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Background: The expression of SMAD4, the central component of the transforming growth factor-b (TGF-b) and bone
morphogenetic protein (BMP) signalling pathways, is lost in 50% of pancreatic cancers and is associated with a poor survival.
Although the TGF-b pathway has been extensively studied and characterised in pancreatic cancer, there is very limited data on
BMP signalling, a well-known tumour-suppressor pathway. BMP signalling can be lost not only at the level of SMAD4 but also at
the level of BMP receptors (BMPRs), as has been described in colorectal cancer.

Methods: We performed immunohistochemical analysis of the expression levels of BMP signalling components in pancreatic
cancer and correlated these with survival. We also manipulated the activity of BMP signalling in vitro.

Results: Reduced expression of BMPRIA is associated with a significantly worse survival, primarily in a subset of SMAD4-positive
cancers. In vitro inactivation of SMAD4-dependent BMP signalling increases proliferation and invasion of pancreatic cancer cells,
whereas inactivation of BMP signalling in SMAD4-negative cells does not change the proliferation and invasion or leads to an
opposite effect.

Conclusion: Our data suggest that BMPRIA expression is a good prognostic marker and that the BMP pathway is a potential
target for future therapeutic interventions in pancreatic cancer.

Pancreatic cancer is a particularly lethal disease with a 5-year
survival of only 4% (Jemal et al, 2011). The poor prognosis is partly
because early stage pancreatic cancers typically do not lead to
clinical symptoms and partly because of the poor response to
chemotherapy (Vincent et al, 2011). At the time of diagnosis, the
tumour has usually invaded surrounding organs or metastasised,
resulting in 80–85% of the tumours being inoperable. There is thus
an urgent need for better understanding of the molecular
mechanisms involved in order to develop alternative treatment
options and better predict prognosis.

Mutations in SMAD4, also known as depleted in pancreatic
cancer locus 4 (DPC4), occur in450% of pancreatic cancers (Hahn
et al, 1996; Rozenblum et al, 1997; Tascilar et al, 2001). The
inactivation of SMAD4 occurs relatively late in the adenoma-
to-carcinoma sequence with loss of expression first seen at the
Pan-IN3 stage and being associated with a poorer prognosis
(Wilentz et al, 2000; Tascilar et al, 2001). The relevance of SMAD4
loss has been shown by restoration of SMAD4 in SMAD4-depleted
pancreatic cancer cell lines, which leads to reduced growth
(Duda et al, 2003).
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SMAD4 is a central and critical component of both the
transforming growth factor-b (TGF-b) and the bone morphoge-
netic protein (BMP) signalling pathways. TGF-b signalling can be
tumour suppressive in normal epithelial cells and tumour
promoting in the later stages of cancer with different functional
effects dependent on the SMAD4 status (Massague et al, 2000;
Jazag et al, 2005; Schniewind et al, 2007; Romero et al, 2008).
TGF-b receptor II mutations are found in 4–7% of pancreatic
cancers further supporting the importance of TGF-b signalling in
pancreatic cancer tumourigenesis (Massague, 1998; Hansel et al,
2003).

The role of the BMP signalling pathway in pancreatic cancer is
much less clear. BMP ligands bind to a complex of transmembrane
serine threonine kinase receptors consisting of type I (BMPRIA or
BMPRIB) and type II (BMPRII) receptors. On binding of the
BMPs to the receptor complex, the type I receptor (BMPRIA or
BMPRIB) is phosphorylated by BMPRII, which leads to down-
stream phosphorylation and activation of the BMP-specific
SMADs, SMAD1, 5 and 8. Phosphorylated SMAD1, 5 or 8 then
complexes with the co-SMAD, SMAD4. SMAD4 is crucial for the
modulation of gene transcription as it facilitates the translocation
of pSMAD1/5/8 to the nucleus (Massague, 1998). Germline
mutations of BMPRIA and SMAD4 are found in juvenile
polyposis, a rare autosomal dominant polyposis syndrome with a
high lifetime risk of colorectal cancer (Howe et al, 1998, 2001), and
BMPRII expression loss is found in colorectal cancers with
microsatellite instability (Kodach et al, 2008b). This further
suggests that the BMP pathway is important in maintaining
epithelial cell homeostasis. However, little is known about the
expression levels of the different BMP signalling components in
pancreatic cancer.

Therefore, we set out to assess expression levels of the BMP
receptors (BMPRs) in pancreatic cancer tissue and relate this to
patient survival data. We then tested the relevance of our findings
by investigating the influence of BMPR expression on pancreatic
cancer cell proliferation and invasion in vitro.

MATERIALS AND METHODS

Immunohistochemistry. Pancreatic ductal adenocarcinoma
(PDAC) tissue was stained according to previously described
methods (Kodach et al, 2008a). A list of antibodies with the
concentrations used is provided in the Supplementary Methods.

Tissue microarray. A tissue microarray (TMA) containing PDAC
tissue was constructed from formalin-fixed, paraffin-embedded
tissue from 41 patients with PDAC who underwent surgery in the
Leiden University Medical Center. All cases were reported by a
single GI pathologist (HM). Survival data of the 41 patients with
PDAC included in the TMA were collected. The mean survival
time from the date of surgery was 373±s.d. 268 days (range
37–1367 days). All patients died within the follow-up period.

TMA analysis. Analysis was performed in a blinded manner by
two investigators independently. SMAD4 expression was scored
according to previously described methods (Kodach et al, 2008a).
Immunohistochemical staining for the receptors was scored
according to a scoring system we have developed and validated
for colorectal cancer, as shown in Supplementary Methods. Further
division of expression was made into negative (scores 0 and 1) and
positive (scores 2 and 3). The final score of agreement for all
stainings was k40.7.

Immunoblotting. Western blot analysis was performed according
to previously described methods (Kodach et al, 2008b). A list of
antibodies with the concentrations used is provided in the
Supplementary Methods.

PCR. PCR was performed according to previously described
methods (Kodach et al, 2008b). Primer sequences and protocols
can be provided on request. GAPDH was used as a loading control.

Cell lines. PANC-1, MIA PaCa-2 and Bx-PC3 human PDAC cell
lines were obtained from the ATCC (Manassas, VA, USA) and
were grown in Dulbecco’s modified Eagle’s medium 4.5 g l–1

glucose and L-glutamine (Invitrogen, Breda, The Netherlands),
supplemented with 50Uml–1 penicillin and 50 mgml–1 streptomy-
cin and 10% foetal calf serum (Invitrogen). Cells were grown in
monolayers at 37 1C in a humidified atmosphere containing
5% CO2.

Invasion assay. In all, 8 mM pore size HTS FluoroBlok Cell Culture
Inserts (BD Falcon, Breda, The Netherlands) were coated with
100 ml of a 1 : 1 mix of serum-free media and Matrigel. Inserts were
placed in 24-well plates (Corning Incorporated, Corning, NY,
USA). Cells were labelled with 5mM CellTracker Green CMFDA
(Invitrogen) according to the manufacturer’s instructions after
which they were detached using trypsin with 2mM EDTA. Cells
were transferred in medium containing 1% FCS to the upper well
of a transwell invasion system. A volume of 600 ml of culture
medium containing 10% FCS was used as an attractant and placed
in the lower chamber. Fluorescence of the invaded cells at the lower
side of the transwell was measured every 2 h using the BioTek
Flx800 (BioTek, Winooski, VT, USA). Data were corrected for
background fluorescence and migration start points were set to
zero.

MTT assay. Cells were seeded in 96-wells plates. For viability
measurement, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide (MTT) solution was added for 2 h at 37 1C
(0.5mgml–1) after which the absorbance of the samples at
562 nm was measured.

BMP ligand and BMP inhibitor. Stock solution of recombinant
human BMP-2 (R&D systems, Oxon, UK) was prepared in PBS
and subsequently dissolved in culture medium for treatment
(100 ngml–1). Stock solutions of the BMPRIA inhibitor LDN-
193189 (AxonMedchem BV, Groningen, The Netherlands) were
prepared in dimethyl sulfoxide and subsequently dissolved in
culture medium for treatment.

shRNA against SMAD4. Lentiviral constructs expressing shRNAs
targeting SMAD4 (TRCN0000040028) and a non-targeting control
construct (SHC002) were obtained from the Sigma MISSION
shRNA library (Sigma-Aldrich, St Louis, MO, USA). Production of
lentiviruses by transfection into 293T cells has been described
earlier (Carlotti et al, 2004). Cells were selected using puromycin.

siRNA knockdown. For siRNA knockdown of BMPRIA, cells
were transfected with either siRNA against BMPRIA (ID: s280) or
scrambled siRNA (Invitrogen). Lipofectamine 2000 (Invitrogen)
was used for all transfections according to the manufacturer’s
instructions.

Luciferase reporter assay. For quantitative measurement of BMP,
reporter assays were used. Cells were transfected with BRE-luc
constructs (kindly provided by P ten Dijke). Transfection with a
pcDNA3.1 vector expressing Renilla luciferase was used as a
transfection control. Luciferase activity was measured using a
Dual-Luciferase Reporter Assay (Promega, Madison, WI, USA)
according to the manufacturer’s protocol. Lipofectamine 2000
(Invitrogen) was used for all transient transfections according to
the manufacturer’s instructions.

Statistical analysis. Statistical analyses were performed with Prism
5 for Windows (GraphPad Software, Inc., La Jolla, CA USA) using
the Student’s t-test and with PASW Statistics 18 for Windows
(SPSS, Inc., IBM, NY, USA) using Kaplan–Meier analysis, Fisher’s
exact test, w2 test, log-rank test and Cohen’s kappa as appropriate.
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RESULTS

Expression of BMPRIA protein is frequently reduced in
PDAC. In order to investigate the expression levels of the BMP
signalling components, we selected the 41 cases of PDAC from our
TMA and performed immunohistochemistry for SMAD4,
BMPRIA, BMPRIB and BMPRII. Examples of the stainings can
be found in Supplementary Figure 1. SMAD4 is lost in half (53.7%)
of the PDAC cases, which is in concordance with the literature
(Tascilar et al, 2001). BMPRIA, BMPRIB and BMPRII expression
is reduced in 53.7%, 9.8% and 29.3% of PDAC, respectively
(Table 1). We then related the BMPR expression levels to the
SMAD4 status and observed no correlation, thus SMAD4 and the
BMPRs are lost independently in PDAC. Loss of SMAD4
expression has previously been shown to be associated with a
poor prognosis and we could confirm this in our dataset (P¼ 0.04;
Figure 1A). Reduced BMPRIA expression is associated with poorer
survival (P¼ 0.008; Figure 1B). Interestingly, when stratifying for
the SMAD4 status a significant difference can be observed within
the SMAD4-positive group, but not within the SMAD4-negative
group (Figure 1C and D). This suggests that changes in BMPRIA
expression only have major consequences when SMAD4 expres-
sion is still intact. SMAD4 is a central component of the BMP
signalling pathway and when lost there is gross impairment of
canonical BMP signalling. From this, it would be expected that
reduction of BMPRIA expression in SMAD4-negative cells would
have little additional impact on canonical BMP signalling, because
it is already lost as a consequence of the SMAD4 loss. Reduced

Table 1. Expression of BMP signalling components in PDAC

Scoring,
n (%)

All PDAC
(n¼41)

SMAD4
positive
(n¼19)

SMAD4
negative
(n¼22) P-value

BMPRIA

0 2 (4.9) 0 (0) 2 (9.1) 0.277
1 20 (48.8) 10 (52.6) 10 (45.5)
2 17 (41.5) 9 (47.4) 8 (36.4)
3 2 (4.9) 0 (0) 2 (9.1)

BMPRIB

0 0 (0) 0 (0) 0 (0) 0.147
1 4 (9.8) 0 (0) 4 (18.2)
2 31 (75.6) 16 (84.2) 15 (68.2)
3 6 (14.6) 3 (15.8) 3 (13.6)

BMPRII

0 0 (0) 0 (0) 0 (0) 0.560
1 12 (29.3) 5 (26.3) 7 (31.8)
2 26 (63.4) 13 (68.4) 12 (54.5)
3 3 (7.3) 1 (5.3) 3 (13.6)

Abbreviations: BMP¼bone morphogenetic protein; BMPR¼BMP receptor;
PDAC¼pancreatic ductal adenocarcinoma. The correlation between SMAD4 loss and the
level of BMP receptor expression as determined by immunohistochemical analysis. There is
no significant difference in BMP receptor expression between SMAD4-expressing and
SMAD4-non-expressing cancers.
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Figure 1. Kaplan–Meier graphs representing the survival of 41 patients after surgical resection of PDAC based on SMAD4 and BMPRIA
expression in a TMA. (A) SMAD4 positive vs SMAD4 negative (P¼ 0.040). (B) BMPRIA positive vs BMPRIA negative (P¼0.008). (C) BMPRIA
positive vs BMPRIA negative within SMAD4-positive PDAC (P¼ 0.018). (D) BMPRIA positive vs BMPRIA negative within SMAD4-negative PDAC
(P¼0.358). P-values are based on log-rank tests.
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expression of BMPRIB or BMPRII does not lead to a difference
in survival, even when stratifying for SMAD4 expression
(Supplementary Figure 2).

BMPRIA reduction leads to an increase in proliferation and
invasion. In order to investigate the functional role of the BMP
pathway in PDAC in vitro, we first investigated the expression
of BMPRIA and SMAD4 in three PDAC cell lines (PANC-1, MIA
PaCa-2 and Bx-PC3). RT–PCR using primers specific for exon 13
of BMPRIA suggests that BMPRIA RNA is expressed in all three
PDAC cell lines (Figure 2A). MIA PaCa-2 expresses lower levels of
BMPRIA compared with PANC-1 and Bx-PC3 as shown by
western blot analysis (Figure 2B). PANC-1 and MIA PaCa-2 both
express SMAD4, whereas Bx-PC3 does not. The colorectal cancer
cell lines HCT116 and SW480 were used as controls. HCT116
expresses SMAD4, but low levels of BMPRs and SW480 expresses
no SMAD4 and high levels of BMPRs. In a luciferase reporter assay
for BMP pathway signalling activity (BRE-luc), treatment of the
cell lines with BMP-2 for 24 h leads to a significant increase in

luciferase activity in PANC-1 and a less significant increase in MIA
PaCa-2, but no increase in Bx-PC3 (Figure 2C; Korchynskyi and
Ten, 2002; Kodach et al, 2008b). We conclude that PANC-1 and
MIA PaCa-2 have the ability to activate BMP signalling, whereas
Bx-PC3 has not.

We knocked down BMPRIA expression using siRNA and
subsequently performed viability/proliferation and matrigel inva-
sion assays. From the human data shown in Figure 1B—D, we
would predict that knockdown of BMPRIA expression in the
SMAD4-positive cell lines PANC-1 and MIA PaCa-2 will have
functional effects, but knockdown of BMPRIA in the SMAD4-
negative cell line Bx-PC3 should have no functional effect because
BMP signalling is already lost because of SMAD4 loss. Figure 2D
shows the effect of BMPRIA knockdown after 48 h on cell viability/
proliferation. A significant increase in viability/proliferation can be
seen in the SMAD4-positive cell lines after BMPRIA knockdown.
SMAD4-negative Bx-PC3 cells do not show an effect, as expected.
Next, we performed a matrigel invasion assay in which we knocked
down BMPRIA and measured fluorescently labelled cells that have
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BRITISH JOURNAL OF CANCER BMPRIA in pancreatic cancer

1808 www.bjcancer.com |DOI:10.1038/bjc.2013.486

http://www.bjcancer.com


passed through the matrigel in a transwell system. In PANC-1 as
well as the MIA PaCa-2 cells, an increase in invasion can be
observed after BMPRIA knockdown. BMPRIA reduction in
Bx-PC3 does not lead to a significant difference in invasion
(Figure 2F–H).

The effects of the BMP pathway seem to be dependent on the
SMAD4 status. To investigate the function of SMAD4 in PDAC
cells, we made a cell line in which SMAD4 was stably knocked
down by performing lentiviral transduction with shRNA
against SMAD4 in SMAD4-positive PANC-1 cells, as well as
a control cell line using a control construct. We then silenced
BMPRIA and performed an invasion assay. Knockdown of
SMAD4 leads to increased invasion (Figure 2I). The use of
siBMPRIA in the shControl (SMAD4 positive) cells results in
more invasion. We expected that silencing of BMPRIA in the
shSMAD4 clone would not have any effect, but instead it lowers
the invasion rate.

BMPRIA knockdown changes the expression of angiogenesis,
mesenchymal, cancer stem cell and matrix modifier markers.
To further elaborate the cell changes resulting from BMPRIA
loss in SMAD4-positive PDAC cells, we knocked down BMPRIA
in PANC-1 cells and measured the mRNA levels of a set of
markers associated with angiogenesis, epithelial-to-mesenchy-
mal transition (EMT), cancer stemness and the modification of
extracellular matrix (Figure 3). BMPRIA knockdown results in
an increase in VEGF, TSP1 and ANGPT1 associated with
angiogenesis. We also measured several markers associated with
EMT and saw a downregulation of CDH1 (encodes for
E-cadherin) and a significant upregulation of VIMENTIN, NES
and the transcription factors SIP1 and SLUG. These changes
suggest a change towards a more mesenchymal type of cell. No
significant changes in the transcription factors ZEB1 and SNAI1
were observed. BMPRIA knockdown also resulted in the
upregulation of the stem cell markers CD24 and EPCAM,
but not in changes in CD44. The expression of matrix
metalloproteinases 2 and 14 (MMPs) is also significantly
increased after BMPRIA knockdown. These MMPs are involved
in the breakdown of extracellular matrix and tissue remodelling,
which is associated with tumour progression (Ellenrieder et al,
2000).

The overall results of changes in SMAD4 and BMPRIA
expression are schematically presented in Figure 4.

The BMP pathway as a treatment target. We further investi-
gated whether the BMP pathway could be used as a treatment
target. We treated the three cell lines (PANC-1, MIA PaCa-2 and
Bx-PC3) with BMP-2 and the BMPRIA inhibitor LDN-193189 for
48 h and investigated the effect on cell viability/proliferation.
Treatment with 100 ngml–1 BMP-2 resulted in a decrease in
viability in the SMAD4-expressing cell lines PANC-1 and MIA
PaCa-2, but in an increase in the SMAD4-negative Bx-PC3
(Figure 5A). We also treated the cells with different concentrations
of the BMPRIA inhibitor LDN-193189 (Figure 5B). Up to 50 nM an
increase in viability/proliferation can be seen in the SMAD4-
positive cells. A further increase in concentration results in a
reduction in viability/proliferation, probably because of toxic
effects. In Bx-PC3, a dose-dependent decrease in viability/
proliferation can be observed.

We repeated these experiments using the shSMAD4 PANC-1
cells and observed that BMP2 treatment of the SMAD4-expressing
cells (shControl) results in a decrease in viability, but not in the
shSMAD4 cells (Figure 5C). BMP inhibition results in a decrease in
cell viability in the shSMAD4 cells but not in the shControl cells
(Figure 5D). We conclude that the BMP signalling pathway can
induce tumour promotion or suppression dependent on the
SMAD4 status (Figure 5E).

DISCUSSION

We set out to investigate the expression levels of BMP signalling
components in PDAC and link this to patient’s survival data.
We found that in 53.7% of the cases BMPRIA expression is
reduced, and that this is associated with a poorer survival
(P¼ 0.008). When we stratified for SMAD4 expression it could
be observed that reduced BMPRIA expression only makes a
difference in SMAD4-positive cancers. SMAD4 is necessary for
the canonical BMP pathway and loss of SMAD4 results in a
defect in canonical BMP signalling. Subsequent reduction of
BMPRIA expression in SMAD4-negative cancer does not
reduce the canonical BMP signalling activity further and
probably has little additional impact. Reduction of either
BMPRIB or BMPRII does not lead to a difference in survival
and does not occur as frequently as loss of BMPRIA expression
(9.8% and 29.3%).

Reduction in the expression of one or more BMPRs has been
found in several other tumour types. Aberrant BMPRII expres-
sion based on immunohistochemistry has been found in prostate
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cancer (Kim et al, 2004) and in renal cell carcinomas (Kim et al,
2003). Our group has previously identified mutations in the
30UTR of BMPRII in microsatellite instable colorectal cancer,
which resulted in reduced expression levels (Kodach et al, 2008b).
Although BMPRIA protein expression in PDAC has not
previously been published, BMPRIA expression in PDAC has been
assessed as part of the human protein atlas (www.proteinatlas.org)
using a different antibody (CAB019398; Strategic Diagnostics Inc.,
Newark, DE, USA). This also showed absent BMPRIA expression
in 56% of the cancers and strong expression in normal pancreatic
tissue.

To further explore the effects of reduced BMPRIA expression in
PDAC, we investigated three PDAC cell lines (PANC-1, MIA
PaCA-2 and Bx-PC3). It has previously been published that
BMPRIA is not expressed in MIA PaCa-2 cells at mRNA level
using northern blot (Kleeff et al, 1999). We found that MIA
PaCa-2 expresses lower levels of BMPRIA protein compared with
PANC-1 and Bx-PC3, but equal levels of mRNA by RT–PCR using
primers specific for exon 13. We found no PDAC cell lines

with complete loss of BMPRIA. This is consistent with our
immunohistochemistry staining results where we found that,
although 53.7% had reduced expression levels of BMPRIA and
were thereby regarded as ‘negative’ in our scoring system, only a
small portion (4.9%) of the PDAC had completely lost BMPRIA
expression. The underlying reason for the reduced BMPRIA
protein expression we observe remains unclear. Large-scale
mutational studies of large cohorts of PDAC (n¼ 100) have not
revealed mutations in BMPRIA (Biankin et al, 2012) and studies
that specifically mention analysis of BMPRIA in pancreatic cancer
have also not revealed mutations (n¼ 31; Jones et al, 2008;
Kan et al, 2010). Although none of these studies has focussed
specifically on BMPRIA, it seems unlikely that mutations in
the coding region of BMPRIA can explain the altered protein
expression at the frequency that we observe. As MIA PaCa-2 seems
to have normal mRNA levels in our analyses, but reduced protein
levels, the cause will most likely be post-transcriptional such as
miRNA inhibition of translation. For our protein expression
studies using immunohistochemistry and immunoblotting,
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Figure 5. Treatment of (PDAC) cell lines PANC-1, MIA PaCa-2 and Bx-PC3 with BMP-2 and BMPR1 inhibitor LDN-193189. (A) PDAC cell lines
were treated with 100 ngml–1 of BMP-2 for 48 h. Cell proliferation/viability was subsequently assessed using an MTT assay was performed.
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we used a polyclonal antibody raised against amino acids 24–83 of
BMPRIA as used by several other groups (Deng et al, 2007; Barros
et al, 2008; Medici et al, 2010; Du et al, 2011). On immunoblots
using this antibody, we detect a major band at the predicted height
of around 60 kD with other bands at approximately 50 and 45 kD
as shown in the antibody product datasheet and as also seen with
polyclonal BMPRIA antibodies from other manufacturers (e.g.,
ab38560 from Abcam (Cambridge, UK)) in cell lysates of various
origins. The specificity of these antibodies is confirmed by the
virtual disappearance of all these bands when PANC-1 cells are
treated with BMPRIA-specific siRNA (Figure 2E).

The reduction of BMPRIA expression in SMAD4-positive
PDAC cells resulted in an increase in cell viability, matrigel
invasion and the upregulation of several markers associated with
angiogenesis, EMT, cancer stemness and matrix modification.
These processes can lead to a more aggressive cancer. The markers
were measured using qPCR only, and therefore the conclusions
must be considered preliminary, but this might be the reason that
reduced BMPRIA expression is associated with a poorer prognosis.
These results have to be further confirmed at protein level and
using functional assays.

Finally, we investigated the possibility of using BMP pathway
modulation as a novel treatment. Treatment with BMP-2 results a
decrease in viability in SMAD4-positive PDAC cells, but an
increase in viability in SMAD4-negative cells. Treatment with
LDN-193189, a small molecule BMPRI inhibitor, results in an
increase in viability in SMAD4-positive cells, but a decrease in
viability SMAD4-negative cells. It may be that BMP signalling has
a dual role dependent on SMAD4 expression. It could be that when
SMAD4 is present BMP acts as a tumour suppressor, whereas
when SMAD4 is lost BMP acts as a tumour promoter. This
phenomena, of a contradictory effect dependent on the expression
status of a particular protein, has previously been reported in
colorectal cancer with the TGF-b signalling pathway and SMAD4
expression (Zhang et al, 2010) where the SMAD4 expression status
determined the metastatic effects of TGF-b. A second example is
the TGF-b switch from anti-proliferative into pro-metastatic
dependent on the p53 mutational status (Adorno et al, 2009).
In the absence of SMAD4, BMPs cannot signal through the
canonical SMAD4-dependent signalling route. That BMP ligands
still have important biological effects in the absence of SMAD4, as
we and others have shown, is evidence for important non-
canonical SMAD4-independent signalling. There is not much data
on non-canonical BMP signalling, but it is known that SMAD-
independent BMP signalling can activate p38MAPK, ERK and JNK
in colorectal cancer (Grijelmo et al, 2007). p38, ERK and JNK are
mitogen-activated protein kinases associated with tumour progres-
sion, which could explain the increase in viability observed after
activating non-canonical BMP signalling.

This data would suggest that modulating the BMP pathway as
part of a combined treatment strategy, as has been suggested in
other cancers, will have to be targeted to specific tumours based on
their SMAD4 expression status. Theoretically, BMP treatment
could be used for SMAD4-positive cancers and BMPRIA inhibitors
might be possible candidates for treatment of SMAD4 mutated
PDACs, analogous to the use of TGF-bRIA inhibitors (Ge et al,
2006).

Although activation or inhibition of the same pathway for
treatment of the same cancer type is perhaps conceptually
confusing, at the very least these data would suggest caution in
treating PDAC with BMP-modulating agents as they may
potentially have adverse effects. The tumour stroma has a major
role in the development and progression of PDAC, also affecting
cancer therapy. In these studies, we have made use of well validated
and frequently used in vitro models consisting of the tumour
epithelial cells only. Further research in more complex in vitro and
in vivo models will be needed to investigate the effects of BMP

manipulation on stromal cells and their interaction with cancer
cells.

In summary, we have studied the expression levels of BMPRs in
PDAC tissue based on immunohistochemistry and linked this to
patient’s survival data. We show that a reduction in the expression
of BMPRIA is associated with a poorer prognosis. Stratifying for
SMAD4 reveals that this is mainly in a sub-population of SMAD4-
positive cancers. BMPRIA expression might be useful as a
prognostic bio-marker, especially when combined with SMAD4.
By manipulating BMPRIA in vitro, we show that BMPRIA has
tumour-suppressive effects, which are dependent on the SMAD4
status. The small molecule BMPRIA inhibitor LDN-193189 has
antitumour activity in SMAD4-negative PDAC cells.
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