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Background: Sorafenib is a potent inhibitor against Raf kinase and several receptor tyrosine kinases that has been approved for
the clinical treatment of advanced renal and liver cancer. Combining sorafenib with other agents has been shown to improve its
antitumour efficacy by not only reducing the toxic side effects but also preventing primary and acquired resistance to sorafenib.
We have previously observed that tetrandrine exhibits potent antitumour effects in human hepatocellular carcinoma. In this study,
we investigated the synergistic antitumour activity of sorafenib in combination with tetrandrine.

Methods: This was a two-part investigation that included the in vitro effects of sorafenib in combination with tetrandrine on cancer
cells and the in vivo antitumour efficacy of this drug combination on tumour xenografts in nude mice.

Results: Combined treatment showed a good synergistic antitumour effect yet spared nontumourigenic cells. The potential
molecular mechanism may be mainly that it activated mitochondrial death pathway and induced caspase-dependent apoptosis in
the cancer cells. Accumulation of intracellular reactive oxygen species (ROS) and subsequent activation of Akt may also be
involved in apoptosis induction.

Conclusion: The antitumour activity of sorafenib plus tetrandrine may be attributed to the induction of the intrinsic apoptosis
pathway through ROS/Akt signaling. This finding provides a novel approach that may broaden the clinical application of sorafenib.

Sorafenib, a biaryl urea, is an oral small molecule multikinase
inhibitor that is effective against Raf kinase, vascular endothelial
growth factor receptor (VEGFR), platelet-derived growth factor
receptor (PDGFR), c-kit, c-Ret and FLT3 kinase (Wilhelm et al,
2006). It has been shown that sorafenib has a significant broad-
spectrum, dose-dependent antitumour property against a wide
variety of human tumours in preclinical models, including both
in vitro cell culture models and in vivo xenograft models for
prostate (Oh et al, 2012), colon (Walker et al, 2009), lung (Zhang
et al, 2012), breast (Gradishar, 2012), ovarian (Matei et al, 2011)
and pancreatic cancers (Huang and Sinicrope, 2010), as well as
leukaemia (Zhang et al, 2008b) and melanoma (Eisen et al, 2006).
In recent years, sorafenib has been approved for the treatment of
advanced renal cell carcinoma and hepatocellular carcinoma
(HCC) (Wilhelm et al, 2006; Iyer et al, 2010). The anti-cancer

property of sorafenib lies in its potential to inhibit angiogenesis in
tumour tissues and block cancer cell proliferation by inhibiting
kinase activities, such as those of c-Raf, VEGFR2, VEGFR3 and
PDGFR (Liu et al, 2006). It has also been reported that sorafenib
induces apoptosis in a variety of human tumour cell lines
by suppressing the activation of Bcl-2 family members, especially
myeloid cell leukaemia sequence-1 (Mcl-1) (Zhang et al, 2008a;
Huber et al, 2011). In addition, NF-kB (Kuo et al, 2012), Akt and
rogen receptor (Oh et al, 2012) and signal transducer and activator
of transcription-3 activities (Huang and Sinicrope, 2010) have all
been reported to participate in sorafenib-induced apoptosis in
cancer cells.

Apoptosis is a common mechanism for targeted chemotherapies
that either directly induce cancer cell death or increase
tumour cell sensitivity to known cytotoxic agents or radiation
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(Ricci and Zong, 2006). There are two established pathways that
result in apoptosis: the extrinsic cell death pathway (cell death
receptor pathway) and the intrinsic cell death pathway (the
mitochondria-initiated pathway) (Elmore, 2007). Small molecule
anti-cancer agents induce apoptosis in cancer cells mainly through
the intrinsic pathway. Reports have shown that sorafenib induces
apoptosis in several human cancer cell lines by downregulating
the level of the antiapoptotic protein Mcl-1 (Rosato et al, 2007;
Huber et al, 2011). However, alteration in susceptibility to
apoptosis is a hallmark of cancer cells, which contributes to
tumour development and enhances its resistance to conventional
anti-cancer therapies, such as radiation and cytotoxic agents
(Ziegler et al, 2011). Targeting multiple signaling pathways with
synergistic chemotherapy drugs is a potential novel therapeutic
strategy for many types of cancer. Combination therapies involving
sorafenib have been shown to improve the antitumour efficacy of
sorafenib in a limited number of preclinical studies (Hikita et al,
2010; Pawlik et al, 2011; Wang et al, 2012). These synergistic
treatments could not only alleviate primary resistance to sorafenib
but also prevent acquired resistance. Therefore, evaluating
additional combinations of sorafenib and various chemotherapeutic
agents will potentially improve sorafenib efficacy and lead to novel
therapeutic applications.

Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the
Chinese medicinal herb Stephaniae tetrandrae has been broadly
used in China to treat patients with arthritis, hypertension,
inflammation and even silicosis (Shen et al, 2010; Wu et al, 2010).
We have previously demonstrated that tetrandrine at high
concentrations induces apoptosis through the ROS/Akt pathway
(Liu et al, 2011) and, at low concentrations, induces autophagy
through autophagy-related gene 7 and ROS/extracellular-signal-
regulated kinase (ERK) in human HCC cells (Gong et al, 2012a),
suggesting that tetrandrine may be a promising agent for the
treatment of cancer.

Based on our previous studies, here we investigate the
synergistic antitumour activity of sorafenib in combination with
tetrandrine. The results reveal that tetrandrine dramatically
enhances sorafenib-induced apoptosis in human cancer cells
in vitro and in vivo. We also show that ROS and Akt activity are
involved in combination therapy-induced apoptosis. Therefore,
our findings represent a novel effective therapeutic strategy for
tumour treatment.

MATERIALS AND METHODS

Cell lines and cell culture. The human hepatoma cell lines
(BEL7402 and FHCC98), hepatoblastoma cell line (HepG2) and
immortalised nonmalignant cell lines (L02 and HBL100) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM). The
human colon cancer cells (HCT116, RKO, DLD1 and HCT116
Bax� /� ) were cultured in McCoy’s 5A medium. All cell culture
media were supplemented with 10% fetal bovine serum, 1%
penicillin and 1% streptomycin. Cells were maintained in a
humidified 5% CO2 atmosphere at 37 1C.

Chemical reagents and antibodies. Tetrandrine was purchased
from Shanghai Ronghe Medical (Shanghai, China). Sorfenib was
purchased from Bayer Pharmaceutical Corporation (West Haven,
CT, USA). Z-VAD-fmk was purchased from R&D Systems
(Minneapolis, MN, USA). DCFH-DA was obtained from Invitro-
gen (Carlsbad, CA, USA). N-acetyl-L-cysteine (NAC) was pur-
chased from Sigma (St. Louis, MO, USA). Rhodamine 123
(Rh123), cyclosporin A (CsA), caspase-8 antibody, GAPDH
antibody and HRP-conjugated secondary antibodies (goat anti-
rabbit and goat anti-mouse) were purchased from Beyotime
(Nantong, China). Caspase-3, caspase-9, PARP, Mcl-1, Bcl-2,

c-FLIP, Puma, Bax, phospho-Akt(Ser473), Akt, phospho-
ERK(Thr202/Tyr204), ERK, phospho-p38(Thr180/Tyr182) and
p38 antibodies were from Cell Signaling Technologies(Beverly,
MA, USA). Bim, Bid and Bcl-xL antibodies were from Proteintech
Group (Chicago, IL, USA).

Cell viability and colony-formation assay. Cells were seeded in
96-well plates, treated as indicated in the figure legends after 12 h
and then were allowed to grow for 72 h. DMSO was used as vehicle.
Cell viability was observed by the trypan blue dye-exclusion assay
and cells were counted using a haemocytometer. To determine the
long-term effects of drug treatment on cell colony formation, cells
were seeded in six-well plates at 2000 cells per well and treated as
indicated in the figure legends. After rinsing with fresh medium,
cells were allowed to grow for 14 days to form colonies, which were
stained with crystal violet (0.5% w/v), photographed with a scanner
and then counted.

Apoptosis assay by flow cytometry. Apoptosis was determined by
the flow cytometric measurement of sub-G1 cell populations. Cells
were harvested and washed with PBS, followed by fixation with
70% alcohol overnight at 4 1C. Fixed cells were collected, washed
with PBS and then stained with 4ml of 10mgml� 1 propidium
iodide (PI) and 10 ml of 1mgml� 1 RNase. Stained cells were
assessed on a flow cytometer (Beckman, Indianapolis, CA, USA).
The results were analysed by the FlowJo software (Tree Star,
San Carlos, CA, USA).

Measurement of intracellular ROS level and mitochondrial
membrane potential. FACS analysis was carried out to study
intracellular ROS and mitochondrial membrane potential. Briefly,
following different treatments as indicated in figure legends, cells
were collected, washed with PBS and resuspended in serum-free
medium containing the corresponding dye. Intracellular ROS levels
were measured by the addition of 10mM 5-(and-6)-carboxy-2’,
7’-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA; Invitro-
gen) at 37 1C for 20min. Mitochondrial membrane potential was
determined by measuring the retention of the Rh123 dye. The cells
were washed again and subjected to flow cytometry analysis. The
data were processed with FlowJo.

Western blot analysis. Harvested cells were washed with PBS,
lysed with 1% SDS to break down the membranes and then
immediately heated to 95 1C for 20min. The samples were
centrifuged at 12 000 g for 15min to collect the supernatant, and
the protein concentrations were assessed with a bicinchoninic acid
protein assay kit (Pierce, Rockford, IL, USA). Samples were run on
SDS-PAGE gels and immunoblotted with the antibodies men-
tioned above.

Plasmids and transient transfection. The constitutively active
Akt plasmid (pUSE-CA-Akt) and the empty vector (pUSE) were
purchased from Upstate (Lake Placid, NY, USA). Cells were seeded
in 24-well plates overnight and transfected for 36 h using FuGENE
HD transfection reagent following the manufacturer’s instructions
(Roche, Indianapolis, IN, USA).

Tumour xenograft and TUNEL assay. Animal experiments were
conducted according to the guidelines of the Laboratory Animal
Center of Wuhan University College of Life Sciences. Six-week-old
male athymic nude mice (BALB/c, nu/nu) were purchased from
the Model Animal Research Center (Changsha, China). All
qualified mice were injected in the right flank with 2� 107

HCT116 cells suspended in 0.2ml of PBS. Tumour growth and
body weight of the mice were monitored every other day. Five days
later, mice bearing tumours reaching about 50mm3 were randomly
divided into four experimental categories (N¼ 7) to receive the
following treatments by gavage every other day for 3 weeks: (i)
0.1% sodium carboxyl methylcellulose; (ii) 25mg kg� 1 body
weight of sorafenib; (iii) 30mg kg� 1 body weight of tetrandrine;
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and (iv) 25mg kg� 1 body weight of sorafenib and 30mg kg� 1

body weight of tetrandrine. Tumour volumes were calculated with
the following formula: p/6� large diameter� (small diameter)2.
After the treatment, the mice were killed, and the tumours were
excised for analysis.

The TUNEL assay was used to detect DNA strand breaks
labeled with fluorescein. The tumour tissue samples were sectioned
and treated according to the manufacturer’s directions (Roche) and
then inspected under a fluorescence microscope (Olympus, Tokyo,
Japan) to identify blue DAPI staining at 460 nm and green
fluorescence (apoptotic cells) at 520 nm.

Malondialdehyde (MDA) assay. Tumour tissues were extracted
from all mice killed after the 3-week treatment. For the MDA
assay, tissue proteins of tumour xenograft were prepared according
to the description in the Lipid Peroxidation MDA assay kit
(Beyotimes, Nantong, China). The MDA concentration of each
sample was detected by multimode microplate readers (Spectram-
Max M5; Molecular Devices, Sunnyvale, CA, USA) at 532 nm,
using 490 nm as a control.

Statistical analysis. Results are expressed as the mean±s.d. of
three independent experiments unless otherwise indicated. Levels
of significance were evaluated by two-tailed paired Student’s t-test,
and Po0.05 was considered statistically significant.

RESULTS

Combination of sorafenib and tetrandrine showed synergistic
antitumour activity. Although sorafenib could induce apoptosis
in various human tumour cell lines, many cancer cells showed

resistance to the treatment. Figure 1A shows that human HCC cell
lines BEL7402 and FHCC98 and human colorectal carcinoma cell
lines RKO and HCT116 did not exhibit a significant increase in cell
death after a 72-h treatment with 2–6 mM of sorafenib (except for
HCT116 in 6 mM). Similarly, tetrandrine also did not kill cancer
cells at low concentrations (Figure 1B), which is consistent with
our previous reports (Gong et al, 2012a). Interestingly, a synergistic
antitumour activity was observed at 4mM sorafenib in combination
with 6mM tetrandrine in the cancer cells after 72 h of treatment
(Figure 1C and Supplementary Figures S1 and S2). In contrast,
immortalised non-malignant human mammary epithelial cells
(HBL100) and normal human hepatic cells (L02) were less sensitive
to this combined treatment (Figure 1D). Further analysis of long-
term cell survival by the colony-formation assay showed that the
combination of sorafenib and tetrandrine dramatically decreased
the number of colonies formed by BEL7402 and HCT116 cells
(Figure 1E). In addition, the cell-cycle detection results suggested
that no significant changes had been found on the levels of cell
cycle for combination of sorafenib and tetrandrine, which
indicated that the cell-cycle alteration is not a mechanism to have
an effect on the number of colonies (Supplementary Figure S3).
These data demonstrate that the combination treatment is
therapeutically effective against cancerous cells and minimally
toxic to normal cells.

Combination of sorafenib and tetrandrine induced caspase-
dependent apoptosis in cancer cells. To determine whether the
combination treatment with sorafenib and tetrandrine induces
apoptosis in cancer cells, BEL7402 and HCT116 cells were treated
with either 4 mM sorafenib or 6 mM tetrandrine alone or in
combination and then stained with PI. Flow cytometry analysis
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Figure 1. The combination of sorafenib and tetrandrine showed synergistic antitumour activity. Data are representative of values from at
least three independent experiments. Cell viability was determined by the trypan blue dye-exclusion assay after treatment for 72 h. (A) Treatment
of cancer cells with increasing concentrations of sorafenib (0, 2, 4, 6 mM) minimally affected cell viability. (B) No cytotoxic effect was observed
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dishes from the colony-formation assay. The clonogenic assay was performed as described in Materials and Methods. The results shown here are
representative of three independent experiments.
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revealed that cells underwent apoptosis after the 72-h combination
treatment (Figure 2A). To further confirm these findings, we
determined the effects of the combination treatment on the
activation of various caspases, which is essential for both the
extrinsic and intrinsic apoptotic pathways, and PARP cleavage,
which serves as a marker of cells undergoing apoptosis. Western
blot results showed that a combination of 4 mM sorafenib and 6 mM
tetrandrine effectively induced PARP cleavage and activated
caspase-8, caspase-9 and caspase-3 (Figure 2B). The results of
caspase activity test further showed the combination treatment
activated caspase-9 and caspase-3 (Supplementary Figure S4).
Furthermore, pretreatment with the pan-caspase inhibitor z-VAD-
fmk significantly blocked cell death in BEL7402 and HCT116 cells
(Figure 2C), suggesting that the apoptotic response induced by
sorafenib plus tetrandrine was at least partially caspase-dependent.

The Bcl-2 family of proteins, which includes the subfamilies of
anti-apoptotic, pro-apoptotic and BH3-only proteins, has central
roles in cell death regulation during chemotherapy (Hu et al, 2008;
Leibowitz and Yu, 2010). In this study, we examined the protein
levels of a few Bcl-2 family members and found that the
combination of sorafenib and tetrandrine dramatically decreased
Mcl-1 and Bcl-2 levels. The other proteins were regulated
differently in BEL7402 and HCT116 cells (Figure 2D).

ROS were involved in cellular apoptosis induced by the
combination of sorafenib and tetrandrine. ROS are important
products of the mitochondria. They take part in the regulation of
physiological cell signaling but might cause cell death if produced
excessively (Vandamme et al, 2012; Gong et al, 2012b).
Intracellular ROS generation is crucial for chemotherapeutic
agent-induced apoptosis in various cancer cells (O’Connor et al,
2012). Sorafenib alone dose-dependently induces the generation of
ROS in tumour cells in vitro and in vivo (Coriat et al, 2012).
Therefore, we next determined whether the combination drug

treatment could produce abnormal levels of ROS in BEL7402 and
HCT116 cells. Using H2DCFDA-based detection and flow
cytometry, ROS accumulation was observed after treating cells
with either single agents or the combination of sorafenib and
tetrandrine. However, the combination treatment resulted in
significantly higher levels of intracellular ROS compared with the
single-agent treatments (Figure 3A). To determine whether
excessive ROS generation is involved in apoptosis, BEL7402 and
HCT116 cell viabilities were assessed after the combination
treatment with sorafenib and tetrandrine in the presence or
absence of ROS scavengers NAC and Tiron. The results indicated
that not only was ROS generation markedly abrogated by NAC
after the combination treatment but NAC also rescued cells from
combination treatment-induced cell death (partial rescue for
BEL7402 cells and nearly complete rescue for HCT116 cells,
Figure 3B and C). Additional experiments showed that combina-
tion treatment-induced cleavage of PARP and caspase-9 was also
inhibited by pretreatment with NAC, consistent with our cell
survival data (Figure 3C and D). Thus, these results suggest that
intracellular ROS have an essential role in cellular apoptosis
induced by sorafenib plus tetrandrine.

Mitochondrial depolarisation was required in combination
treatment-induced apoptosis. Mitochondria have a critical role
in regulating cell physiology and cell survival, thus making them
integral to many human diseases (Osiewacz et al, 2010). Excessive
production of ROS leads to mitochondrial membrane depolarisa-
tion, causing a reduction in the membrane potential (Dcm) and an
increase in the permeability of the outer membrane (Zorov et al,
2006). Consequently, proapoptotic proteins such as cytochrome c
are released and ATP synthesis is decreased (Garcia-Ruiz et al,
2000; Tait and Green, 2010), which are considered as triggers for
the intrinsic cell death pathway. A variety of chemotherapeutic
agents, as well as radiation, can directly target mitochondria and
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induce apoptosis (Huang et al, 2009; Santana et al, 2009). Therefore,
we examined whether mitochondrial events were associated with
apoptosis induction by sorafenib plus tetrandrine in cancer cells.
FACS analysis showed that the combination treatment decreased
membrane potential in both the cell lines, but the effect was more
dramatic in HCT116 cells than in BEL7402 cells (Figure 4A).
However, when the cells were pre-incubated with a mitochondrial
membrane potential stabiliser, CsA, cells’ death was partially
abrogated (Figure 4B and C). Therefore, we believe that
mitochondrial depolarisation is necessary in combination treat-
ment-induced apoptosis. In addition, we also observed that
cytochrome c was released into the cytoplasm from the
mitochondria, and ATP production was reduced when cells
were treated with sorafenib plus tetrandrine (Figure 4D and E).
Therefore, cellular apoptosis induced by the combination treat-
ment is mitochondrially mediated.

Combination treatment induces cancer cell apoptosis through
inhibition of Akt activation. Our previous reports have demon-
strated that tetrandrine can significantly inhibit the activity of Akt
(Liu et al, 2011). Akt is a critical kinase that regulates a variety of
biological processes, including survival, proliferation, apoptosis
and differentiation through downstream signal transduction
cascades (Li et al, 2006; Zhang et al, 2011; Sheppard et al, 2012).
To examine the role of Akt activity in combination treatment-
induced cell apoptosis, we first evaluated the level of phosphory-
lated Akt, which represents the active form. As shown in
Figure 5A, the combination treatment dramatically suppressed
Akt activation. However, ectopic expression of Akt (Figure 5B)
partly abrogated combination treatment-induced apoptosis in
BEL7402 and HCT116 cells (Figure 5C). These results suggested
that Akt was most likely involved in cellular apoptosis induced by
sorafenib plus tetrandrine.

To determine the relationship between ROS generation and Akt
inhibition in the combination treatment-induced cell apoptosis, we
performed western blot analysis of Akt activity in the presence of

an ROS scavenger. The results indicated that NAC partially
restored both total and phosphorylated Akt levels when cells were
treated with sorafenib plus tetrandrine (Figure 5D). By contrast,
when we upregulated Akt activity through ectopic expression, ROS
levels were not obviously diminished in the presence of sorafenib
plus tetrandrine (Figure 5B and E). These results suggested that
ROS acted upstream of the Akt signaling pathways in our
treatment model.

Combination of sorafenib and tetrandrine showed synergistic
antitumour activity in an in vivo xenograft model. To
investigate the synergistic antitumour effects of sorafenib plus
tetrandrine in vivo, nude mice bearing established HCT116 tumour
xenografts were gavaged with vehicle, sorafenib (25mg kg� 1 body
weight), tetrandrine (30mg kg� 1 body weight) or both compounds
(sorafenib 25mg kg� 1 body weight and tetrandrine 30mg kg� 1

body weight ) every other day for 22 days. The results showed that
the combination treatment strongly inhibited tumour growth
compared with vehicle or single-agent treatments (Figure 6A).
Consistent with tumour volumes, the average tumour weights
associated with vehicle, sorafenib, tetrandrine and the combination
therapy were 1.08, 0.90, 0.96 and 0.52 g (*Po0.05), respectively
(Figure 6B). Moreover, we found no losses in body weights
(Supplementary Figure S5). Therefore, these results showed that
the combination therapy was synergistically effective against
tumours and caused minimal damage to normal cells. Moreover,
the level of the lipid peroxidation product MDA, used as a
presumptive measure of ROS-mediated injury, was increased in the
combination therapy group compared with the other groups
(Figure 6C). TUNEL assay further showed a significant increase in
the number of apoptotic cells in the tumour tissues from mice
treated with both compounds in comparison with tissues from
mice that received single-agent treatments (Figure 6D). Taken
together, these data suggested that the in vivo antitumour activity
of sorafenib plus tetrandrine was reflected by a highly synergistic
ability to induce cancer cell apoptosis.
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Figure 4. Mitochondrial depolarisation was necessary in combination treatment-induced apoptosis. Cells were treated with sorafenib (4 mM)
in combination with tetrandrine (6 mM) for 72 h. (A) Mitochondrial membrane potential was determined by Rh123 staining and flow cytometry.
(B) BEL7402 cells were treated with sorafenib and tetrandrine alone or in combination with 2 mM CsA for 72 h, and cell viability was assessed by
the trypan blue dye-exclusion assay (**Po0.01). (C) BEL7402 cells were treated in the presence or absence of 2 mM CsA for 72 h and then subjected
to flow cytometry analysis of cellular apoptosis (**Po0.01). (D) Western blot analysis of cytochrome c release from mitochondria (**Po0.01).
(E) Detection of relative ATP level by ATP Assay Kit according to the manufacturer’s protocol on a luminometer. The ATP level of untreated cells
was set at 100%.
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DISCUSSION

The Ras-Raf-MEK-ERK pathway has a critical role in tumourigen-
esis and targeted therapies, because it represents a common
downstream pathway for several key tyrosine kinase receptors that
regulate tumour cell proliferation, apoptosis and differentiation
(Friday and Adjei, 2008; Shin-Kang et al, 2011; Santarpia et al,
2012). Sorafenib is a type of tyrosine kinase inhibitor used in the
clinical treatment of certain solid cancers (Walker et al, 2009;
Gradishar, 2012; Oh et al, 2012; Zhang et al, 2012), mainly exerting
its antitumour effect through the induction of apoptosis. In the
present study, we demonstrated that sorafenib in combination with
tetrandrine induced caspase-dependent apoptosis in liver and
colon cancer cells, yet non-malignant cells are less sensitive to the
treatment. Mechanistically, this combination treatment-induced
cancer cell apoptosis occurred mainly through the mitochondrial
death pathway, as manifested by the activation of caspase 3 and
caspase 9, early releasing of cytochrome c, loss of the mitochondrial
membrane potential and the accumulation of intracellular ROS
that were primarily generated in the mitochondria. Consistent with
the in vitro results, sorafenib plus tetrandrine also showed
considerable synergistic antitumour activity and low toxicity in
our in vivo xenograft model.

The cells are undergoing multiple forms of dynamic process
after drug treatment. And there are diverse mechanisms targeting
the cell death pathway. According to our study, ROS and
mitochondrial depolarisation were involved in cellular apoptosis
induced by the combination of sorafenib and tetrandrine. But NAC
and CsA only partially improved the cell viability induced by the
combination treatment which indicated that probably there are
other ROS-independent mechanisms and non-mitochondrial
dysfunction for the cell death induced by the combination therapy
(Figure 3C and D and Figure 4B and C), which need to be further

explored. Our previous studies demonstrated that tetrandrine
treatment resulted in apoptosis at a high concentration (20–30 mM)
(Liu et al, 2011) and autophagy at a low concentration (5–10 mM) in
human HCC cells (Gong et al, 2012a). Autophagy is a double-
edged sword for tumours. It contributes to cancer cell survival
under low nutrient conditions and resistance to anti-cancer
treatments, while both autophagy-inhibiting and -inducing genes
might be promising molecular targets for anti-cancer agents
(Shintani and Klionsky, 2004; Kondo et al, 2005; Maiuri et al, 2009).
In the present experimental model, tetrandrine alone also induced
considerable cellular autophagy, but the combination treatment
mainly induced apoptosis. Whether the apoptotic response was the
result of tetrandrine-induced autophagy is not yet known, but
cell death could not be blocked by the autophagy inhibitor
3-methyladenine or chloroquine (Supplementary Figure S6), which
suggests that tetrandrine combination with sorafenib-induced cell
death is probably unrelated to autophagic cell death.

Generation of intracellular ROS seemed to be the main
mechanism of apoptosis induction by the combination treatment
because the ROS scavenger NAC could efficiently prevent cell
death. In addition, Akt might also be involved in apoptosis,
because sorafenib plus tetrandrine dramatically suppressed the
phosphorylation of Akt, and ectopic overexpression of Akt partly
rescued the cells from death. Moreover, activation of Akt most
likely acted downstream of ROS production. Indeed, besides
inhibiting Akt activation, the combination treatment also repressed
the activation of certain MAP kinases, including ERK and p38
(data not shown). It has been established that sorafenib blocks the
Raf-MEK pathway and inhibits ERK activation. To mimic
sorafenib-mediated inhibition of ERK, PD98059, a potent and
selective inhibitor of MEK/ERK kinase, was used in combination
with tetrandrine to treat BEL7402 and HCT116 cells
(Supplementary Figure S7A). The two compounds acted synergis-
tically to kill the cancer cells, implying that suppression of ERK
activation may have a role in the antitumour activity of sorafenib
plus tetrandrine. The detailed mechanism behind ERK inhibition
still needs further investigation. In comparison, a combination of
the p38 kinase inhibitor SB 203580 and tetrandrine could not
induce apoptosis, suggesting that apoptotic induction by sorafenib
plus tetrandrine does not involve p38 inactivation (Supplementary
Figure S7B).

Bcl-2 family proteins have a pivotal role in the regulation of the
intrinsic apoptosis pathway (Pritchard et al, 2011; Vogler, 2012).
Several groups have shown that sorafenib kills human cancer cells
through a mechanism involving downregulation of the antiapop-
totic Bcl-2 family member Mcl-1 (Katz et al, 2009; Huber et al,
2011). In the present study, we also investigated the effects of
sorafenib and tetrandrine alone or in combination on Bcl-2 family
proteins. We found that sorafenib downregulated Mcl-1 and
upregulated Bim, which are consistent with other reports.
Sorafenib or tetrandrine alone had little effect on the expression
of the Bcl-2 protein, but the combination treatment significantly
reduced Bcl-2 expression (Figure 2D). Whether Bcl-2 inhibition is
related to apoptosis induction needs to be further investigated.
Previous reports indicate that the absence of Bax blocks apoptosis
and increases drug resistance in many cancers (McCurrach et al,
1997; Chipuk et al, 2004; Letai, 2008). In this study, we found that
HCT116 cells with Bax knocked out (Bax� /� ) were not sensitive
to the combination treatment with sorafenib and tetrandrine as the
HCT116 wild-type cells. Therefore, Bax is most likely partly
involved in our therapeutic model (Supplementary Figure S8).

In summary, combining sorafenib with different targeted
therapies has been shown to improve its antitumour efficacy in
preclinical studies. Our present findings reveal that sorafenib acted
highly synergistically with tetrandrine against tumour cells in both
in vitro cell culture experiments and an in vivo xenograft model.
The potential molecular mechanism is the induction of
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Figure 6. Sorafenib and tetrandrine showed synergistic antitumour
activity in the in vivo xenograft model. HCT116 cells were inoculated
into mice to establish a tumour model as indicated in Materials and
Methods. Mice bearing tumours (7 mice per group) were treated with
vehicle, sorafenib (25mgkg� 1), tetrandrine (30mgkg� 1) or sorafenib
plus tetrandrine every other day for 3 weeks. (A) Mean tumour volumes
at given time points. (B) The weights of extracted tumours are
presented on a scatter plot; the bars represent the s.d. *Po0.05.
(C) Tumour tissue proteins exacted from HCT116 xenografts were
subjected to the MDA assay. *Po0.05. (D) Apoptosis analysis of tumour
tissues by TUNEL staining.
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mitochondria-mediated apoptosis through the ROS/Akt pathway.
Potentially, this type of combination treatment can not only reduce
the toxic side effects of drugs on the patients but also prevent
primary and acquired resistance to sorafenib. Therefore, our data
provide a novel approach that broadens the application of
sorafenib in clinical therapies.
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