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S Bomken1,2, K Fišer1, O Heidenreich1 and J Vormoor*,1,2

1Northern Institute for Cancer Research, Paul O’Gorman Building, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK ;
2Department of Paediatric Oncology, Royal Victoria Inf irmary, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK

The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare
population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a
recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental
models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of functional plasticity and clonal
evolution must be incorporated into the traditional models. Slowly the genetic programmes and biological processes underlying stem
cell biology are being elucidated, opening the door to the development of drugs targeting the CSC. The aim of ongoing research to
understand CSCs is to develop novel stem cell-directed treatments, which will reduce therapy resistance, relapse and the toxicity
associated with current, non-selective agents.
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Over the last 15 years, major advances have been made in
identifying the malignant population responsible for tumour
maintenance and initiation of relapse. Many names have been
used to identify this population but the term cancer stem cell
(CSC) has received broad acceptance. Cancer stem cells have been
defined as ‘a cell within a tumor that possess (sic) the capacity to
self-renew and to cause the heterogeneous lineages of cancer cells
that comprise the tumor’ (Clarke et al, 2006). These two definitive
biological properties are what make the CSC the prime candidate
for initiation of relapse, thereby becoming a crucial target for the
development of novel therapies (Figure 1).

Although accurately portraying the ability of this population to
self-renew and populate an entire tissue, albeit a malignant one,
the term CSC has led to some confusion. The CSC is commonly
assumed to have developed from a normal tissue stem cell and, as
such, thought to be the cell from which a malignancy originated.
There is an ongoing debate over whether CSCs represent a mature
tissue stem cell which has undergone malignant change or whether
more differentiated cells re-initiate a ‘stemness’ programme as
part of, or following, malignant transformation. This question will
need to be answered for each malignancy in turn. Until we have
this information, it is important to consider independently the
concepts of cell of origin and cancer-propagating stem cell, as
defined purely by self-renewal and capacity to differentiate.

In this minireview, we will consider the history of CSC research,
the successes achieved so far and the translational importance of
understanding CSC biology. The original studies in CSC biology
were undertaken by John Dick in Toronto, who identified a
hierarchy of stem cell potential, which mimicked the normal
haematopoietic stem cell (HSCs) hierarchy. It is because this work
laid the foundations for all subsequent CSC research, as well as our

detailed understanding of normal haematopoiesis, that many of
the global lessons within this subject are taken from haemato-
logical malignancies. Nevertheless, these lessons are, frequently,
equally pertinent to solid tumour stem cell biology and we will
endeavour to show the parallels in this review.

THE HISTORY OF CSC RESEARCH

That many malignancies, both solid and haematological, show
significant physical heterogeneity has been known for many years,
indeed since the earliest pathological assessments were under-
taken. More recently this physical heterogeneity has been
complemented by increasing awareness of variation in both
molecular and functional biology, as assessed by in vitro and
in vivo assays. These differences have driven the search for the
population within a heterogeneous malignancy, which is able to
maintain the disease, and crucially, initiate relapse once clinical
remission has been achieved. Experimentally, this population is
identified by its ability to serially repopulate a malignancy, either
in vitro or in vivo.

The notion that only a small proportion of a malignant
population might be able to transfer a tumour developed during
early transplantation experiments. These have recently been
discussed extensively by Dick (2008). Furth and Kahn (1937)
inoculated inbred mice with single cells derived from a leukaemia
arising in the same inbred strain. They identified that only a small
number, approximately 5%, of inoculations resulted in successful
transplantation. Solid tumour transplantation work, conducted
throughout the 1950’s, intended primarily to answer the question
of whether malignancy was a virally transmitted phenomenon.
Retrospectively, these studies provided further evidence that
although single-cell inoculation could initiate a malignancy in a
recipient animal, this was achieved on only a minority of occasions
(Ishibashi, 1950; Hewitt, 1953; Makino, 1956).
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During the 1960’s the spleen colony-forming assay, developed by
James Till and Ernest McCulloch, was first used to accurately
enumerate the proportion of murine lymphoma cells capable of
colony formation in vivo (Bruce and Van Der Gaag, 1963). This
work again showed that colony formation was restricted to
approximately 1% of transplanted cells. Furthermore, the path
was set for the development of what we now recognise as the
concept of the CSC. Splenic colonies, each of which they presumed
had developed from a single malignant cell, were able to transplant
lymphoma on to a second generation of recipient mice. These early
serial transplantations suggested that a small proportion of
malignant cells were able to self-renew to give rise to a very large
number of malignant progeny. However, more recent studies have
shown that this is not the case across all malignancies (Kelly et al,
2007; Quintana et al, 2008; le Viseur et al, 2008).

MODELS OF TUMOUR HETEROGENEITY AND THEIR
PLACE IN THE CSC MODEL

Tumour heterogeneity could now be shown at the functional level
in addition to the morphological level. Given a presumed single
cell of origin for any individual malignancy, the basis for this
functional heterogeneity has been explained by one of two models.
The stochastic model predicts that a malignancy is composed of a
homogeneous population of cells, which generate their hetero-
geneity in response to particular combinations of endogenous and

exogenous factors. Endogenously these would include gene dosage
effects, transcriptional and translational control mechanisms,
whereas exogenously cytokine concentrations, cell–cell inter-
actions and particularly niche environment would all be important
(Figure 2A). The hierarchy model predicts that a malignancy is
organised in a manner analogous to the normal tissue hierarchy
with cancer/tissue stem cells able to produce identical daughter
stem cells with self-renewal capacity, and committed progenitor
daughter cells with limited, although potentially still significant,
potential to divide. With greater differentiation, so reproductive
potential diminishes (Figure 2B).

It has recently been argued by Shackleton et al (2009) that the
hierarchy model, with a rare CSC at the apex, is essentially
synonymous with the CSC model. Heterogeneity in malignancies
not fitting this model results from a random process of genetic
changes and selective advantage. They further argue that the
increasing frequency of tumour-propagating cells in the most
sensitive modern assays, shows that we should avoid trying to fit
all malignancies to the CSC model. Although it is true to say that
CSC theory may not be applicable to all malignancies, it may be
equally true that not all CSCs fit the hierarchy model. Indeed, both
the hierarchy and stochastic models are compatible with CSC
theory. In the stochastic model, stemness exists as a functional
phenotype, which could be shown by any member of the malignant
population given the appropriate endogenous and exogenous
factors. Most plausibly, having occupied a suitable niche, a cell
now able to express its self-renewal programme and producing
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Figure 1 The cancer stem cell theory of tumour development and relapse initiation. An initial oncogenic event (solid arrow) occurring in a normal cell
may create a precancerous cell, or directly result in malignant transformation. The oncogenic event is likely to require a number of supporting genetic/
epigenetic events (hashed arrows). By the point of clinical diagnosis, the heterogeneous tumour contains cells which have, or are able to activate their stem
cell programme and may be able to evade standard therapy. Any cancer stem cells evading therapy are able to divide and differentiate to repopulate
the tumour.
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Figure 2 After oncogenesis, induced by an initial event (solid arrow) with or without supporting events (hashed arrow), cells differentiate to form a
heterogeneous tumour. Two models have been proposed to explain this (A and B). The process of clonal evolution (C) is likely to underlie the ongoing
development of certain tumour characteristics such as drug resistance. (A) Stochastic model. Variations in phenotype and biology result from intrinsic and
extrinsic factors including niche interactions (¼ ) and intercellular signalling (m). These signals may be available to any cell at a particular time, with the correct
combination of factors able to initiate the CSC programme, and therefore self-renewal (curved arrows) in any member of the population. (B) Hierarchy
model. A tumour shows a hierarchy analogous to the normal tissue hierarchy, with a restricted pool of cells showing self-renewal (curved arrows) and
differentiation potential. Differentiated tumour cells form the bulk of the tumour mass but are unable to self-renew. (C) Clonal evolution. An ongoing
process, beginning before the clinical presentation, wherein sequential genetic and epigenetic changes result in a polyclonal population with differing survival
potential under the selective pressure of therapy. Clonal evolution may be seen within tumours following either the stochastic or hierarchy model.
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daughter cells which differentiate to populate the bulk malignancy,
becomes a CSC. The stochastic model does not yet predict whether
stemness is found truly within each population, or whether cells
first undergo a process of de-differentiation to a more tissue-
specific stem cell-like phenotype, reacquiring stemness in the
process. This plasticity within a cell lineage, between the CSC and
non-CSC compartments, is known as bi-directional interconvert-
ibility (Gupta et al, 2009). It makes no prediction of stem-cell
frequency but simply argues that with the correct signals, the stem
cell programme can be activated in otherwise non-CSC malignant
cells. In this way it is distinct from the concept of lineage plasticity,
in which, for example, lymphoid to myeloid change may be seen.
Of course, neither one of these models need necessarily be the only
correct model, and it is quite plausible that different malignancies
might fit one or other theory.

Recently, the CSC field has been trying to accommodate a
further biological phenomenon into its models. There is now
convincing evidence that cancer cells, stem cells included, are
subject to a process known as clonal evolution. In clonal evolution,
new clones continuously develop, emerging with new genetic, and
potentially epigenetic, changes. Environmental pressures result in
constantly adapting cancer cell populations (Figure 2C). These
adaptations may change proliferation, metastatic potential or drug
resistance, for example. It is also possible that evolution could
generate novel clones with self-renewal potential, providing a
rather more ‘hard-wired’, albeit evolving, route to the development
of CSCs than does the process of interconvertibility described
above. Both of these processes could be accommodated by the CSC
model, as well as the hierarchical and stochastic models of
heterogeneity.

However, although biological plasticity remains theoretical,
the process of clonal evolution has recently been elegantly shown
in primary and relapsed leukaemias by Mel Greaves’ group in
London (Greaves, 2010), albeit at the level of a limited number
of known targets. Using multi-plexed FISH analysis, Greaves and
co-workers have identified a progressive accumulation of up to
eight genetic changes in single cells. From this they have been able
to determine the complex clonal architecture of individual
leukaemias, showing the process of clonal evolution.

THE FIRST IDENTIFICATION OF CSCs

Having identified the possibility of a cell population with the
ability to initiate an entire ‘tumour’, the next major step in
CSC biology was to identify that population. It was with the
development of fluorescent antibodies, flow cytometry and
associated cell sorting, that the reproducible isolation of pheno-
typically defined cell populations became possible. Furthermore,
the development of mouse strains with profound immuno-
deficiencies enhanced the transplantation of malignancy. With
these developing tools, pioneering work from John Dick’s labo-
ratory in Toronto set what remains the standard for identification
of CSCs. Dick and colleagues showed that, in human acute myeloid
leukaemia (AML), a rare malignant cell with the ability to
repopulate the entire original disease over several transplantations,
implying self-renewal and capacity to differentiate, was only found
within the immature CD34þCD38�, and not the CD34þCD38þ ,
sub-population (Lapidot et al, 1994; Bonnet and Dick, 1997). Blasts
with potential to engraft the recipient immunodeficient mice were
identified with a frequency of between 0.2 and 200 per million
unsorted mononuclear cells, but in the CD34þCD38� sub-
population, their frequency rose to between 1 in 100 000 and
1 in 40.

The CD34þCD38� immunophenotype is similar to that of
normal HSCs, providing the intriguing possibility that this normal
population might be the cell population in which the disease arises.
Subsequent work using colony-forming assays and lentiviral vector

tracking identified not only cells able to repopulate the disease
over several transplantations, but cells repopulating only over
a single transplantation as well as populations of apparently
quiescent stem cells which appeared only after serial transplan-
tation (Hope et al, 2004). This hierarchy closely mimicked the
normal process of haematopoietic precursor development, in
which increasing differentiation is accompanied by diminishing
self-renewal, and suggesting that the hierarchy model of tumour
heterogeneity might explain the CSC biology of childhood AML.

CANCER STEM CELLS IN CHILDHOOD ACUTE
LYMPHOBLASTIC LEUKAEMIA (ALL)

The situation in childhood B cell precursor ALL has been less
straightforward to define. Early studies showed that in both high
and standard risk leukaemias, as with AML, populations with the
HSC-like immunophenotype CD34þCD19� contained the only
source of ALL stem cells (Cobaleda et al, 2000; Cox et al, 2004).
Subsequent studies have failed to confirm these findings. Indeed
two groups have shown that in both the high risk Philadelphia
chromosome positive and standard risk TEL/AML1-positive ALL,
the B cell restricted population, expressing the B lymphoid
differentiation marker CD19, is the only one to harbour ALL stem
cells (Castor et al, 2005; Hong et al, 2008).

Recently, work from our own laboratory and others’, has shown
that, as with AML, it is possible to isolate malignant populations
with phenotypes corresponding to all normal developing B cell
precursors including, in high risk disease, those with HSC pheno-
type CD34þCD19� (Castor et al, 2005; Hotfilder et al, 2005).
In contrast to AML, however, self-renewal, as shown by serial
transplantation in immunodeficient mice, is not restricted to the
HSC-like CD34þCD19� population, but is found in populations
corresponding to a range of normal B precursor populations
(Kong et al, 2008; le Viseur et al, 2008). Indeed, we have shown
that cells from the immunophenotypically most ‘mature’ popula-
tion, CD34�CD19þ , were able to recapitulate the entire disease
phenotype, including the most ‘immature’ CD34þCD19� blasts.
We were also able to show that transcriptional differences exist
between the blast populations, with those showing a more mature
cell surface immunophenotype, also transcribing developmentally
appropriate genes including late B cell transcription factors and
immunoglobulin gene products. The debate continues, however,
over how best to explain the differences between these most recent
findings and those of earlier studies, but the hierarchy model,
which seems to describe AML so faithfully, does not seems to be
suitable in B precursor ALL.

SOLID TUMOUR CSCS

As with B precursor ALL, the biology of CSCs in solid malignancies
remains largely undefined. The first solid CSCs were identified in
breast tumours in 2003 (Al-Hajj et al, 2003), since when CSCs have
been isolated from brain (Hemmati et al, 2003; Singh et al, 2003),
colon (O’Brien et al, 2007; Ricci-Vitiani et al, 2007), melanoma
(Fang et al, 2005), pancreatic (Hermann et al, 2007; Li et al, 2007),
prostate (Collins et al, 2005), ovarian (Bapat et al, 2005; Alvero
et al, 2009), hepatic (Ma et al, 2007), lung (Ho et al, 2007; Eramo
et al, 2008) and gastric cancers (Fukuda et al, 2009; Takaishi et al,
2009). Progress, however, has been complicated by the lack of
clearly defined developmental surface markers specific for
individual tumour types. Instead, isolation of many solid CSCs
has been carried out using a number of adhesion markers
including CD44 and CD24, or direct or indirect evidence of
multidrug efflux proteins including ABCB5. CD133 (Prominin1),
an apical plasma membrane protein found predominantly on
embryonal epithelial structures, was used to isolate neural CSCs
from a range of paediatric brain tumours (Singh et al, 2003).

Understanding the CSC

S Bomken et al

441

British Journal of Cancer (2010) 103(4), 439 – 445& 2010 Cancer Research UK



CD133 is expressed in many different types of stem cells and is
thought to be involved in the attachment of stem cells to their
niche. It provided the first solid tumour CSC marker relating to the
stem cell phenotype of the host tissue. Since then, CD133 has
continued to identify tumour cells with self-renewal capacity in a
number of other solid malignancies, although there is ongoing
debate as to quite how universal a marker it provides within the
solid tumour CSC field (Wu and Wu, 2009).

To complicate the matter further, there have, as in childhood
ALL, been a number of conflicting findings, with different groups
isolating CSCs from differing, and occasionally ‘opposing’ cell
fractions. Two principle theories exist to explain these variations.
The first is that histologically similar tumours may have differing
biology and that this is reflected in both the phenotype of
CSCs and their presence or absence in a particular tumour.
Alternatively, variations in experimental design may account for
the conflicting findings in both haematological and solid tumour
CSC research.

The biology of these CSC populations and, importantly, the
niche specific to each of them, is the object of much ongoing
research. Although a comprehensive review of the field is beyond
the scope of this minireview, we would like to briefly mention an
important biological area, that of epithelial-to-mesenchymal
transition (EMT). Epithelial-to-mesenchymal transition is the
transformation of highly ordered, communicating, epithelial cells
to rather less organised mesenchymal cells, with the capacity to
survive without cell –cell adhesion, to migrate and invade
neighbouring tissues. Along with its corollary, mesenchymal-
to-epithelial transition, EMT is an essential component of normal
embryological development. Increasing interest in EMT has shown
that this process may confer these key ‘malignant’ properties on
cancer cells. Moreover, immune-mediated induction of EMT in
epithelial breast cancer cells resulted in a mesenchymal population
with the breast cancer CSC immunophenotype CD24�/loCD44þ as
well as the capacity to repopulate the malignancy after transplan-
tation of low cell numbers. This was in contrast to the original
epithelial cell type which required 1000-fold higher cell dose to
initiate a malignancy (Santisteban et al, 2009). Epithelial-to-
mesenchymal transition and its relevance to malignancy has
recently been reviewed in detail (see Thiery et al, 2009) and may
prove to be a key biological process in epithelial CSC biology.

THE IMPORTANCE OF THE EXPERIMENTAL ASSAY

Several recent publications have challenged the frequent assertion
that CSCs are necessarily a rare phenomenon, by showing that
assay conditions can have a significant effect on the engraftment of
transplanted malignancies. Limitations on the ability of recipient
microenvironmental/niche factors to successfully provide the
survival and growth signals required to support engraftment are
compounded by damage to cells during isolation and preparation,
the effect of residual recipient immunity and, in haematological
malignancies, a lack of homing factors to allow leukaemic stem
cells to engraft a suitable bone marrow niche environment.

The development of mouse strains more heavily immunosup-
pressed than the scid and NOD/scid mice used in early AML
studies has been a major step forward. NOD/scid mice with
additional knock out of the IL2-R g chain (NSG and NOG mice)
lack all B, T and NK cells and have deficiencies in macrophage and
complement function and are the current gold standard species.
The enhanced immunosuppression is believed to result in
improved levels of engraftment and consequent increase in
CSC prevalence. However, recent work looking at the effects of
residual immune function on clearance of antibody-labelled cells,
has shown that even these most immunosuppressed species are
able to clear both normal and malignant cells transplanted
intravenously, thus reducing engraftment, although to a lesser

extent than traditional NOD/scid mice (Taussig et al, 2008). Of
particular note is the ability of residual immune function to clear
AML blasts labelled with certain anti-CD38 antibodies, commonly
used for immunophenotypic sorting, particularly in AML stem
cell research. This Fc receptor-mediated clearance can be reduced
by further immunosuppression with either IVIG or the anti-IL2
receptor antibody, anti-CD122, or by direct injection into the
bone marrow. With these modifications, our group and others
(data from Curt Civin’s and Jean-Pierre Bourquin’s laboratories)
have presented data at recent meetings of the American Society
of Haematology showing xeno-engraftment of ALL with as few as
10–100 transplanted cells.

Similar experimental caveats need also to be considered in the
solid tumour CSC field. The melanoma stem cell, initially shown to
be rare with a frequency of 1 in 106 cells using a NOD/scid
xenograft model, was found to be as frequent as 1 in 4 with the
use of the NSG mouse and an experimentally enhanced host
microenvironment (Quintana et al, 2008). Additional improve-
ments in transplantation techniques such as orthotopic transplan-
tation and co-engraftment with human stromal cells or artificial
supporting matrices are increasingly being used to improve the
sensitivity and clinical accuracy of the immunodeficient mouse
model. Furthermore, the development of in vivo bioluminescent/
fluorescent imaging holds great promise for the real time, in vivo
monitoring of disease spread and response to therapy (Chanda
et al, 2009; Kondo et al, 2009).

GENETIC PATHWAYS AND THE BIOLOGY OF CSCs

Understanding the genetic basis for cancer development is an
important step in the development of novel therapies targeting the
CSC. Numerous genes and signalling pathways connected with
stem cell biology have been identified as important in cancer
biology. Amongst others, NOTCH, HOX genes, STAT5, SHH, FLT3,
PI3K/AKT/mTOR/NF-kB and telomerase have all been reported. An
example of such a pathway is centred around BMI1. BMI1 is a
Polycomb group protein, which together with Ring1 proteins, is
part of PRC1 complex that has histone H2A-K119 ubiquitin E3
ligase activity. BMI1 has a role in HOX gene (HOXC13) silencing by
H2A ubiquitylation (Cao et al, 2005). BMI1 is also known to be
important in the regulation and maintenance of proliferative/self-
renewal potential in both normal haematopoietic and leukaemic
stem cells (Park et al, 2003). Upon knockdown of BMI-1, cells
lose their ability to engraft and reconstitute leukaemia in mice
(Lessard and Sauvageau, 2003).

Another pathway altered in multiple malignancies is the WNT
signalling pathway. WNT is a group of secreted signalling proteins
that bind receptor molecules (e.g., Frizzled) on the surface of target
cells. Downstream signalling is mediated by several transducing
proteins (e.g., b-catenin) to activate its target genes, which include
MYC or CCND1 (cyclin D1). Interestingly, WNT can be interlinked
with, as well as converge on, other pathways to activate similar
targets. The strongest evidence of the importance of the WNT
pathway to CSC biology has been reported in myeloid leukaemias.
Zhao et al (2007) have shown the necessity of b-catenin for self-
renewal of both normal hematopoietic stem cells and CSCs in
chronic myeloid leukaemia in a mouse model, whereas more
recently, Wang et al (2010) showed that b-catenin activation is
necessary for myeloid precursor transformation in a HoxA9/Meis1-
transduced model of AML. The WNT signalling pathway has also
been reported to be altered in classical medulloblastoma arising from
ventricular zone stem or progenitor cells, whereas in medulloblas-
tomas arising from the external germinal layer, it is the Hedgehog
pathway which is activated (for a review see de Bont et al, 2008).

Critical to our understanding of CSC biology is understanding the
control of the principle stem cell property – self-renewal.
One exciting source of information on self-renewal is leukaemias
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characterised by fusion genes. A substantial proportion of leukae-
mias result from one of a large number of fusion genes, some of
which are sufficient either, in the case of TEL/AML1, to initiate a
‘preleukaemic stem cell’ phenotype with the ability to self-renew
(Hong et al, 2008), or to initiate frank myeloid malignancy in the
case of MLL/ENL and MOZ/TIF2 (Cozzio et al, 2003; Huntly et al,
2004). The ability of some fusion genes to drive malignant
transformation, and therefore presumably to initiate the self-renewal
programme, has made them ideal candidates for further study.

By creating an Mll/AF9 knock-in model of AML, in which the
fusion gene remained under endogenous promoter control, John
Kersey’s group in Minnesota demonstrated that transformation
occurred only in hematopoietic stem cells and not committed
granulocyte-monocyte precursors as can be achieved with the higher
expression levels resulting from retroviral transduction (Chen et al,
2008). This group showed the upregulation of a programme of genes
involved in stem cell biology including several Hox genes and Meis1,
well-characterised targets of MLL fusion proteins.

More recently, a retroviral transduction model of a number of
MLL fusion genes has been used to identify the transcriptional
programme responsible for the maintenance of a self-renewing
phenotype (Somervaille et al, 2009). Under these expression
conditions, this group defined a leukaemic stem cell maintenance
programme, containing some 560 genes, based on the positive or
negative correlation of gene expression with CSC frequency. This
CSC maintenance programme resembles the committed myeloid
progenitor programme more closely than the HCS programme, but
shares similarities with embryonic stem cells. This programme is
shared with a number of other, poor prognosis, malignancies.

Finally, a novel mechanism for identifying the biology of stem
cell self-renewal and differentiation has very recently been
described. The induction of pluripotency in CSCs may allow
further analysis of mechanisms able to control these critical
pathways including, for example, modification of epigenetic codes
(Miyoshi et al, 2010).

IMPLICATIONS FOR CANCER THERAPEUTICS

To cause relapse, CSCs must have survived primary treatment.
A number of factors may underlie this, including stem cell
quiescence, protected niche environment, upregulated expression
of xenobiotic efflux pumps, enhanced anti-apoptotic and DNA
repair pathways as well as other survival mechanisms.

The relevance of these properties to stem cell survival is
exemplified by the effects of the tyrosine kinase inhibitor imatinib
mesylate in chronic myeloid leukaemia (CML). Chronic myeloid
leukaemia is a stem cell disease par excellence – a rare population of
cells with a HSC-like phenotype are able to self-renew and
differentiate to form all haematopoietic lineages which therefore
harbour the definitive genetic aberration, t(9;22)(q34;q11) – the
Philadelphia chromosome. The fusion product, a tyrosine kinase, is
sufficient to initiate CML. Despite the immense success of Imatinib
and subsequent tyrosine kinase inhibitors, in controlling disease bulk,
a rare population of quiescent stem cells remains inherently resistant
to this therapy (for review see Elrick et al, 2005). A novel strategy for
gaining therapeutic access to these quiescent cells using histone
deacetylase inhibitors in combination with Imatinib has recently been
described (Zhang et al, 2010) and, together with increased under-
standing of the disease sensitivity to Imatinib therapy in the clinical
setting may lead to an improved disease control in CML.

A number of targets with enhanced activity in CSCs have been
identified and investigated therapeutically. The Parthenolide
analogue DMAPT, has been shown in AML. This potent inhibitor
of NF-kB, which is highly active in AML stem cells but not normal
HSCs, results in apoptosis of both AML and CML blast crisis stem
cells, sparing normal HSCs (Guzman et al, 2005). Another example
of CSC-specific targeting is the mTOR inhibitor Rapamicin

(Yilmaz et al, 2006), whereas hTERT has been identified as a
potential target in high-risk infant ALL with the translocation
t(4;11)(q23;q23) (Gessner et al, 2008).

One alternative solution is to target oncogenic fusion genes,
their transcripts or protein products directly where they exist.
Clearly the fusion gene should not be possessed by normal stem
cells, making it an attractive therapeutic target. This approach has,
to date, been hampered by difficulties in the delivery of therapies,
particularly those targeting the fusion transcript by RNA inter-
ference techniques.

Finally, as the importance of the stem cell niche becomes better
understood, targeting this element of the CSC’s biology may prove
possible. Once again, drawing parallels with the well-defined HSC
niche has allowed our understanding of leukaemic stem cell-niche
biology to develop rapidly. Potential targets, including NOTCH
and WNT pathways, the chemokine receptor CXCR4 and adhesion
molecules, are all likely to have a role in the leukaemic stem cell
microenvironment provided by the bone marrow niche (reviewed
in Lane et al, 2009). Outside of haematological malignancies, the
importance of the vascular niche has received most attention.
Vascular recruitment is essential to solid tumour development and
clinical trials of vascular endothelial growth factor receptor
antagonists are providing positive results. A body of research
now supports the importance of the vascular niche to the support
of brain tumour stem cells, raising the possibility that anti-vascular
drugs may be used to disrupt vascular niche–CSC interactions
(reviewed in Ghotra et al, 2009).

The clinical relevance of CSCs has yet to be shown. It is widely
believed that in order to prevent relapse, efficiently targeting the
CSC is an essential objective. If achieved selectively, novel CSC-
targeting drugs may also reduce the toxicity associated with
current, unselective anti-proliferative chemotherapy.

CONCLUSION

The concept of tumour heterogeneity, as well as the belief that ‘only
a small fraction of the tumour cells have the power of proliferation,
or that every cell with such power is subjected to considerable
hazards in the process of being transplanted’ (Hewitt, 1953), has
been known for many decades. However, the last 15 years has seen
rapid progress in the identification and isolation of CSCs.

The xenotransplantation model, developed in John Dick’s
laboratory, has been successfully extended to CSC research in
lymphoblastic leukaemia, as well as a growing number of solid
malignancies. However, many challenges remain, including the
universal adoption of the most sensitive self-renewal assays to
provide consistent and accurate results. An increasing body of CSC
evidence may confirm that a stem cell hierarchy is not applicable
to all tumours, whereas the CSC may turn out to be more common
than initially believed, at least in some malignancies. Indeed, the
absolute frequency may depend not only on the tumour type
or cell of origin, but on the specific oncogenic changes driving
a malignancy’s ‘stemness’ (Heuser et al, 2009). Furthermore,
integrating processes such as plasticity, interconvertibility and
clonal evolution in a tumour-specific manner will lead to
substantially greater complexity in the CSC model. However this
will be critical, as to focus on one stem cell theory at the expense
of others risks discounting biology with therapeutic potential,
in favour of creating a concise model.

The ultimate challenge in coming years will be understanding
the stem cell ‘programme’, particularly the control of self-renewal,
in an attempt to develop novel, stem cell-directed therapies.
An improved understanding of clonal evolution will be critical if
we are to ensure that cancers are not able to evolve mechanisms to
evade our new directed therapies. However, reducing the risk of
relapse and minimising long-term side effects for our patients
should always remain the ultimate goal of understanding the CSC.
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