resulting in two sets of tumour masks. Pixels in
each mask were labelled as either tumour (T) or non-tumour (N).
Each spot took on average 23 min to annotate by each pathologist;
however the task of annotating TMAs was spread over several days.

Automated segmentation of tumour regions. Software imple-
menting an image analysis algorithm was used to segment tumour
regions automatically using an algorithm outlined in
Supplementary Material 1. This algorithm uses clustering to group
pixels into compact regions called superpixels such that boundaries
of cellular compartments tend to lie on superpixel boundaries.
A machine learning method was then used to label each superpixel
as either tumour or non-tumour based on its colour, shape and
visual texture, as well as similar properties from nearby superpixels.
The algorithm was trained using a set of manually obtained
segmentations.

Each of the thirty-two spots in the data set was automatically
segmented twice, once using the algorithm trained on pathologist
A’s manual segmentation masks and once using the algorithm
trained on pathologist B’s manual segmentation masks. An 8-fold
cross-validation experimental design was used in each case. In each
fold, training took on average 30 min on an Intel Core i7-2600K
processor; optimisation of this code can potentially reduce training
time further.

Comparing spot segmentations. Each spot’s two manual seg-
mentation masks were compared with each other and with the
computer-generated segmentation masks, by comparing the labels
(T or N) assigned to each pixel. There are four possibilities when
comparing a pixel’s labels in two masks: (T, T), (T, N), (N, T) and
(N, N). However, there are qualitative differences between
segmented regions that are not well captured by simply counting
the numbers of pixels that fall into each of these four categories.
Therefore, when comparing two segmentation masks, we cate-
gorised pixel label disagreements into three types as follows
(Figure 1, see Supplementary Material 2 for code).

Type 1: region boundaries in two segmentation masks are often
separated along part of their lengths by distances of only a few
pixels. Such discrepancies may arise from a lack of precision when
using the stylus and/or from the lack of any clear visual boundary
to annotate in the image. As such they are likely to be
inconsequential for subsequent tasks such as IHC scoring because
such small separations do not allow for the inclusion or exclusion
of entire cells.

8. B Type 1
- . Type 2
M Types

St “\5‘ \

@ \ B Pathologist A

; /"’- Pathologist B
Figure 1. Examples of Type 1 (red), Type 2 (green) and Type 3 (blue)
disagreements. Annotations drawn by pathologist A (purple) and

pathologist B (orange) are shown on the right overlaid on the original
image.
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Type 2: disagreements which are not of Type 1 are large enough
to encompass epithelial cells (Figure 1). A pixel disagreement is
labelled Type 2, if it is not of Type 1 and it is in a region labelled as
T in one mask that overlaps with a region labelled as T in the other
mask. Type 2 disagreements can arise from differences of opinion
about the spatial extent of a tumour region.

Type 3: Disagreements that are neither Type 1 nor Type 2 are
designated Type 3, reflecting differences of opinion about whether
or not a group of cells is malignant.

Disagreement types were visualised by computing difference
images from pairs of segmentation masks and then colour-coding
pixels for which the segmentations differed as Type 1, Type 2 or
Type 3 (Figure 2).

Oestrogen receptor scoring of segmented spots. The FDA-
approved Aperio IHC Nuclear Version 10 algorithm (Aperio
Technologies) was used to estimate ER scores based on the
segmentation masks obtained. Only regions labelled as tumour (T)
were passed to the scoring algorithm. The Aperio IHC algorithm
identifies nuclei automatically and outputs a staining intensity
score (ranging from 0 to 3) and an estimate of the percentage of
positively stained cells. From these measurements, IHC scores
(Allred score and Quickscore) were computed for manually and
automatically obtained segmentation masks. Comparisons are
reported to assess the extent to which differences in these
segmentations affected scoring.

RESULTS

Segmentation comparison. In pixel-level comparison of manually
hand-drawn segmentation masks, pathologists differed in their
labelling of 9% of pixels (Table 1). Automated segmentation masks
were produced by training on either pathologist A or pathologist B.
Comparisons of each pathologist’s manual segmentations with
those produced automatically revealed disagreements in 19% of
pixels. Disagreements were similar between false positives (N, T)
and false negatives (T, N).

When distributions of agreements and disagreements were
visualised (Figure 3), some variations were observed (Table 2). Of
those pixels that were labelled differently by the two pathologists,
23% of disagreements were of Type 1, hence likely to have no

Pathologist A

Pathologist B

impact on the ER score. The proportions of disagreements that
were Type 1 when comparing automatic with manual segmenta-
tions were slightly higher (27%). The distributions of disagree-
ments across remaining types (Type 2 and Type 3) were broadly
similar whether comparing manual with automatic segmentation,
or manual with manual segmentation. Although the average
proportion of Type 3 disagreements was higher between manual
segmentations (18 +23%) compared with automated segmenta-
tions (11 £ 12%), the s.d. was sufficient to indicate large variations
between TMA spot assessments.

Tissue microarray IHC scoring. Intensity scores and percentage
of positive cells were measured by the Aperio THC Nuclear
algorithm (Aperio Technologies) when provided with segmented
tumour regions. Percentage of positive ER cells computed by
Aperio were also evaluated (Figure 4). Agreements between scores
calculated in Aperio were reported separately for intensity, and
Allred and Quickscore proportion scores in terms of a two-rater
weighted Kappa-squared statistic, & (Cohen, 1968) (Table 3). Inter-
pathologist agreement was 0.96 for intensity scores, and 0.97 and
0.99 for proportion scores for Allred and Quickscore, respectively.
In comparison, automated segmentations on average produced

Table 1. Normalised contingency tables comparing

segmentation labels in masks produced manually (Manual) by
pathologist A and pathologist B and automatically (Auto)

| Manual (A) '
T | N

Manual (B)

T 0.270 0.049
N 0.043 0.638
Auto (A)

T 0.221 0.097
N 0.092 0.591

Manual (B)

Auto (B)

T 0.216 0.095
N 0.097 0.593

Pathologist B

Automated (B)

Figure 2. A TMA spot (left) and colour-coded images showing types of disagreement between the two pathologists’ manual annotations (top
row), pathologist A and the algorithm trained by that pathologist (middle row), and pathologist B and the algorithm trained by that pathologist

(bottom row).
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Manual (A), manual (B)
2% 5%
2%

91%
Auto (A), manual (A)
2% 11%
5%

81%
Auto (B), manual (B)
2% 11%
6%

81%

| B Agreement [ Type 1 [ ] Type2 [ | Type 3|

Figure 3. Pie charts showing distribution of agreements, and Type 1,
Type 2 and Type 3 disagreements between manual and automated
segmentations.

Table 2. Proportions of pixel label disagreements in each of

the three types. The s.d. over spots is given in parentheses

Comparison
Manual (A), manual (B)
Auto (A), manual (A)
Auto (B), manual (B)

Type 1
0.227 (£0.144)
0.291 (£0.097)
0.305 (£0.119)

Type 2
0.593 (£0.218)
0.604 (£0.161)
0.572 (£0.202)

Type 3
0.180 (+0.227)
0.107 (+£0.117)
0.123 (+£0.122)
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Figure 4. Bland-Altman plot of percentage of positive cells identified
in the Aperio software. TMA spots are shown by black dots
(pathologist A) and blue diamonds (pathologist B).

agreements of 0.89 for intensity scores, and 0.85 (Allred) and 0.87
(Quickscores) for proportion scores.

Agreement for total Allred scores and Quickscores were
computed by summing intensity and proportion scores. Compar-
isons between automated and manual segmentation masks resulted
in average agreements of 0.91 (Allred) and 0.92 (Quickscore)
(Table 4; Figure 5).

DISCUSSION

This study addressed the need for automated interrogation of
TMAs using ER nuclear staining of primary breast cancer as an
exemplar. Although previous studies have shown that image
analysis can increase workflow and reduce inter- and intra-
observer variability (Gurcan et al, 2009; Veta et al, 2014; Rohde
et al, 2014), here we assess new image analysis software which

Table 3. Weighted Kappa-squared agreements for intensity

and proportion scores computed from measurements
obtained from the Aperio IHC algorithm

| Intensity I Proportion ‘
Allred Quickscore

Manual| Manual| Manual| Manual| Manual| Manual
(A) (B) (A) (B) (A) (B)
Auto (A) 0.92 0.87 0.85 0.86 0.87 0.87
Auto (B) 0.92 0.87 0.84 0.85 0.89 0.88
Manual (A) - 0.96 - 0.97 - 0.99

Table 4. Weighted Kappa-squared agreements for calculated
Allred scores and Quickscores

‘ Allred I Quickscore ‘
Manual (A) | Manual (B) | Manual (A) | Manual (B)
Auto (A) 0.91 0.91 0.92 0.92
Auto (B) 0.91 0.91 0.93 0.92
Manual (A) - 0.98 - 0.99

14
12
10

onN OO ®

1 2 3 4 5 6 7 8 9

| I Manual (A) [ Manual (B) ] Auto (A) [ Auto (B) |

Figure 5. Histogram plots of Allred scores and Quickscores extracted
from manual and automated segmentations.

shows potential to locate malignant tumour automatically with
little intervention from human experts. Specifically in the reported
study, automated segmentation was evaluated for the purpose of
IHC scoring for a key nuclear stain, ER. Intensity, proportion and
total (ie. sum of intensity and proportion) IHC scores were
reported, including inter-rater variability between pathologists with
substantial Quality Assurance experience.

In the computer vision literature, evaluation of automated
tumour segmentation algorithms is typically performed on a pixel-
by-pixel basis. Our image analysis algorithm resulted in strong
pixel-level agreements averaging x=0.811 with two expert
pathologists, falling only a little short of pathologist agreement
(x=0.908). However determining the impact of pixel-level
disagreements in clinical practice is challenging. Therefore in this
study, a method of categorising disagreements was presented, given
the intended usage of the application is IHC scoring. Proportion of
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disagreement types (Table 2) revealed over 27% of pixel
disagreements between automated and manual segmentations
correspond to minor misalignment of tumour boundaries (Type 1)
and therefore are inconsequential for IHC scoring as an epithelial
cell cannot fit within these regions. Remaining disagreements
(Type 2 and 3) varied considerably between TMA spots as shown
by high s.d. and in keeping with the range of tumour and peri-
tumoural stromal morphology seen in breast cancer.

When analysing intensity scores retrieved from manual and
automated segmentations there was strong agreement (Table 3)
with little difference when trained on scoring by pathologist
A (0.92) compared with pathologist B (0.87) suggesting the
automated approach is not heavily dependent on the individual
pathologist. In contrast, agreements for proportion scores using
automated segmentation masks were lower than reported agree-
ment (inter-rater & = 0.97) with an underestimate in TMAs where
there were high proportions of positive cells (Figure 4).

In the present study, IHC scores for ER were presented for two
widely used scoring systems, Allred and Quickscore. IHC scores
computed from automated segmentations were in strong agree-
ment with scores from manually obtained segmentations (Table 4).
Although reported values are not as high as inter-rater agreement,
Allred scores from automated segmentations differed by at most
one point. With further guidance and training examples, automa-
tion could be improved further, with the potential to replace
manual annotations thereby increasing workflow. In addition, ER
scores computed from automated segmentations were more
consistent than scores retrieved from manual segmentations. In
our experiments, Quickscores were identical for automated
segmentation in all 32 TMA spots regardless of whom the system
was trained on; similarly Allred scores were close and any
differences were unlikely to have led to undertreatment even if
used in a clinical setting. Using a more challenging nuclear
biomarker, Ki67 positive cells (Mohammed et al, 2012) showed
automation can provide standardized measures thereby reducing
inter- and intra-observer variability. Furthermore, the image
analysis algorithm used in this study is also applicable to other
clinical measurements such as Histoscore (Jonat et al, 1986).

The dichotomy of tumour into ER + ve and ER — ve is essential
for treatment decisions for endocrine therapy in clinical practice.
In the present study, the Allred cut-off mark (>2), equivalent to
USCAP 1% cut-off, resulted in almost complete agreement between
all reported segmentations. Using Quickscores (cut-off >3), two
TMA spots were labelled as ER +ve from automated segmenta-
tions and the same spots labelled ER — ve from manually obtained
segmentations. The remaining 30 spots, 20 ER + ve and 10 ER —
ve, were in complete agreement across all segmentations. Generally
there was an overall agreement in treatment decisions, however
results varied between scoring systems and non-standardized cut-
offs. These discrepancies suggest more work may be required
before automation is applied for treatment decisions as suggested
for studies comparing visual and automated assessment of Ki67
markers in breast cancers (Fasanella et al, 2011; Mohammed et al,
2012). However, such numerically and proportionately small
discrepancies may be insignificant in the setting of clinical trials
with hundreds, and in some cases, thousands of participant
patients. Given the need for TMA analyses, the present analysis of
ER should be applicable to progesterone receptor (PR) or Ki67
staining, both of which are also intense nuclear stains. However,
further issues, such as heterogeneity of PR protein expression, are
also seen with markers not routinely used in clinical practice such
as p53 (Coates et al, 2012). For Ki67 there remain multiple
considerations to do with the antibody used, the methods of
scoring and the cut-offs for positive v negative (Yerushalmi et al,
2010; Dowsett et al, 2011).

Despite pixel-level disagreements averaging 16% (Table 1),
computed THC scores from automated segmentation were in

strong agreement with scores computed from manual segmenta-
tions (Allred; & = 0.91, Quickscore; & = 0.92). With a larger number
of tumour samples, it is likely that the application of this automated
annotation approach will conclude similar outcomes to the more
labour intensive manual annotations. Thus, the benefits of
automation extend beyond the reproducibility of IHC scores to
include changing the focus of research pathologists’ workloads and
the reproducibility of THC scores. In principle, the generalisable
automated method for tumour segmentation described here should
be extendable to cytoplasmic or tumour cell membrane staining
(e.g. HER2) and will be investigated in future work.

The automated segmentation method sometimes had difficulty
distinguishing ER — ve cancer cells from ER — ve healthy epithelial
cells. Availability of a greater number of TMA spots containing both
ER — ve cancer cells and ER — ve healthy epithelial cells, along with
accurate annotations of those spots for training, is therefore likely to
be of substantial benefit. Indeed, increased volumes of annotated spots
for training to more fully represent a range of staining conditions,
tissue structures and artefacts can potentially improve segmentation
accuracy and further align automated analyses with those of specialist
pathologists. The impact of using larger volumes of annotations
during training can be usefully explored in future work.

In summary, the use of automated annotations for scoring
breast TMAs using the methods developed for and exemplified in
this study concord closely with expert pathology reviews. 27% of
pixel disagreements relate to minor misalignment of drawn
tumour boundaries. Classification differences rarely resulted in a
change of overall score that would be likely to change clinical
management. Using the exemplar of nuclear ER staining, the
methods of automated annotation employed here hold promise
for reducing the expert pathology time required and speeding up
analysis of IHC-stained TMAs from large data sets drawn from
clinical trials.
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