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Background: Patients with malignant pleural effusions (MPEs) generally have advanced disease with poor survival and few
therapeutic options. Cells within MPEs may be used to stratify patients for targeted therapy. Targeted therapy with poly(ADP
ribose) polymerase inhibitors (PARPi) depends on identifying homologous recombination DNA repair (HRR)-defective cancer cells.
We aimed to determine the feasibility of assaying HRR status in MPE cells.

Methods: A total of 15 MPE samples were collected from consenting patients with non-small-cell lung cancer (NSCLC),
mesothelioma and ovarian and breast cancer. Primary cultures were confirmed as epithelial by pancytokeratin, and HRR status was
determined by the detection of gH2AX and RAD51 foci following a 24-h exposure to rucaparib, by immunofluorescence
microscopy. Massively parallel next-generation sequencing of DNA repair genes was performed on cultured MPE cells.

Results: From 15 MPE samples, 13 cultures were successfully established, with HRR function successfully determined in
12 cultures. Four samples – three NSCLC and one mesothelioma – were HRR defective and eight samples – one NSCLC, one
mesothelioma, one sarcomatoid, one breast and four ovarian cancers – were HRR functional. No mutations in DNA repair genes
were associated with HRR status, but there was probable loss of heterozygosity of FANCG, RPA1 and PARP1.

Conclusions: HRR function can be successfully detected in MPE cells demonstrating the potential to stratify patients for targeted
therapy with PARPi.

Malignant pleural effusions (MPEs), characterised by the accumu-
lation of pleural fluid containing malignant cells, usually indicate
advanced or disseminated disease with a poor median survival of
between 3 and 12 months, depending on the type and stage of
cancer (Roberts et al, 2010). The most common cause of MPE is
lung cancer, which accounts for B30–40% of cases, followed by
breast and ovarian cancers and lymphoma, with mesothelioma
being the predominant cause of primary pleural neoplasm
associated with pleural effusions (Roberts et al, 2010; Kastelik,
2013; Zarogoulidis et al, 2013). Modern cancer therapy depends on

patient stratification using predictive biomarkers. The cancer cells
in MPEs may be used to stratify patients for appropriate therapy.
For example, those from patients with non-small-cell lung cancer
(NSCLC) can be used to assess the mutational status of epidermal
growth factor receptor (EGFR) for EGFR-targeted therapy with
gefitinib (Hung et al, 2006).

Targeted therapy with poly(ADP ribose) polymerase inhibitors
(PARPi), which are novel agents selective for cancers with
dysfunctional homologous recombination DNA repair (HRR)
(Bryant et al, 2005; Farmer et al, 2005), depends on the
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identification of HRR dysfunction. PARPi have promising anti-
cancer activity with minimal toxicity in clinical trials in patients
carrying mutations in BRCA1/2, which encode key proteins in the
HRR pathway (Fong et al, 2009; O’Shaughnessy et al, 2011;
De Bono et al, 2013; Kaufman et al, 2013; Ledermann et al, 2013;
Michie et al, 2013). However, HRR is a multifactorial process, and
screening for BRCA mutations alone is likely to underestimate the
proportion of cancers with HRR defects that could potentially
benefit from PARPi therapy (McCabe et al, 2006).

There is a need to develop indicators of HRR defects that may
be used as predictive biomarkers for PARPi sensitivity. Different
approaches to develop these are currently underway, such as
integrated genomic analysis of HRR genes and aCGH to identify
genomic instability (CGRN, 2011; Vollebergh et al, 2011, 2012).
Alternatively, HRR function may be assessed by the ability to form
RAD51 foci. RAD51 is a key protein in HRR, and its relocation
onto damaged DNA is necessary for the obligatory strand-invasion
step of HRR. The RAD51 focus assay correctly identified cells
defective in HRR owing to BRCA1/2 mutation and BRCA1
epigenetic silencing (Drew et al, 2011b). Further application of this
assay to primary cultures of epithelial ovarian cancer derived from
ascitic fluid demonstrated that B50% had dysfunctional HRR.
Importantly, RAD51 focus formation correlated with ex vivo
PARPi sensitivity in 490% of cases and was an independent
prognostic indicator of survival following platinum-based therapy
(Mukhopadhyay et al, 2010, 2012). The RAD51 focus assay has
also identified HRR defects in other patient-derived tissues:
cultured breast and NSCLC biopsies, and acute myeloid leukaemia
cells (Willers et al, 2009; Birkelbach et al, 2013; Gaymes et al,
2013). It has even been extended to FFPE blocks of breast tumour
biopsies from patients undergoing neoadjuvant chemotherapy
(Graeser et al, 2010).

The aim of this feasibility study was to extend the application of
the RAD51-based HRR functional assay to primary cultures
derived from MPEs to estimate the frequency of HRR defects in
this population and to potentially identify those patients for
whom PARPi therapy could be an option. We show that it is a
viable assay for this tissue type and identified HRR defects in
NSCLC and mesothelioma samples from patients. In addition, we
have undertaken genetic analysis of a selection of HRR-competent
and HRR-defective MPE samples; however, this did not reveal any
trend in pathogenic/rare genetic variants or probable loss of
heterozygosity (pLoH).

MATERIALS AND METHODS

Chemicals and reagents. All routine and tissue culture chemicals
and reagents were obtained from Sigma Aldrich (Poole, UK) unless
otherwise stated. Rucaparib was a kind gift from Zdenek
Hostomsky, Pfizer GRD (La Jolla, CA, USA).

Tissue collection and development of primary cultures. Ethical
approval and specific consent were obtained for the collection of
clinical material and patient data (REC 12/NW/0202). Primary
cultures were derived from MPEs from cancer patients undergoing
routine thoracocentesis at hospitals in Newcastle upon Tyne and
Gateshead. MPE samples were transported to the laboratory and
processed immediately and in accordance with the regulations of
the Human Tissue Act 2004 (UK) and local guidelines.

Briefly, 50ml of MPE was centrifuged and the cells and debris
were concentrated in 5ml of the supernatant, mixed with 5ml of
RPMI-1640, supplemented with 20% fetal bovine serum (FBS)
and 100Uml� 1 penicillin and 100 mgml� 1 streptomyocin, and
cultured in a 25-cm3 tissue culture flask at 37 1C with 5% CO2 for
3–12 days. Culture medium was replenished every 7 days, and
cultures were passaged at a confluency of 60–80%; further

culturing was carried out with RPMI-1640 (10% FBS, 100Uml� 1

penicillin/streptomyocin) alone. All experiments were carried out
on early-passage cultures (o4).

Immunofluorescence assays. Cells were seeded onto coverslips at
a density of 0.25–1� 105 cellsml� 1 depending on cell numbers
and incubated for 24–48 h in a 37 1C incubator with 5% CO2.
To confirm epithelial cell origin, cells were fixed and permeabilised
with ice-cold methanol, washed with PBS with 0.4% Triton-X-100,
blocked with PBS containing 2% (w/v) bovine serum albumin
(BSA) and then incubated with 1 : 100 FITC-conjugated anti-
pancytokeratin antibody (Merck Millipore, Watford, UK). Cover-
slips were mounted onto slides with mounting medium containing
40,6-diamidino-2-phenylindole (DAPI) (Vectashield, Peterbor-
ough, UK).

For the HRR functional assay, DNA replication fork collapse
was induced with 10 mM of the PARPi rucaparib (AG-014699) for
24 h before fixation and permeabilisation, as described previously
(Mukhopadhyay et al, 2010). Coverslips were blocked with PBS
containing 2% BSA (w/v), 10% skimmed milk powder (w/v) and
10% goat serum (v/v), and then incubated overnight at 4 1C with
1 : 100 anti-RAD51 antibody (PC130 Calbiochem, Merk Millipore).
Coverslips were washed in PBS and then incubated with
anti-phospho-Histone H2A.X (Ser139) (clone JBW301, Merck
Millipore) diluted to 1 : 1000 in PBS containing 2% BSA (w/v).
After washing with PBS containing 0.4% Triton-X-100, coverslips
were incubated with secondary antibodies Alexa Fluor 546 Goat
anti-mouse and Alexa Fluor 488 Goat anti-rabbit antibodies
(Invitrogen, Life Technologies, Paisley, UK), diluted to 1 : 1000 and
incubated in the dark to visualise gH2AX and RAD51, respectively.
Coverslips were mounted as described earlier.

Fluorescence microscopy was conducted using a Leica DMR
microscope (Leica microsystems GmbH, Wetzlar, Germany) or a
confocal microscope. The number of gH2AX and RAD51 foci was
analysed in 450 cells per condition by using the ImageJ software
with the PZFociEZ macro (www.pzfociez.com).

Next-generation sequencing. Genomic DNA extracted from
cancer cells cultured from MPEs was sheared to a mean length
of 500 bp using nitrogen nebulisation. A custom-made Nimblegen
SeqCap EZ library (Nimblegen, Madison, WI, USA) was used to
enrich for the sequence of interest. This comprised the exonic
regions of 4180 DNA repair genes and limited intronic material.
Captured sequence was subjected to massively parallel
next-generation DNA sequencing by using the Roche 454 GS
FLX platform (454 Life Science, Branford, CT, USA). A bespoke
analysis pipeline was used to identify pathogenic changes and
potential variants of interest (single nucleotide polymorphisms
with o1% population prevalence) across our target genes. pLoH –
that is, loss of genetic variation, rather than copy number – was
evaluated by plotting the percentage reads for every detected
variant across individual genes. Tracts of contiguous variants
detected at 480% reads were considered pLoH.

Statistical analyses. GraphPad Prism (version 6.00, San Diego,
CA, USA) was used for analyses. Univariate analysis of overall
survival (OS) was carried out by generating a Kaplan–Meier
survival curve; statistical significance was derived from Mantel–
Cox log-rank tests for statistical significance.

RESULTS

Establishing primary cultures from pleural effusion samples.
MPE samples were collected from patients diagnosed with different
cancers (ovarian, breast, NSCLC and mesothelioma); patient
characteristics are described in Table 1. A total of 15 MPE samples
were collected and primary cultures were established (denoted
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primary pleural effusion (PPE)) by using an optimised methodo-
logy based on that established previously for ascites cells
(Mukhopadhyay et al, 2010). PPE cultures were established for
13 out of 15 samples; 2 samples (PPE004 and PPE005, ovarian
cancers) were contaminated from the outset of culturing and were
not assessed further. PPE cultures grew as an adherent monolayer
in discreet patches; the majority of cells had a polygonal shape and
displayed a cobblestone-like appearance at confluency (Figure 1A).
Epithelial cell cultures were confirmed with pancytokeratin
immunofluorescence; all PPE cultures had 490% cells with a
positive pancytokeratin phenotype (Figure 1B).

Determining HRR status in primary cultures. The HRR status of
primary cultures was assessed using the immunofluorescence-
based gH2AX and RAD51 assay. A greater than 2-fold increase in
gH2AX foci was taken as confirmation that stalled/collapsed
replication forks and/or DNA double-strand breaks (DSB) had
been generated. Cells were defined as HRR competent if a X2-fold
increase in RAD51 foci was also observed and HRR defective if
there was no significant increase in RAD51 foci (Figure 2A). Using
these thresholds, DNA damage was induced in 12 out of 13
samples analysed. DNA DSBs were not induced in PPE011
(ovarian cancer). Of the remaining samples, eight were identified
as HRR competent (four ovarian cancer, one mesothelioma, one
sarcomatoid lung carcinoma and one breast cancer) and four were
found to be HRR defective (three NSCLC and one mesothelioma)
(Figure 2B, Table 2).

Clinical data. Defects in HRR render cells highly sensitive to
platinum agents, and, in our previous studies, patients with ovarian
cancer identified as HRR defective had greater than OS following
platinum-based therapy (Mukhopadhyay et al, 2012). To investi-
gate whether the HRR status of the PPEs in this cohort of patients
had any bearing on response to therapy or survival, clinical data
were collected. Of the 12 patients in whom tumour HRR status
was determined, only the patients with ovarian cancer and
breast cancer and one of the patients with mesothelioma received
anticancer therapy (Table 2). None of the patients with NSCLC
were fit enough to receive platinum-based therapy, but the patient
with the HRR-defective mesothelioma received platinum-based
therapy. There was no statistical difference in the OS between the
HRR functional and dysfunctional patients (data not shown).

Genetic investigation. The exonic regions of 4180 DNA repair
genes were captured and subjected to massively parallel sequencing
(full list of genes studied provided in Supplementary Figure 1).
Known pathogenic variants and variants with a reported popula-
tion prevalence o1% were identified. No pathogenic/rare
genetic variants or pLoH were observed recurrently in either
HRR-competent or dysfunctional PPE cultures (Figure 3). Our
results do not support the role of any single gene in determining
HRR status in tumours generally. pLoH was restricted to HRR-
defective tumours for FANCG, PARP1 and RPA1. We have
previously used this simple approach to identify regions of pLoH in
tumour samples that were confirmed by array comparative
genomic hybridisation to be monoallelic, as a result of both
interstitial duplication and deletion (data not shown). Our chosen
sequencing platform does not lend itself to the evaluation of copy
number in these tumours, owing to the comparatively modest
read depth.

DISCUSSION

In this feasibility study, we have shown that we are able to culture a
variety of different cancer cell types from MPEs with an 80%
success rate. Furthermore, we were able to determine the HRR
status of 12 out of 13 samples that were successfully cultured.
Therefore, cells from MPEs represent a source of patient-derived
tumour material that could potentially be used to stratify patients
for either PARPi or platinum-based therapy. We believe that MPEs
represent a valuable resource that would otherwise be disposed of.

We have established that around 35% of PPE cultures overall
were HRR dysfunctional. This relatively high frequency may reflect
that the loss of a high-fidelity DNA repair pathway can generate
genomic instability that is an enabling characteristic of cancer
(Hanahan and Weinberg, 2011). Defective DNA repair may
underlie the response of tumours to DNA-damaging anticancer
therapy (Curtin, 2012). Indeed, defects in DNA repair, particularly
those associated with HRR, are a common feature of adult cancers,

Table 1. Patient characteristics

Patient characteristics (n¼12) Value

Sex – number (%)

Female 8 (67)
Male 4 (33)

Age (years)

Mean 74
Range 59–82

Cancer type – number (%)

NSCLC 4 (33)
Mesothelioma 2 (17)
Other lung 1 (8)
Ovarian 4 (33)
Breast 1 (8)

Abbreviation: NSCLC¼ non-small-cell lung cancer. Data from patients donating MPE
samples;other lung¼ sarcomatoid lung/??sarcomatoid mesothelioma.

MergePancytokeratinDAPIBA

Figure 1. Pleural effusion primary cultures (A) Primary cultures established from pleural effusion samples grew as a monolayer exhibiting a
polygonal cell morphology and a cobblestone-like appearance at confluency. (B) Epithelial cell growth in primary cultures assessed by
pancytokeratin staining; cell nuclei are visualised with DAPI. Cultures with 490% positive cells were analysed further. Example images are
taken from PPE007, a pleural effusion from a breast cancer.
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as well as paediatric cancer syndromes (Kennedy and D’Andrea,
2006). We may even have underestimated the proportion of
HRR-defective tumours, as recent evidence indicates that some
NSCLC cell lines have defects in HRR downstream of RAD51 focus
formation, and instead fail to resolve these foci leading to their
persistence (Kommajosyula et al, 2013; Postel-Vinay et al, 2013).
Adaptation of the current HRR functional assay in future studies
will allow detection of defects in the resolution of RAD51.

Our previous studies, and those of others, indicate that around
50% of ovarian cancers are HRR defective (Mukhopadhyay et al,
2010; CGRN, 2011). It was therefore somewhat surprising that
none of the four PPE cultures derived from ovarian cancers were
HRR defective. This may be due to chance in this small sample
size. Alternatively, the platinum-based therapy that the patients

received (Table 2) may have led to the restoration of HRR function
or selection of HRR functional clones from a heterogeneous
tumour. Restoration of HRR function in cancers associated with
BRCA1 and BRCA2 mutations has been observed in both the
laboratory and clinical setting (Patel et al, 2012).

Interestingly, three of the four NSCLC samples analysed in this
pilot study were found to have dysfunctional HRR. Evidence
of HRR dysfunction in lung cancer is emerging. A recent study
identified that 4 out of 16 NSCLC cell lines failed to form RAD51
foci following cisplatin-induced DNA damage and that this
correlated with olaparib (a PARPi) sensitivity for 14 out of
16 cell lines (Birkelbach et al, 2013). Furthermore, this group
identifies two tumours with a low RAD51 score, indicative of
dysfunctional HRR, in fresh tumour tissues from 13 patients with
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Figure 2. HRR status in primary cultures. (A) Example immunofluorescence microscopy in primary cultures following DSB induction with a 24-h
exposure to rucaparib. In HRR-competent cultures (PPE012, NSCLC), increased levels of gH2AX (indicating DSB) and RAD51 (indicating HRR) foci
are seen in the nucleus following rucaparib treatment; however, in cultures with dysfunctional HRR (PPE003, NSCLC), only increased levels of
gH2AX foci are seen following rucaparib treatment (þ ) compared with untreated control (� ). (B) HRR status of primary cultures. Average number
of gH2AX and RAD51 foci per cell was determined by foci counting (ImageJ). Foci numbers were normalised to the control and expressed as a fold
induction following rucaparib treatment. A 2-fold induction (dashed line) was set as the threshold for gH2AX and RAD51 induction. Data are
representative of 2–3 independent experiments (PPE002, 003, 007, 008, 009, 012, 014), with error bars indicating the s.e.m., or a single
experiment (PPE001, 006, 010, 013, 015) where sample sizes were small or cultures stopped proliferating at an early passage.

Table 2. Pleural effusion sample details and patient demographics

Cancer type Histological subtype Sample
HRR
status Prior therapy

OS
(days)

NSCLC Adenocarcinoma PPE003 � None 396
Adenocarcinoma PPE008 � None 37
Adenocarcinoma PPE010 � None 61
Adenocarcinoma PPE012 þ None 31

Mesothelioma Not diagnostic, radiologically
defined

PPE006 þ None 137

Epithelioid PPE015 � 4 cycles carboplatin/pematrexed 168

Sarcomatoid lung carcinoma/
??sarcomatoid mesothelioma

Sarcomatoid lung carcinoma/
??sarcomatoid mesothelioma

PPE009 þ None 103

Ovarian Adenocarcinoma PPE001 þ 6 cycles carboplatin/paclitaxol followed by 3 cycles topotecan 7
Brenner tumour PPE002 þ Unknown 321
Papillary serous carcinoma PPE013 þ 3 cycles carboplatin NA
Papillary serous carcinoma PPE014 þ 6 cycles carboplatin/paclitaxol followed by 6 cycles carboplatin 33

Breast Carcinoma PPE007 þ None 279

Data from all established PPE cultures with histological subtype, HRR status data (HRR-competent samples denoted as þ and dysfuctional HRR samples � ), overall survival (OS) calculated in
days following sample donation and NA (not available) denotes that the patient is living. Data were used to generate a Kaplan–Meier survival curve; Mantel–Cox log-rank tests showed no
significant difference in OS between HRR-competent and dysfunctional patients (P¼ 0.45).
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NSCLC (Birkelbach et al, 2013). In addition, data showing
mutations in HRR genes in lung cancer are accumulating.
Mutations in ATM have been identified in 13 out of 188 primary
lung adenocarcinomas (Ding et al, 2008), and a BRCA1 deficiency
has been demonstrated in 11–19% of NSCLC patients (Paul et al,
2011). Loss of PTEN is seen in B4.5% of NSCLC (Jin et al, 2010),
and in lung cancer cell lines PTEN loss leads to abrogation of HRR,
which was associated with the suppression of lung tumour
xenograft growth in mice treated with olaparib and cisplatin
(Minami et al, 2013). Epigenetic alterations in key HRR proteins
have also been identified, with hypermethylation of BRCA1
and FANCF being identified in lung cancers (Esteller et al, 2001;
Marsit et al, 2004).

To investigate further the predictive biomarkers for HRR
function in PPE cultures, massively parallel sequencing of a panel
of DNA repair genes was undertaken in three competent and two
dysfunctional HRR PPE cultures following sequence capture. No
trends of genetic aberrations were identified. However, pLOH of
PARP1, RPA1 and FANCG was observed only in dysfunctional
HRR PPE cultures, the functional significance of which is unclear.
However, in vertebrates, FANCG is essential for the repair of a
subset of DSBs and is involved in the recruitment of FANCD2,

BRCA2 and XRCC3 to these lesions (Yamamoto et al, 2003;
Wilson et al, 2008; Orta et al, 2013). It is possible that pLoH
involving RPA1, which is recruited to single-stranded DNA at
collapsed replication forks (Hass et al, 2012), also affects HRR
function. Our small sample size prevents confident detection of
patterns on a biological pathway basis (for example, combinations
of various HRR and BER factors generating a more complex
genetic signature). In addition, there is increasing evidence for
genetic and histological heterogeneity within individual tumours.
It may be that contributory genetic signatures have been masked by
culturing heterogeneous tumour cells from MPEs before analysis.

Lung cancer is the most common cancer, accounting for
1.6 million cancer diagnoses worldwide, and the largest cause of
cancer-related deaths (CRUK, 2013). Most lung cancer diagnoses
are made when the disease is at an advanced and/or metastatic
stage, and prognosis is poor (o10% 5-year survival (CRUK,
2013)). Our data suggest that potentially exploitable HRR defects
are relatively common in this disease. Although the growth of the
PPE cells was too poor to determine ex vivo PARPi sensitivity, we
would nevertheless, on the basis of accumulated evidence in a
variety of tumour types, predict that patients with HRR-defective
NSCLC may benefit from PARPi therapy. All of the patients with
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NSCLC were too ill to receive conventional chemotherapy.
However, the patient with HRR-defective mesothelioma underwent
several rounds of carboplatin/pemetrexed therapy (Table 2) before
succumbing to the disease. On the basis of only one patient,
it is impossible to establish whether this response to therapy was
due to an HRR defect, although the data are encouraging.

NSCLC patients are often not eligible for platinum-based
chemotherapy owing to concomitant illness. Given that PARPi are
selectively toxic to HRR-defective tumour tissue while causing
negligible clinical toxicity (Fong et al, 2009, 2010; Schelman et al,
2011; Drew et al, 2011a), treating NSCLC patients with a PARPi
may be an attractive option. Excitingly, there are indications that
PARPi may be of benefit in the treatment of NSCLC. A phase I
dose escalation study of the PARP inhibitor niraparib (MK4827)
included two patients with NSCLC. In one patient (carrying a
BRCA2 mutation), stable disease was observed for 175 days,
and in the other (with platinum-sensitive disease) for 316 days
(Sandhu et al, 2013). A further application of the HRR functional
assay using MPEs may be in the selection of SCLC patients for
PARPi treatment; a phase I trial for the PARPi BMN 673 is
currently underway and recruiting SCLC patients (NCT01286987,
clinicaltrials.gov). We propose that this feasibility study may be
extended to a larger cohort of cancer patients presenting with
MPEs and may be used in stratifying patients, in particular NSCLC
patients, to receive PARP inhibitor treatment.
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