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Background: In this study, we evaluated the ability of gene expression profiles to predict chemotherapy response and survival in triple-negative breast
cancer (TNBC).

Methods: Gene expression and clinical–pathological data were evaluated in five independent cohorts, including three randomised clinical trials for a
total of 1055 patients with TNBC, basal-like disease (BLBC) or both. Previously defined intrinsic molecular subtype and a proliferation signature were
determined and tested. Each signature was tested using multivariable logistic regression models (for pCR (pathological complete response)) and Cox
models (for survival). Within TNBC, interactions between each signature and the basal-like subtype (vs other subtypes) for predicting either pCR or survival
were investigated.

Results: Within TNBC, all intrinsic subtypes were identified but BLBC predominated (55–81%). Significant associations between genomic signatures and
response and survival after chemotherapy were only identified within BLBC and not within TNBC as a whole. In particular, high expression of a previously
identified proliferation signature, or low expression of the luminal A signature, was found independently associated with pCR and improved survival
following chemotherapy across different cohorts. Significant interaction tests were only obtained between each signature and the BLBC subtype for
prediction of chemotherapy response or survival.

Conclusions: The proliferation signature predicts response and improved survival after chemotherapy, but only within BLBC. This highlights the clinical
implications of TNBC heterogeneity, and suggests that future clinical trials focused on this phenotypic subtype should consider stratifying patients as
having BLBC or not.
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Triple-negative breast cancer (TNBC) is characterised by the
absence of the therapeutically targetable hormone receptors
and HER2 protein overexpression. For this reason, both
adjuvant treatment and palliative therapy for metastatic TNBC is
limited to chemotherapy. Although TNBC typically has higher
rates of chemosensitivity compared with hormone receptor-
positive breast cancer, it has a poor overall prognosis (Carey
et al, 2007; Liedtke et al, 2008; Silver et al, 2010a) and there is no
predictive biomarker of response or survival to allow tailored
therapy for these patients.

Over the years, studies based on global gene expression analyses
have identified five main intrinsic molecular subtypes of breast
cancer known as luminal A, luminal B, HER2 enriched, basal like
and claudin low (Perou et al, 2000; Sorlie et al, 2001; Prat et al,
2010, 2013a,b; Prat and Perou, 2011). Among them, the basal-like
subtype (BLBC) comprises the majority of TNBC; however, the
other 20–30% of TNBCs fall into other subtypes (Prat and Perou,
2011). Thus, significant molecular heterogeneity exists within
TNBC and it is likely that improving clinical outcome and tailoring
therapy will require further stratification by biologic subtype (Prat
et al, 2013a).

In this study, we used gene expression data to classify multiple
independent cohorts of patients from cooperative group trials and
large multi-institution data sets into the main intrinsic molecular
subtypes of breast cancer and then we evaluated the ability of
various published gene expression profiles to predict response and/
or survival following chemotherapy in TNBC and/or BLBC.

MATERIALS AND METHODS

Patients, samples and clinical data. Multiple data sets of TNBC
or BLBC were evaluated (Table 1 and Supplementary Figure S1).
For response prediction, we evaluated samples at diagnosis from
two independent cohorts of patients treated with anthracycline/
taxane-based chemotherapy in the neoadjuvant setting: the
GEICAM/2006-03 Core-Basal phase II clinical trial (Alba et al,
2012) and a combined cohort of microarray studies previously
published by the MDACC group (GSE25066 (Hatzis et al, 2011),
GSE16716 (Popovici et al, 2010), GSE20271 (Tabchy et al, 2010),
GSE23988 (Iwamoto et al, 2011) and MDACC133 (Hess et al,
2006)). For survival prediction, we evaluated samples from three
independent cohorts of patients with primary breast cancer: the
GEICAM/9906 and CALGB/9741 phase III clinical trials (Citron
et al, 2003; Martı́n et al, 2008), and the METABRIC data set, which
is a UK/Canadian cohort of nearly 2000 primary breast cancers
with transcriptomic and outcome data (Curtis et al, 2012).

Characteristics of the patient populations evaluated have
previously been described (Citron et al, 2003; Martı́n et al, 2008;
Cheang et al, 2009; Nielsen et al, 2010; Alba et al, 2012) and are
summarised in Table 1. The neoadjuvant cohorts had pathological
complete response (pCR) in the breast (GEICAM/2006-03) and
breast and axilla (MDACC based) as the primary end points.
Patients in the GEICAM/2006-03 trial (NCT00432172) were
randomised to neoadjuvant epirubicin/cyclophosphamide followed
by docetaxelþ /� carboplatin (Alba et al, 2012). In the MDACC-
based cohort (Hess et al, 2006; Popovici et al, 2010; Tabchy et al,
2010; Hatzis et al, 2011; Iwamoto et al, 2011), all patients received
neoadjuvant anthracycline/taxane-based chemotherapy. The adju-
vant cohorts had disease-free survival (DFS), disease-specific
survival (DSS) or relapse-free survival (RFS) as end points, and
included GEICAM/9906 (Martı́n et al, 2008), in which patients
with node-positive disease were randomly assigned to adjuvant
5-fluororacil, epirubicin and cyclophosphamide (FEC) for six
cycles vs FEC for four cycles followed by weekly paclitaxel for eight
cycles, and CALGB/9741 (Citron et al, 2003), in which patients

with node-positive disease were randomly assigned to receive dose
dense (every 2 weeks) vs conventional dosing (every 3 weeks)
doxorubicin and (or followed by) cyclophosphamide followed by
paclitaxel. The METABRIC cohort (Curtis et al, 2012) included
patients who received either no adjuvant systemic therapy (AST)
or adjuvant chemotherapy, although the exact regimens, doses and
schedules are not available.

TNBC definition. The TNBC definition and cut points for
oestrogen receptor (ER), progesterone receptor (PR) and HER2 were
according to the 2007 and 2010 ASCO/CAP guidelines for HER2
(Wolff et al, 2006) and ER/PR (Hammond et al, 2010), respectively,
in GEICAM/2006-03, MDACC-based and GEICAM/9906 data sets.
In GEICAM/2006-03 and GEICAM/9906, the TNBC definition as
well as Ki-67 immunohistochemical determination (clone MIB-1,
DAKO, Carpinteria, CA, USA) were performed at a central
laboratory and reviewed by two expert pathologists. In METABRIC
and CALGB/9741, the pathological data were not centrally reviewed;
thus, we decided to focus on those samples identified as BLBC by
gene expression data.

Gene expression data. From GEICAM/2006-03, the PAM50 and
claudin-low signatures were derived from a 543-gene set measured
using the Nanostring nCounter platform (Nanostring Technologies,
Seattle, WA, USA) from formalin-fixed paraffin-embedded (FFPE)
tumour samples. For each sample, two 1mm cores enriched with
tumour tissue were obtained from the original tumour block, RNA
was purified and B100 ng of total was used to measure gene
expression. Data were log base 2 transformed and normalised using
five house-keeping genes (ACTB, MRPL19, PSMC4, RPLP0 and
SF3A1). Raw gene expression data have been deposited in Gene
Expression Omnibus (GSE58479).

From the MDACC Affymetrix (Affymetrix Inc., Santa Clara,
CA, USA) U133A-based microarray cohort, publicly available gene
expression data were obtained and normalised using MAS5 as
previously reported (Usary et al, 2013; Prat et al, 2013a). From the
METABRIC cohort, normalised microarray data were obtained
from the European Genome-Phenome Archive (accession number:
EGAS00000000083; Curtis et al, 2012). From GEICAM/9906,
expression of the 50 PAM50 genes was measured using the qRT–
PCR-based version as described previously (Bastien et al, 2012).
Finally, expression of the 50 PAM50 genes, and the same five
house-keeping genes used in GEICAM2006-03, was measured
from CALGB/9741 using the nCounter platform from FFPE
primary tumours (Liu et al, 2012).

Subtypes and gene signatures. All tumours were assigned to an
intrinsic molecular subtype of breast cancer (luminal A, luminal B,
HER2 enriched, BLBC and claudin low) and the normal-like group
using the PAM50 subtype predictor and the claudin-low predictor
(Parker et al, 2009; Nielsen et al, 2010; Prat et al, 2010), except for
the GEICAM/9906 and CALGB/9741 data sets, in which only
PAM50 50-gene data were available (Martı́n et al, 2008; Bastien
et al, 2012). Of note, the same PAM50 and claudin-low training
data sets (Parker et al, 2009; Prat et al, 2010) were used for subtype
prediction in each test set.

Before subtyping, each individual data set was normalised
accordingly (Perou et al, 2010). For GEICAM2006-03 and
CALGB9741 data sets, both nCounter based, we had groups of
tumour samples representative of each intrinsic subtype, which
allowed us to estimate the platform-to-platform bias. For
MDACC-based, METABRIC and GEICAM/9906 data sets, all of
which have a large number of samples representative of all the
intrinsic subtypes, we assumed that differences in the median
expression of each gene were due to technical factors. Our subtype
calls in MDACC-based and METABRIC data sets were highly
concordant (kappa score 0.83 and 0.78) with the ones reported by
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other investigators in their original publications (Hatzis et al, 2011;
Curtis et al, 2012). PAM50 output data for these two data sets are
provided in Supplementary Data. To further support that our
normalisation approach was appropriate, we have provided a PC1
vs PC2 loading plot of the PAM50 genes and the different data sets
evaluated (Supplementary Figure S2), including the PAM50
training data set used in all predictions.

Gene signatures evaluated were obtained from the PAM50 (n¼ 8
signatures) and claudin-low (n¼ 1) subtype predictors (Parker et al,
2009; Nielsen et al, 2010; Prat et al, 2010); from the PAM50
predictor, we evaluated the correlation coefficient of each sample to
each subtype centroid (luminal A, luminal B, HER2 enriched, BLBC
and normal). In addition, we also evaluated the previously reported
proliferation score, which is the mean expression of 11 proliferation-
related genes (Nielsen et al, 2010), and the risk of relapse (ROR)
score, a continuous prognostic score based on subtype only (ROR-S),
and based on subtype and proliferation (ROR-P; Nielsen et al, 2010).
Finally, from the claudin-low predictor, we evaluated the Euclidian
distance of each sample to the claudin-low 9-cell line centroid.

Statistical analysis. Biologic analysis of gene lists was performed
with DAVID annotation tool (http://david.abcc.ncifcrf.gov/; Dennis
et al, 2003). Association between the expression of each signature
and pCR was assessed by logistic regression analyses adjusted for
standard clinical–pathological variables. Survival functions to DSS,
DFS and RFS were from the Kaplan–Meier product-limit estimator,
with tests of differences by the log-rank test. Cox proportional
hazard models adjusted for standard clinical–pathological variables
were used to test the independent associations with survival of each
gene or signature. All genes and gene signatures were evaluated as
continuous variables. Finally, interaction tests between the expres-
sion of each signature and the BLBC (vs others) for pCR or survival
outcome prediction were also evaluated in multivariable models.

RESULTS

Biologic heterogeneity within TNBC. To identify biological
entities within TNBC, intrinsic molecular subtyping was per-
formed on three different and independent cohorts (GEICAM/
2006-03, MDACC based and GEICAM/9906) of 357 patients with
primary TNBC (Table 1). All the intrinsic molecular subtypes were
identified within TNBC, with BLBCs predominating (55–81.2%).
Of note, in GEICAM/2006-03, eligibility included the ‘core basal’
definition (Nielsen et al, 2004), a more restrictive TNBC definition
(that is, TNBC status plus immunostain positive for either
cytokeratin 5/6 or EGFR). This cohort showed a significant
enrichment for BLBCs compared with the triple-negative-only
definition (81.2 vs 56.9%, Po0.001, w2-test).

To further explore the heterogeneity of BLBC (Supplementary
Figure S3), we focused on the 56 tumours that were both TNBC
and of the BLBC in the GEICAM/2006-03 cohort. Within this
group, we identified 159 (29.7%) genes whose expression was
found to have high variability (that is, 4two-fold s.d.;
Supplementary Table S1). Of these genes, 87 (54.7%) were also
found to have high variability in TNBCs of the BLBC in the
MDACC cohort. Among these, we identified a significant
enrichment for genes involved in regulation of cell death (for
example, CRYAB and INHBA), response to hormone stimulus (for
example, FOXA1 and KRT19), cell migration (for example,
FOXC1, IL8 and KIT), ectoderm development (for example,
KRT14 and KRT5) and cell cycle (for example, CCND1, TP53 and
BRCA1). In the GEICAM/2006-03 cohort, we also observed a wide
range of Ki-67-positive tumour cells (35–95%; average 74%) in
TNBC of the BLBC. Counter to prevailing dogma that all BLBCs
are highly proliferative, there was a wide range of proliferation
values within TNBC of the BLBC.

Table 1. Clinical–pathologic characteristics of the various breast cancer data sets evaluated

GEICAM2006-03 MDACC based GEICAM9906 METABRIC CALG9741

Type of cohort Core Basala Triple negative Triple negative PAM50 basal like PAM50 basal like

Clinical setting Neoadjuvant Neoadjuvant Adjuvant Adjuvant Adjuvant

Systemic treatment Chemo Chemo Chemo Chemo None Chemo

Chemoregimen EC-Dþ /�Carbo Anthracycline/taxane based FEC or FEC-P Various — Ax4-Tx4-Cx4 (3w vs 2w)
ACx4-Tx4 (3w vs 2w)

Primary end point pCR breast pCR breast/axila DFS DSS DSS RFS

No. of patients 69 188 100 185 199 314

Mean age 49.9 49.6 53.6 49.3 60.3 48.7

Node positivity 31 (44.9%)b — 100 (100%) 157 (84.5%) 37 (19%) 314 (100%)

Tumour size 42 cm 62 (89.9%) 179 (95.2%) 71 (71.0%) 122 (67.4%) 103 (52.3%) 216 (69.0%)

Genomic Platform nCounter Microarray qRT–PCR Microarray — nCounter

Intrinsic subtype distribution

Basal like 56 (81.2%) 109 (58%) 55 (55%) 140 (75.7%) 144 (72.4%) 314 (100%)
Claudin low 7 (10.1%) 47 (25%) — 45 (24.3%) 55 (27.6%) —
HER2 enriched 4 (5.8%) 14 (7.4%) 29 (29%) — — —
Luminal A 0 3 (1.6%) 4 (4%) — — —
Luminal B 0 6 (3.2%) 10 (10%) — — —
Normal like 2 (2.9%) 9 (4.8%) 2 (2%) — — —

Abbreviations: Carbo¼ carboplatin; DFS¼disease-free survival; DSS¼disease-specific survival; D¼docetaxel; EC¼ epirubicin/cyclophosphamide; FEC¼ fluorouracil/epirubicin/cyclopho-
sphamide; P¼paclitaxel; pCR¼pathological complete response; RFS¼ relapse-free survival; qRT–PCR¼quantitative reverse transcription–PCR.
aCentrally revised Core Basal pathology-based definition (ER/PR/HER2 negative, either CK5/6þ or EGFRþ ).
bClinical nodal status assessment.
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Predicting pCR after chemotherapy within TNBC. To identify
predictors of chemotherapy response, we first evaluated gene
expression-based signatures in the diagnostic (that is, pre-
treatment) samples of the GEICAM/2006-03 trial (Alba et al,
2012). Among all patients, none of the signatures or clinical–
pathological variables evaluated was found significantly associated
with pCR (Figure 1A). Conversely, among patients with BLBC,
high expression of the proliferation score, low expression of the
luminal A signature and high Ki-67 by IHC were found to be
significantly associated with pCR (Figure 1B). Interaction tests
between each of these variables and the BLBC (vs others) for pCR
showed a trend towards statistical significance for the luminal A
signature (inverse relationship, P¼ 0.066), the proliferation score
(P¼ 0.062) and no evidence of interaction with Ki-67 (P¼ 0.372).

To confirm the findings obtained from GEICAM/2006-03, we
interrogated 188 TNBC patients from the combined MDACC data
sets treated neoadjuvantly with anthracycline/taxane-based
chemotherapy. Similar to the data obtained in GEICAM/2006-03,
none of the signatures was significantly associated with pCR within

TNBC (Figure 1C); however, the proliferation score and luminal A
signature were again significantly associated with pCR within
patients with TNBC of the BLBC (Figure 1D). Interaction tests
within TNBC between each signature and the BLBC (vs others) for
pCR were statistically significant (luminal A P¼ 0.023; prolifera-
tion score P¼ 0.005). Similar results were obtained in terms of DFS
(Supplementary Figure S4). Ki-67 IHC data were not available
from this data set.

Biological processes associated with pCR within TNBC of the
BLBC subtype. To identify single genes whose expression might
be associated with pCR, we evaluated the 56 TNBC of the BLBC
subtype from the GEICAM/2006-03 trial. Among 535 genes
assayed, the expression of 82 (15.3%) genes was significantly
associated with pCR (Supplementary Table S2–4). Concordant
with the previous findings using gene signatures, high expression
of cell cycle-related genes (for example, CCNE1 and FANCA) and
low expression of endocrine response-related genes (for example,
PGR and FOXA1) were found significantly associated with pCR.

Age

GEICAM/2006-03 (TN)
n= 69

GEICAM/2006-03 (TN and basal like)
n= 56

MDACC based (TN)
n= 188

MDACC based (TN and basal like)
n= 109

Study arm
Tumour size
Node status
Histological grade
IHC-Ki67
PAM50 basal like
PAM50-Her2 enriched
PAM50-LumA
PAM50-LumB
PAM50 normal like
PAM50-RORS

PAM50-RORP
PAM50 proliferation score

Claudin high

0.50 0.63 0.79 1.00 1.26 1.58 2.00

pCR odds ratio

0.50 0.63 0.79 1.00 1.26 1.58 2.00

pCR odds ratio

0.50 0.63 0.79 1.00 1.26 1.58 2.00

pCR odds ratio

0.50 0.63 0.79 1.00 1.26 1.58 2.00

pCR odds ratio

Age

Tumour size

Node status

Histological grade

PAM50 basal like

PAM50-Her2 enriched

PAM50-LumA

PAM50-LumB

PAM50 normal like

PAM50-RORS

PAM50-RORP

PAM50 proliferation score

Claudin high

Age

Tumour size

Node status

Histological grade

PAM50 basal like

PAM50-Her2 enriched

PAM50-LumA

PAM50-LumB

PAM50 normal like

PAM50-RORS

PAM50-RORP

PAM50 proliferation score

Claudin high

Age
Study arm
Tumour size
Node status
Histological grade
IHC-Ki67
PAM50 basal like
PAM50-Her2 enriched
PAM50-LumA
PAM50-LumB
PAM50 normal like
PAM50-RORS

PAM50-RORP
PAM50 proliferation score

Claudin-high

Figure 1. Adjusted odds ratios (ORs) for pathologic complete response (pCR) of various clinical–pathological variables and gene signatures (for
unit increase) in (A) TNBC patients in GEICAM/2006-03, (B) TNBC and BLBC in GEICAM/2006-03, (C) TNBC patients in MDACC and (D) TNBC
and BLBC in MDACC. The PAM50-based signatures represent either a correlation coefficient to a gene expression centroid (for basal like, HER2
enriched, luminal A, luminal B and normal) or a score (for RORS, proliferation score and RORP), and they are evaluated as continuous variables.
The claudin-high signature represents an Euclidean distance to the claudin-low centroid, and it is evaluated as a continuous variable. Each
signature has been standardised to have a mean of 0 and a s.d. of 1. The size of the square is inversely proportional to the s.e.; horizontal bars
represent the 95% CIs of ORs. Statistically significant variables are shown in blue. Each gene signature has been evaluated individually after
adjustment for standard clinical–pathological variables. The variables used for adjustment were treatment arm, age at diagnosis, nodal status
and tumour size (GEICAM/2006-03); and tumour size, age at diagnosis and histological grade (MDACC).
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In contrast, high expression of genes involved in epithelial-to-
mesenchymal transition (for example, TWIST1 and ZEB1) was
found to be significantly associated with lack of response (that is,
residual disease).

To further explore these findings, we combined gene expression
and clinical–pathological data of TNBC of the BLBC subtype
from the GEICAM/2006-03 and MDACC-based cohorts
(Supplementary Figure S5) and performed a multivariable logistic
regression analysis for pCR prediction. Among 479 genes in
common between these two platforms, 94 genes (19.6%) were
found independently associated with pCR (Supplementary Data).
Of these, 35 (37.2%) genes were identical to those identified in the
GEICAM/2006-03 trial. Finally, the remainder (n¼ 59 genes,
62.8%) tracked similar biology with endocrine response-related
genes (for example, CCND1 and IL6) and cell cycle-related genes
(for example, CHEK1 and CCNB1) being associated with
chemoresistance and chemosensitivity, respectively.

Predicting DFS within TNBC. To evaluate whether the gene
signatures predict survival, we evaluated clinical–pathological data
and PAM50 50-gene qRT–PCR data from the GEICAM/9906
phase III trial (Martı́n et al, 2008), which included 100 patients
with centrally reviewed TNBCs that received adjuvant chemother-
apy. Within TNBC, no significant predictor of DFS was identified
(Figure 2A). Conversely, within TNBCs of the BLBC subtype, the
two previously identified signatures (that is, high expression of
the proliferation score and low expression of luminal A signature)
were found significantly associated with DFS, whereas Ki-67 by
IHC was not (Figure 2B). Interaction tests within TNBC between
each signature and the BLBC subtype (vs others) for DFS were
statistically significant (luminal A P¼ 0.035; proliferation score
P¼ 0.017).

To illustrate the results obtained in the GEICAM/9906 data set
(Martı́n et al, 2008), we split the TNBC cohort, as well as the
cohort of TNBCs of the BLBC subtype, into tertile groups based on
the expression of the proliferation score. As expected, within the
TNBC cohort, the ordinal proliferation score groups were not
significantly associated with DFS (Figure 3A). Conversely, within
those patients with TNBCs of the BLBC subtype, the proliferation
tertile groups were found associated with DFS (Figure 3B) with
an adjusted hazard ratio (HR) between the high vs low
proliferation score tertile groups of 0.194 (0.056–0.669 95%
confidence interval (CI)).

Predicting DSS within BLBC. We next evaluated gene expression
and clinical–pathological data in the recently reported METABRIC
cohort, which includes 185 and 199 patients with primary BLBC
disease that received adjuvant chemotherapy and no AST,
respectively (Curtis et al, 2012). Interestingly, in the no AST
subgroup of patients, no genomic variable was found significantly
associated with DSS (Figure 2C). Conversely, within the
chemotherapy-treated subset of patients, proliferation score and
the luminal A signature were found significantly associated with
outcome (Figure 2D). Interaction tests within BLBC disease
between each signature and the type of treatment (chemotherapy
vs no AST) for DSS were found to be statistically significant
(luminal A P¼ 0.014; proliferation score P¼ 0.047). In this data
set, exclusion of the claudin-low samples did not alter the survival
associations.

To further illustrate these findings, we split the BLBC/no AST
subset of patients, and the BLBC/chemotherapy-treated subset of
patients, into groups based on the expression of the proliferation
score. As expected, within the no AST subset of patients, the
groups were not found associated with DSS (Figure 3C) with an
adjusted HR of the high vs low tertile group of 1.456 (0.680–3.209
95% CI). Conversely, within the chemotherapy-treated subset of
patients, the groups were found associated with DSS (Figure 3D)

with an adjusted HR between the high vs low proliferation score
groups of 0.410 (0.208–0.808 95% CI).

Independent evaluation in the CALGB/9741 clinical trial.
Finally, we evaluated the association of gene expression and
clinical–pathological data with RFS in 314 patients with primary
BLBC from the CALGB/9741 study (Citron et al, 2003), in which
patients were treated with adjuvant anthracycline/taxane-based
chemotherapy. As in the previous cohorts, similar associations
were observed with low expression of the luminal A signature
(P¼ 0.038) and high expression of the proliferation score
(P¼ 0.067) and ROR-P (P¼ 0.0493) signatures being associated
with better outcome (Figure 4A). To illustrate these results, we split
patients into tertiles based on the expression of the proliferation
score and plotted their RFS (Figure 4B). The adjusted HR between
the high proliferation score group vs the intermediate and low
groups was 0.509 (0.321–0.808 95% CI) and 0.611 (0.380–0.984
95% CI), respectively.

DISCUSSION

Over the years, BLBC has become more commonly known as
TNBC; however, not all TNBCs are identified as BLBC by gene
expression (Prat and Perou, 2011). In addition, the proportion of
BLBCs within TNBC varies substantially from cohort to cohort
(Prat and Perou, 2011; Table 1). Although this discrepancy could
be explained by false-negative immunohistochemical results, the
identification of all the intrinsic subtypes within centrally reviewed
TNBC argues otherwise (Cheang et al, 2012). A potential
explanation is that determination of three biomarkers for
identifying the known intrinsic subtypes captures an inferior
amount of biological diversity compared with assays that measure
tens or hundreds of genes (Prat et al, 2012). It is now clear that
significant biological heterogeneity exists within patients diagnosed
with TNBC and additional efforts are needed to elucidate the
clinical heterogeneity of this aggressive disease subtype as defined
by these three biomarkers.

To address this need, we evaluated a selection of known
prognostic signatures in patients with TNBC who received
multiagent chemotherapy. In addition, we did so using multiple
independent data sets and multiple genomic technologies.
We found that all data sets and all technology platforms yielded
the same result, namely, that only if we stratified TNBC into BLBC
could we then identify patients with significantly better response
(that is, pCR) and better survival using the evaluated biomarkers
(that is, proliferation and correlation to LumA centroid); however,
when using all TNBC patients, these predictive biomarkers were
not useful, thus showing the value of first stratifying by biological
group, and then second, by biomarker.

The association between high proliferation and chemotherapy
benefit was not unexpected. Cytotoxic-based therapies are known
to be more effective in highly proliferative tumours than in
quiescent, low proliferative tumours (Skipper, 1971; Whitfield et al,
2006). Indeed, tumours with a higher percentage of Ki-67-positive
tumour cells in the GEICAM/2006-03 trial responded more to
chemotherapy than tumours with lower levels, although this
association was not significant in interaction testing while the
genomic-based proliferation signature was. This is concordant with
two previous reports where patients with TNBC and higher
percentage of Ki-67-positive tumour cells showed higher pCR rates
than those with lower Ki-67 levels (Adamo and Anders, 2011;
Fasching et al, 2011; Keam et al, 2011). Supporting these results,
Silver et al (2010b) identified a proliferation-related gene signature
of the E2F3-related transcription factor that was associated with
response to neoadjuvant cisplatin in TNBC, all of which had a
BLBC gene expression profile. In addition, in a pooled cohort study
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(Ignatiadis et al, 2012), the investigators found that this
E2F3-related signature and other signatures of chromosomal
instability and PTEN loss were associated with increased
pCR in ER� /HER2� tumours; however, these signatures were
not found significantly associated with pCR in BLBC (Ignatiadis
et al, 2012).

Recently, Lehmann et al (2011) identified seven different
subtypes of TNBC by global gene expression analysis (basal 1
(BL1), basal 2 (BL2), immunomodulatory (IM), luminal androgen
receptor (LAR), mesenchymal (M), mesenchymal stem cell (MSL)
and unstable (UNS)). When compared with the intrinsic subtypes
of breast cancer, BL1, BL2, IM and M largely fall within the BLBC
subtype, whereas LAR largely falls within the non-BLBC subtypes
(Lehmann et al, 2011; Prat et al, 2013a; Mayer et al, 2014). The
intrinsic subtype distribution within the MSL group is less clear
(Lehmann et al, 2011; Mayer et al, 2014). In any case, the seven-
subtype classification of TNBC, as a group, has been found
associated with pCR in an independent cohort of 143 patients with
TNBC treated with anthracycline/taxane-based chemotherapy
(Masuda et al, 2013). Among the different subtypes, BL1, which
is characterised by high expression of cell cycle-related genes
(Lehmann et al, 2011), showed the highest pCR rates (52%),

whereas BL2 and LAR subtypes showed the lowest pCR rates
(0 and 10%; Masuda et al, 2013). However, no significant
association with survival outcomes was observed among the seven
subtypes in this chemotherapy-treated data set (Masuda et al,
2013). We were not able to assay these seven subtypes across all
our studies presented here, as some of our studies only had data for
the 50 PAM50 genes; however, further studies are needed to
determine whether the BLBC tumours with high or low expression
of the luminal A or proliferation signature belong to one of these
potential molecular entities.

The results presented here may have potential clinical implica-
tions for the management of patients with TNBC. First, we provide
additional evidence that TNBCs are a heterogeneous disease entity
and that subclassification of TNBC into phenotypic subsets can
help predict chemotherapy response and survival. This argues that
clinical trials evaluating TNBC should consider using gene
expression data to stratify patients by the different molecular
entities given the impact of this heterogeneity on the primary end
points of these trials. Second, high-risk tumours of the BLBC
subtype with high proliferation scores are very sensitive to
chemotherapy and it may be possible that the typical standard of
care treatment for this group is effective (anthracycline/taxane neo/
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Figure 2. Adjusted survival HRs of various clinical–pathological variables and gene signatures (for unit increase) in (A) TNBC and (B) TNBC and
BLBC treated with adjuvant chemotherapy in GEICAM/9906, (C) BLBC not treated with adjuvant chemotherapy in METABRIC and (D) BLBC
treated with adjuvant chemotherapy in METABRIC. The PAM50-based signatures represent either a correlation coefficient to a gene expression
centroid (for basal like, HER2 enriched, luminal A, luminal B and normal) or a score (for RORS, proliferation score and RORP), and they are
evaluated as continuous variables. The claudin-high signature represents an Euclidean distance to the claudin-low centroid, and it is evaluated as a
continuous variable. Each signature has been standardised to have a mean of 0 and a s.d. of 1. The size of the square is inversely proportional to
the s.e.; horizontal bars represent the 95% CIs of HRs. Statistically significant variables are shown in blue. Each gene signature has been evaluated
individually after adjustment for standard clinical–pathological variables. The variables used for adjustment were treatment arm, age at diagnosis,
nodal status and tumour size (GEICAM/9906); and tumour size, age at diagnosis and nodal status (METABRIC).
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adjuvant regimens). If so, future studies might aim to limit toxicity
while maintaining or enhancing efficacy. Conversely, those
predicted to be less responsive, or to have a worse prognosis,
may be appropriate for studies of novel agents or approaches.
Some patients might be particularly sensitive to specific additional
drugs like platinum agents, which increase pCR rates in TNBC
(Sikov et al, 2013; Von Minckwitz et al, 2013), or other cytotoxics,

as will be tested in the upcoming CIBOMA/2004-01/GEICAM/
2003-11 phase III clinical trial that focuses on adjuvant
capecitabine maintenance therapy after conventional induction
chemotherapy in 876 patients with TNBC. Novel therapies that
target lower-proliferating cells (that is, mesenchymal/claudin-low-
like and/or luminal-like cells) might be warranted in patients with
TN tumours of the BLBC subtype that show low expression of
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Figure 3. Kaplan–Meier survival analysis in GEICAM/9906 and METABRIC data sets based on the PAM50 proliferation score. Patients with
(A) TNBC and (B) TNBC and BLBC treated with adjuvant chemotherapy in GEICAM/9906, (C) BLBC not treated with adjuvant systemic
chemotherapy (no AST) in METABRIC and (D) BLBC treated with adjuvant chemotherapy (CT) in METABRIC.
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proliferation features, and also those TNBCs that are of the luminal
lineage.

There are several caveats to our study. First, this is a
retrospective study involving heterogeneous patient populations
and the data need to be confirmed in prospective clinical trial(s).
Second, none of the survival data sets came from a randomised
clinical trial of adjuvant chemotherapy vs no adjuvant chemo-
therapy. Thus, the true predictive value of these signatures was
only evaluated in the neoadjuvant setting (GEICAM/2006-03 and
MDACC), where pCR has been found to be an intermediate
biomarker for outcome but one robust enough, particularly in
TNBC, to be considered for registrational trials by the FDA. In
support of the predictive nature of these signatures, none
predicted outcome in patients with BLBCs who did not receive
systemic adjuvant therapy in the METABRIC cohort. Third, in
the GEICAM/9906 and CALGB/9741 cohorts, we only had
PAM50 50-gene data, and thus we were not able to test whether
further identification of the claudin-low subtype (and other
TNBC signatures) might have improved the survival predictions.
Fourth, the common markers of the applied platforms/cohorts
are mainly restricted to genes expressed by the carcinoma cells.
Thus, the analyses could miss signals from the microenviron-
ment, which have been shown to be predictive both for pCR
(Rody et al, 2009; Ignatiadis et al, 2012) and survival (Rody et al,
2011). Finally, patients from each of the data sets received
different anthracycline- or anthracycline/taxane-based che-
motherapy regimens, schedules and doses, and thus the ability
of the signatures to predict response to particular treatment
strategies could not be tested.

Another important consideration of our study is that we did not
attempt to identify an optimal cutoff for the various biomarkers
(that is, signatures) evaluated but rather focused on the association
of the continuous expression of each biomarker with each end
point. The main reason is that different gene expression-based
platforms and protocols were used in each cohort and thus,
standardisation of a biomarker cut point would have been difficult
to achieve and most likely unreliable. In any case, the fact that all
five data sets gave very similar associations, and were found
independently of the platform/protocol used, argues in favour of a
true biologically based robust finding.

Genomic signatures of proliferation and luminal subtype are
associated with response to chemotherapy in the neoadjuvant setting
and with outcome following chemotherapy in TNBC, but only within
those belonging to the BLBC subtype. TNBC is biologically
heterogeneous, and improving therapy may require tumour stratifi-
cation based on the BLBC vs non-BLBC gene expression profile.

ACKNOWLEDGEMENTS

This work was supported by funds from the NCI Breast SPORE
program Grant No. P50-CA58223-09A1 (CMP), by RO1-CA138255
(CMP), by the Breast Cancer Research Foundation (CMP and MJE),
National Cancer Institute (NCI) Strategic Partnering to Evaluate
Cancer Signatures Grant No. U01 CA114722-01 (MJE), by the
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López-Vega JM (2008) Randomized phase 3 trial of fluorouracil, epirubicin,
and cyclophosphamide alone or followed by paclitaxel for early breast
cancer.
J Natl Cancer Inst 100: 805–814.

Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM,
Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN,
Symmans WF, Ueno NT (2013) Differential response to neoadjuvant
chemotherapy among 7 triple-negative breast cancer molecular subtypes.
Clin Cancer Res 19: 5533–5540.

Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA (2014) New strategies
for triple-negative breast cancer—deciphering the heterogeneity. Clin
Cancer Res 20: 782–790.

Nielsen TO, Hsu FD, Jensen K, CheangM, Karaca G, Hu Z, Hernandez-Boussard T,
Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB,
van de Rijn M, Perou CM (2004) Immunohistochemical and clinical
characterization of the basal-like subtype of invasive breast carcinoma.
Clin Cancer Res 10: 5367–5374.

Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, Davies SR,
Snider J, Stijleman IJ, Reed J, Cheang MCU, Mardis ER, Perou CM,
Bernard PS, Ellis MJ (2010) A comparison of PAM50 intrinsic subtyping
with immunohistochemistry and clinical prognostic factors in tamoxifen-
treated estrogen receptor-positive breast cancer. Clin Cancer Res 16:
5222–5232.

Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S,
Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron
JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS
(2009) Supervised risk predictor of breast cancer based on intrinsic
subtypes. J Clin Oncol 27: 1160–1167.

Perou CM, Parker JS, Prat A, Ellis MJ, Bernard PS (2010) Clinical
implementation of the intrinsic subtypes of breast cancer. Lancet Oncol 11:
718–719.

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR,
Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A,
Williams C, Zhu SX, Lonning PE, Borresen-Dale A-L, Brown PO,
Botstein D (2000) Molecular portraits of human breast tumours.
Nature 406: 747–752.

Popovici V, Chen W, Gallas B, Hatzis C, Shi W, Samuelson F, Nikolsky Y,
Tsyganova M, Ishkin A, Nikolskaya T (2010) Effect of training-sample size
and classification difficulty on the accuracy of genomic predictors.
Breast Cancer Res 12: R5.

Prat A, Adamo B, Cheang MCU, Anders CK, Carey LA, Perou CM (2013a)
Molecular characterization of basal-like and non-basal-like triple-negative
breast cancer. Oncologist 18: 123–133.

Prat A, Cheang MCU, Martı́n M, Parker JS, Carrasco E, Caballero R, Tyldesley S,
Gelmon K, Bernard PS, Nielsen TO, Perou CM (2013b) Prognostic
significance of progesterone receptor–positive tumor cells within
immunohistochemically defined luminal a breast cancer. J Clin Oncol 31:
203–209.

Prat A, Parker J, Fan C, Perou C (2012) PAM50 assay and the three-gene
model for identifying the major and clinically relevant molecular subtypes
of breast cancer. Breast Cancer Res Treat 135: 301–306.

Prat A, Parker J, Karginova O, Fan C, Livasy C, Herschkowitz J, He X, Perou C
(2010) Phenotypic and molecular characterization of the claudin-low
intrinsic subtype of breast cancer. Breast Cancer Res 12: R68.

Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast
cancer. Mol Oncol 5: 5–23.

Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, Solbach C,
Hanker L, Ahr A, Metzler D, Engels K, Karn T, Kaufmann M (2009) T-cell
metagene predicts a favorable prognosis in estrogen receptor-negative and
HER2-positive breast cancers. Breast Cancer Res 11: R15.

Rody A, Karn T, Liedtke C, Pusztai L, Ruckhaeberle E, Hanker L, Gaetje R,
Solbach C, Ahr A, Metzler D, Schmidt M, Muller V, Holtrich U,
Kaufmann M (2011) A clinically relevant gene signature in triple
negative and basal-like breast cancer. Breast Cancer Res 13: R97.

Sikov W, Berry D, Perou C, Singh B, Cirrincione C, Tolaney S, Kuzma C,
Pluard T, Somlo G, Port E, Golshan M, Bellon J, Collyar D, Hahn O,
Carey L, Hudis C, Winer E (2013) Impact of the addition of carboplatin
(Cb) and/or bevacizumab (B) to neoadjuvant weekly paclitaxel (P)
followed by dose-dense AC on pathologic complete response (pCR) rates
in triple-negative breast cancer (TNBC): CALGB 40603 (Alliance).
San Antonio Breast Cancer Symposium; 10–14 December 2013;
San Antonio, TX, USA, S5-01.

Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N,
Leong C-O, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD,
Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC, Ellisen LW,
Winer EP, Garber JE (2010a) Efficacy of neoadjuvant cisplatin in triple-
negative breast cancer. J Clin Oncol 28: 1145–1153.

Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N,
Leong C-O, Calogrias D, Buraimoh A, Fatima A, Gelman RS, Ryan PD,
Tung NM, De Nicolo A, Ganesan S, Miron A, Colin C, Sgroi DC,
Ellisen LW, Winer EP, Garber JE (2010b) Efficacy of neoadjuvant cisplatin
in triple-negative breast cancer. J Clin Oncol 28: 1145–1153.

Skipper HE (1971) Kinetic behavior versus response to chemotherapy. Natl
Cancer Inst Monogr 34: 2–14.

Sorlie T, Perou C, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T,
Eisen M, van de Rijn M, Jeffrey S, Thorsen T, Quist H, Matese J, Brown P,
Botsein D, Eystein Lonning P, Borresen-Dale A (2001) Gene expression
patterns of breast carcinomas distinguish tumor subclasses with clinical
implications. Proc Natl Acad Sci USA 98: 10869–10874.

Tabchy A, Valero V, Vidaurre T, Lluch A, Gomez H, Martin M, Qi Y,
Barajas-Figueroa LJ, Souchon E, Coutant C, Doimi FD, Ibrahim NK,
Gong Y, Hortobagyi GN, Hess KR, Symmans WF, Pusztai L (2010)
Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin,
and cyclophosphamide chemotherapy response predictor in a
multicenter randomized trial in breast cancer. Clin Cancer Res 16:
5351–5361.

Usary J, Zhao W, Darr D, Roberts PJ, Liu M, Balletta L, Karginova O, Jordan J,
Combest A, Bridges A, Prat A, Cheang MCU, Herschkowitz JI, Rosen JM,
Zamboni W, Sharpless NE, Perou CM (2013) Predicting drug
responsiveness in human cancers using genetically engineered mice.
Clin Cancer Res 19: 4889–4899.

BRITISH JOURNAL OF CANCER Predictors of chemotherapy response and survival in triple-negative breast cancer

1540 www.bjcancer.com |DOI:10.1038/bjc.2014.444

http://www.bjcancer.com


Von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M,
Blohmer JU, Jackisch C, Paepke S, Gerber B, Zahm DM, Kümmel S,
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