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Hypoxia-inducible factor-1 (HIF-1) has been reported to promote tumour radioresistance; therefore, it is recognised as an excellent
target during radiation therapy. However, the inhibition of HIF-1 in unsuitable timing can suppress rather than enhance the effect of
radiation therapy because its anti-angiogenic effect increases the radioresistant hypoxic fraction. In this study, we imaged changes of
HIF-1 activity after treatment with radiation and/or an HIF-1 inhibitor, YC-1, and optimised their combination. Hypoxic tumour cells
were reoxygenated 6 h postirradiation, leading to von Hippel-Lindau (VHL)-dependent proteolysis of HIF-1a and a resultant
decrease in HIF-1 activity. The activity then increased as HIF-1a accumulated in the reoxygenated regions 24 h postirradiation.
Meanwhile, YC-1 temporarily but significantly suppressed HIF-1 activity, leading to a decrease in microvessel density and an increase
in tumour hypoxia. On treatment with YC-1 and then radiation, the YC-1-mediated increase in tumour hypoxia suppressed
the effect of radiation therapy, whereas on treatment in the reverse order, YC-1 suppressed the postirradiation upregulation of
HIF-1 activity and consequently delayed tumour growth. These results indicate that treatment regimen determines whether an HIF-1
inhibitor enhances or inhibits the therapeutic effect of radiation, and the suppression of the postirradiation upregulation of
HIF-1 activity is important for the best therapeutic benefit.
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A tumour-specific microenvironment, hypoxia, is associated with
resistance to radiation therapy because the depletion of oxygen
disturbs radiolysis of H2O and reduces the production of reactive
and cytotoxic species, and because radiation-induced DNA
damage is fixed and irrepairable under normoxia (Thomlinson
and Gray, 1955; Brown and Wilson, 2004). In addition to these
chemical mechanisms, a biological mechanism mediated by
hypoxia-inducible factor-1 (HIF-1) has been reported to play an
important role in hypoxia-related radioresistance (Moeller and
Dewhirst, 2006).
Hypoxia-inducible factor-1 is a heterodimeric transcription

factor composed of an a-subunit (HIF-1a) and a b-subunit
(HIF-1b), and its activity is mainly dependent on the stability
and modification of the former (Wang et al, 1995). Under
normoxic conditions, prolyl hydroxylation and subsequent ubiqui-
tination of the oxygen-dependent degradation (ODD) domain of
HIF-1a leads to a rapid degradation of HIF-1a protein with a half-
life of 5–8min (Berra et al, 2001; Jaakkola et al, 2001). On the
other hand, HIF-1a is stabilised and interacts with HIF-1b under

hypoxic conditions (Wang et al, 1995). The resultant heterodimer,
HIF-1, binds to its cognate DNA sequence, the hypoxia-responsive
element (HRE), and induces the expression of various factors
such as vascular endothelial cell growth factor (VEGF; Norris
and Millhorn, 1995; Forsythe et al, 1996; Semenza, 2001).
Vascular endothelial cell growth factor has been reported to
not only induce angiogenesis but also protect endothelial cells
from the cytotoxic effects of irradiation and consequently
increase tumour radioresistance (Gorski et al, 1999; Moeller
et al, 2004; Zeng et al, 2008). Therefore, targeting HIF-1 is expected
to enhance the effect of radiation therapy. Indeed, several
pre-clinical studies showed that the inhibition of intratumoral
HIF-1 activity with an HIF-1 inhibitor, YC-1, significantly
enhanced the therapeutic effect of radiation (Moeller et al, 2004).
Likewise, the elimination of HIF-1-positive cells from solid
tumours with a protein drug, TOP3, or with a gene therapy
strategy had radiosensitising effects (Harada et al, 2002, 2007a; Liu
et al, 2007). However, the inhibition of intratumoral HIF-1 activity
in unsuitable timing may suppress rather than enhance the effect
of radiation therapy; in that the inhibition has an anti-angiogenic
effect and consequently increases the radioresistant hypoxic
fraction (Yeo et al, 2003). To avoid this, it is important to analyse
the relationship between treatment regimen and therapeutic
benefit.
In this study, we performed a series of optical and real-time

imaging experiments using an HIF-1-dependent reporter gene,
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5HRE-ODD-luc (Harada et al, 2007b), and analysed the changes in
intratumoral HIF-1 activity after treatment with radiation and/or
an HIF-1 inhibitor, YC-1. The imaging experiments revealed that
intratumoral HIF-1 activity decreased at 6 h postirradiation, and
then increased and peaked at 18–24 h postirradiation. On the
other hand, YC-1 temporarily but significantly inhibited HIF-1
activity at 24 h post-injection, leading to a decrease in microvessel
density and a resultant increase in tumour hypoxia. We found
that the YC-1-mediated increase in the hypoxic fraction has a
negative impact on the therapeutic effect of radiation when YC-1
is administered first. On the other hand, in the reverse sequence,
YC-1 suppressed the postirradiation activation of HIF-1, leading
to an enhancement of radiation therapy. This study emphasises
the importance of imaging HIF-1 activity and determining the
treatment regimen when combining radiation with an HIF-1
inhibitor.

MATERIALS AND METHODS

Cell culture and reagent

The human cervical epithelial adenocarcinoma cell line (HeLa) was
purchased from American Type Culture Collection (Manassas, VA,
USA). RCC4/Vector and RCC4/VHL, which are human renal cell
carcinoma cell lines (RCC4) stably transfected with pcDNA3 (an
empty vector) and pcDNA3-VHL (a VHL-expressing vector),
respectively, were purchased from DS Pharma Biomedical (Osaka,
Japan). Cells were maintained in 10% FBS-Dulbecco’s modified
Eagle’s medium (D-MEM). For normoxic cultures, cells were
incubated in a well-humidified incubator with 5% CO2 and 95% air
at 371C. For hypoxic cultures, cells were incubated in a Bactron
Anaerobic Chamber, BACLITE-2 (O2 o0.02%; Sheldon Manufac-
turing Inc., Cornelius, OR, USA). YC-1 (Cayman Chemical
Company, Ann Arbor, MI, USA) was dissolved in DMSO at a
concentration of 60mgml�1.

Isolation of stable transfectants

RCC4/Vector and RCC4/VHL were transfected with the plasmid
p5HRE-ODD-luc (Harada et al, 2007b) by the calcium phosphate
method (Chen and Okayama, 1987) to establish RCC4/Vector/
5HREp-ODD-Luc and RCC4/VHL/5HREp-ODD-Luc cells, respec-
tively, and cultured for 10 days in medium containing 400 mgml�1

of G418 (Nacalai Tesque, Kyoto, Japan). Antibiotic-resistant
colonies showing HIF-1-dependent bioluminescence were isolated
and established as clones. A representative clone was used in this
study. HeLa/EFp-Luc and HeLa/5HREp-ODD-Luc cells were
established as described earlier (Harada et al, 2005, 2007b).

Luciferase assay for RCC4-derived stable transfectants

Cells were seeded in 24-well plates (2� 104 cells per well) and
cultured under normoxic or hypoxic conditions for 18 h. The cells
were washed with PBS twice and lysed with 100 ml of Passive Lysis
Buffer (Promega, Madison, WI, USA) for luciferase assays using
Luciferase Assay Reagent (Promega) according to the manufac-
turer’s instructions.

Western blotting, luciferase assay, ELISA and FACS
analysis in vitro

HeLa/5HREp-ODD-Luc cells were seeded into six-well culture dish
(2� 105 per well) and treated with HIF-1a siRNA or scramble
siRNA (Invitrogen Corp., Carlsbad, CA, USA) for 12 h. The culture
medium was refreshed with 1ml of D-MEM containing 0.1% foetal
bovine serum with or without YC-1 (10 mM). The cells were
cultured for an additional 24 h under normoxic or hypoxic
conditions, and subjected to western blotting with anti-HIF-1a

antibody (BD Bioscience, San Diego, CA, USA) and with anti-b-
actin antibody (BioVision Research Products, Mountain View, CA,
USA) or to luciferase assay (Promega), as described earlier
(Harada et al, 2005; Harada et al, 2007b). On the other hand, the
normoxic or hypoxic conditional medium was subjected to human
VEGF ELISA system (GE healthcare UK Ltd, Buckinghamshire,
UK) to analyse the secreted VEGF level, according to the
manufacturer’s instructions. The normoxic or hypoxic conditional
medium was given to pre-irradiated HUVEC (3� 105 cells per well
in a six-well dish; 2 Gy with an X-ray irradiation (Shimadzu, Kyoto,
Japan)), and the HUVEC was cultured for an additional 48 h.
Apoptotic fraction (sub-G1 fraction) was analysed with FACS
using propidium iodide, as described earlier (Harada et al, 2006).

Tumour-bearing mice and radiation conditions

The suspensions of HeLa-derived cells (2� 106 cells in PBS) and
RCC4-derived cells (2� 107 cells in PBS) were subcutaneously
inoculated into the right hind leg of 6-week-old nude mice
(BALB/c nu/nu mice; SHIMIZU Laboratory Supplies Co. Ltd,
Kyoto, Japan) and severe combined immunodeficient (SCID) mice
(C.B-17/lcr-scid/scidJcl; CLEA Japan Inc., Tokyo, Japan), respec-
tively. The tumour xenografts were irradiated with 5Gy of 137Cs
g-rays using a Gammacell 40 Exactor (MDS Nordion International
Inc., Ontario, Canada). Local irradiation was achieved with a
specific collimator (MDS Nordion International Inc.).

Real-time imaging of luciferase activity in tumour
xenografts

When the average tumour volume reached approximately
150mm3, an osmotic pump (model 1007D; Alzet Osmotic Pumps,
Cupertino, CA, USA) loaded with 200ml of D-luciferin (20mgml�1

in PBS; Promega) was subcutaneously transplanted into the left
flank of tumour-bearing mice. The mice were treated with g-ray
irradiation and/or injected intraperitoneally with YC-1
(100mg kg�1; see each figure legend for the treatment schedule).
Optical imaging to detect luciferase bioluminescence was carried
out with an IVIS-200 in vivo imaging device (Xenogen, Alameda,
CA, USA). During the imaging, the mice were anaesthetised
with 2.5% isoflurane gas in the oxygen flow (1.5 lmin�1). Images
were analysed using Living Image 2.50-Igor Pro 4.09 software
(Xenogen).

Immunohistochemical analyses

HeLa/5HREp-ODD-Luc tumour xenografts were surgically excised
90min after an intraperitoneal injection with pimonidazole
hydrochloride (Natural Pharmacia International Inc., Belmont,
MA, USA; 60mg kg�1). For diaminobenzidine staining of pimoni-
dazole hydrochloride and CD31, the formalin-fixed and paraffin-
embedded sections were treated with anti-pimonidazole antibody
and anti-CD31 antibody respectively, as described earlier (Harada
et al, 2007a; Liu et al, 2007; Zeng et al, 2008). For fluorescent
double staining of HIF-1a and pimonidazole, the tumour
xenografts were embedded in OCT compound and frozen at
�801C. The frozen sections were fixed in 2% paraformaldehyde
and ice-cold methanol sequentially for 5min each, blocked with
blocking solution (serum-free protein block solution (Dako,
Glostrup, Denmark) containing 0.1% cold water fish skin (CWFS)
gelatin (Sigma-Aldrich Corp., St Louis, MO, USA)) and treated
with anti-HIF-1a mAb (BD Bioscience) in the blocking solution.
After being washed extensively with PBS, the sections were blocked
with PBS containing 0.1% CWFS gelatin and treated with Alexa
Fluor 546 rabbit anti-mouse IgG (Invitrogen Corp.) in the blocking
solution. After further extensive washing with PBS, counter
staining was conducted with DAPI (Wako Pure Chemical
Industries Ltd, Osaka, Japan). The sections were next treated with
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FITC-conjugated anti-pimonidazole mAb (Natural Pharmacia
International Inc.). For the analysis of perfusion (Hoechst 33342
distribution) and the number of functional blood vessels, tumour-
bearing mice were intravenously injected with 100ml of Hoechst
33342 trihydrochloride trihydrate solution (10mgml�1; Invitrogen
Corp.) 1min before excision of each xenograft. To calculate the
percentages of pimonidazole-positive and HIF-1a-positive cells,
the positive areas were quantified using NIH Image 1.63 software
(NIH, Bethesda, MD, USA) and compared with the entire tumour.
The quantitative analyses were conducted in a double-blind
fashion. To quantify the microvessel density, CD31-positive vessels

were counted in 10 fields of five xenografts under � 40
magnifications. The quantitative analyses were conducted in a
double-blind fashion.

Growth delay assay

The tumour-bearing mice with HeLa/5HREp-ODD-Luc were
intravenously injected with YC-1 (100mg kg�1; see each figure
legend for detailed treatment schedule) or its vehicle, and subjec-
ted to local g-ray irradiation (see each figure legend for treatment
schedule). The size of solid tumours was measured with calipers
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Figure 1 Optical imaging of intratumoral HIF-1 activity after ionising radiation. (A) HeLa/EFp-Luc or HeLa/5HREp-ODD-Luc xenografts were g-ray
irradiated at a dose of 0 or 5Gy. Intratumoral HIF-1 activity was monitored as luciferase bioluminescence at the indicated time after irradiation. (B) The
bioluminescent intensity from the HeLa/EFp-Luc (left) or HeLa/5HREp-ODD-Luc (right) xenograft in (A) was quantified. Shown in the graphs are the
profiles of the relative photon count at each time point after irradiation. Results are means±s.d., n¼ 6. (C) The HeLa/5HREp-ODD-Luc xenografts were
surgically excised at the indicated time after irradiation and subjected to immunohistochemical analyses with anti-HIF-1a mAb (red fluorescence) or anti-
Pimonidazole mAb (green fluorescence). Counter staining was conducted with DAPI (blue fluorescence). Bar¼ 200 mm. (D) Fractions of HIF-1a-positive
cells (left) and pimonidazole-positive cells (right) in (C) were quantified. Results are means for 10 fields in five xenografts±s.d. *Po0.05, **Po0.01. (E) The
HeLa/5HREp-ODD-Luc xenografts were surgically excised at the indicated time after irradiation and subjected to immunohistochemical analyses with anti-
HIF-1a mAb (red fluorescence). A perfusion marker, Hoechst 33342 (blue fluorescence), was administrated i.v. at 1min before each tumour excision.
Bar¼ 200 mm.
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during and after treatments. Tumour volume was calculated as
0.5� length�width2, and the tumour volume on each day was
compared with the initial value to calculate the relative tumour
volume.

Ethics of animal experiments

All of our animal experiments were approved by the Animal
Research Committee of Kyoto University, and the procedures were
consistent with the United Kingdom Co-ordinating Committee on
Cancer Research (UKCCCR) Guidelines for the welfare of animals
in experimental neoplasia (second edition).

RESULTS

Changes in intratumoral HIF-1 activity after ionising
radiation

To optimise the combination of radiation and inhibition of HIF-1,
we first focused on the dynamics of intratumoral HIF-1 activity
after ionising radiation. We performed optical imaging experi-
ments using an HIF-1-dependent reporter gene, 5HREp-ODD-luc,
in which the 5HRE promoter enhances expression of the ODD-Luc
fusion protein under hypoxic conditions (Harada et al, 2007b). As
the 5HRE promoter depends highly on HIF-1 activity, and because
the stability of the ODD-Luc protein is regulated through the
same oxygen-dependent mechanism as that of HIF-1a, the 5HREp-
ODD-luc reporter gene is suitable for the real-time imaging of
absolute HIF-1 activity (Harada et al, 2007b). We subcutaneously
transplanted HeLa cells stably transfected with the 5HREp-ODD-
luc gene (HeLa/5HREp-ODD-Luc cells) and monitored the
postirradiation dynamics of intratumoral HIF-1 activity using an
optical in vivo imaging device (Figure 1A and B). The level of
activity decreased significantly and reached a minimum at 6 h after
5 Gy of g-ray irradiation (Po0.01). After that, HIF-1 activity
increased, reached a plateau at 18–24 h postirradiation (Po0.01)

and decreased thereafter. Immunohistochemical analyses con-
firmed that the level of HIF-1a protein at the edges of DAPI-
positive viable regions correlated with that of bioluminescent
intensity in the irradiated HeLa/5HREp-ODD-Luc xenografts
(Figure 1C and D, left graph), indicating that the HIF-1a level is
mainly responsible for the postirradiation HIF-1 activity in the
tumour xenograft. Although the radiation-induced activation of
HIF-1 and the underlying mechanisms were reported earlier
(Moeller et al, 2004; Harada et al, 2009), this study is the first
report to show the temporary decreases in HIF-1a expression and
HIF-1 activity at several hours postirradiation.

pVHL-dependent decrease in HIF-1a protein under
radiation-induced reoxygenated conditions

As HIF-1a is known to be rapidly degraded under oxygen-available
conditions (Jaakkola et al, 2001), we postulated that a radiation-
induced improvement of oxygen availability (tumour reoxygena-
tion) was involved in the temporary decrease in HIF-1a expression
and HIF-1 activity at 6 h postirradiation. To examine this
possibility, we performed an immunohistochemical analysis using
a marker of hypoxia, pimonidazole (Kennedy et al, 1997; Figure 1C
and D). Pimonidazole-positive cells showed almost the same
distribution as HIF-1a-positive cells before irradiation (Figure 1C).
The numbers of pimonidazole-positive cells predictably decreased
6 h after irradiation (Figure 1C and D, right graph), indicating that
radiation-induced reoxygenation occurred in the regions. The
distribution of a perfusion marker, Hoechst 33342, among the
tumour xenograft was not decreased after radiation treatment,
supporting the interpretation that the decrease in pimonidazole-
positive cells was caused by the reoxygenation but not by the
decrease in permeability of pimonidazole (Figure 1E).
We postulated that the temporary downregulation of HIF-1

activity resulted from the pVHL-dependent proteolysis of HIF-1a
protein under reoxygenated conditions. To test this possibility, we
took advantage of a VHL-deficient human renal cell carcinoma cell
line RCC4. RCC4 cells stably transfected with the 5HREp-ODD-luc
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Figure 2 Downregulation of intratumoral HIF-1 activity at 6 h postirradiation depends on the VHL tumour suppressor gene. (A) RCC4/Vector/5HREp-
ODD-Luc and RCC4/VHL/5HREp-ODD-Luc cells were cultured under normoxic or hypoxic conditions for 18 h and subjected to luciferase assays. Results
are means±s.d., n¼ 3. (B) RCC4/Vector/5HREp-ODD-Luc xenografts and RCC4/VHL/5HREp-ODD-Luc xenografts were irradiated at a dose of 0 or
5Gy. The intratumoral HIF-1 activity was monitored as luciferase bioluminescence at the indicated time after irradiation. (C) The bioluminescent intensity
from the RCC4/Vector/5HREp-ODD-Luc (upper) and RCC4/VHL/5HREp-ODD-Luc (lower) xenografts in (B) was quantified. Shown in the graphs are the
profiles of the relative photon count at each time point after irradiation. Results are means±s.d., n¼ 6. *Po0.05, **Po0.01.
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reporter gene (RCC4/Vector/5HREp-ODD-Luc cells) showed
intense bioluminescence regardless of the surrounding conditions
in vitro (Figure 2A). On the other hand, reconstitution of the func-
tional VHL gene (RCC4/VHL/5HREp-ODD-Luc cells) resulted in
hypoxia-dependent bioluminescence (Figure 2A). We subcuta-
neously transplanted the cells and monitored the dynamics of
intratumoral HIF-1 activity after 5 Gy of g-ray irradiation (Figure
2B and C). We chose a SCID mouse as described earlier, because it
was difficult to prepare RCC4 tumour xenografts in nude mice
(Ogura et al, 2005). The HIF-1 activity in the RCC4/Vector/5HREp-
ODD-Luc tumour xenograft did not decrease 6 h after irradiation
but gradually increased and peaked at 24 h after irradiation. On
the other hand, RCC4/VHL/5HREp-ODD-Luc xenografts showed
the same pattern as HeLa/5HREp-ODD-Luc xenografts. These
results clearly showed that radiation-induced reoxygenation leads
to the degradation of HIF-1a protein through a pVHL-dependent
pathway 6 h after irradiation.

Changes in intratumoral HIF-1 activity after
administration of an HIF-1 inhibitor, YC-1

We next evaluated the effect of an HIF-1 inhibitor, YC-1, on the
intratumoral HIF-1 activity with the same optical imaging
experiment (Figure 3A and B). Hypoxia-inducible factor-1 activity
gradually but significantly decreased and reached a minimum of

24 h after the administration of YC-1 in the HeLa/5HREp-ODD-
Luc tumour xenograft (Po0.01). The activity then recovered to the
same levels as in vehicle-injected tumours until 48 h post-injection.
Immunohistochemical analysis for HIF-1a protein confirmed that
the level of HIF-1a protein at the edges of DAPI-positive viable
regions was dramatically decreased 24 h after the YC-1 treatment
and correlated with the intensity of bioluminescence detected with
the imaging device (Figure 3C and D).

YC-1-mediated increase in tumour hypoxia suppresses the
therapeutic effect of radiation

As HIF-1 is known as a master regulator of angiogenesis, we
assumed that the inhibition of intratumoral HIF-1 activity would
influence the distribution and proportion of tumour hypoxia.
To examine this possibility, we performed immunohistochemical
analyses of CD31 (for tumour blood vessels) and pimonidazole
hydrochloride (for tumour hypoxia). The YC-1-mediated HIF-1
inhibition led to a significant decrease in microvessel density
(Figure 4A and B; Po0.05) and resultant increase in hypoxic
fractions (Figure 4C and D) at 120 h (5 days) after the YC-1
treatment.
As hypoxia has been associated with the radioresistance of

tumours, we speculated that the YC-1-mediated increase in
hypoxia might suppress the cytotoxic effect of radiation. To
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Figure 3 Optical imaging of intratumoral HIF-1 activity after YC-1 administration. (A) HeLa/EFp-Luc or HeLa/5HREp-ODD-Luc xenograft was
administrated with vehicle or YC-1, and intratumoral HIF-1 activity was monitored as luciferase bioluminescence at the indicated time after the
administration. (B) The bioluminescent intensity from the HeLa/EFp-Luc (left) or HeLa/5HREp-ODD-Luc (right) xenograft in (A) was quantified. Shown in
the graphs are the profiles of the relative photon count at each time point after vehicle or YC-1 treatment. Results are means±s.d., n¼ 6. (C) The HeLa/
5HREp-ODD-Luc xenografts were surgically excised at the indicated time after vehicle or YC-1 administration and subjected to immunohistochemical
analysis with anti-HIF-1a mAb (red fluorescence). Counter staining was conducted with DAPI (blue fluorescence). Bar¼ 200 mm. (D) Fractions of HIF-1a-
positive cells in (C) were quantified. Results are means of 10 fields in five xenografts±s.d. **Po0.01.
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examine such a possibility, we treated the HeLa/5HREp-ODD-Luc
tumour xenografts with radiation 120 h (5 days) after YC-1
treatment (Figure 4E), and performed a tumour growth delay
assay (Figure 4F). The single administration of YC-1 alone little
influenced tumour growth compared with vehicle treatment
(Figure 4F and Table 1), although it led to a significant decrease
in microvessel density (Figure 4A and B). However, YC-1
treatment accelerated rather than delayed tumour growth after
radiation therapy, when it was administered 120 h (5 days) before
the radiation treatment (Figure 4F). Days, in which tumour volume
reached two-fold of the initial volume (tumour growth doubling
time), after ‘the IR treatment alone’ and ‘the combination with
�5 days interval’ were ‘41.4±6.8 days’ and ‘33.8±5.4 days’,
respectively (Table 1; Po0.05). These results indicate that the YC-
1-induced increase in tumour hypoxia protects tumour cells
against radiation, and HIF-1 inhibitors have a negative impact

on the therapeutic effect of radiation in such an unsuitable
treatment regimen.

Suppression of postirradiation HIF-1 activation sensitises
the effect of radiation therapy

To find the optimal regimen, we next examined whether the
suppression of HIF-1 activation 24 h postirradiation improves the
therapeutic effect of radiation. As a maximal effect of YC-1 on
HIF-1 activity was observed 24 h after its administration (Figure
3A and B), we administered YC-1 just after (at 1min after)
radiation treatment to effectively suppress the upregulation of
HIF-1 activity at 24 h postirradiation (Figure 5A). Optical imaging
experiments confirmed that the administration almost completely
suppressed the radiation-induced upregulation of HIF-1 activity
(Figure 5B and C; Po0.01). The HIF-1-inhibiting effect led to a
delay of tumour growth compared with the radiation therapy alone
(Figure 5D). Tumour growth doubling times after ‘the IR treatment
alone’ and ‘the combination with þ 1min interval’ were ‘26.5±5.4
days’ and ‘36.5±5.5 days’, respectively (Table 1; Po0.05).
To further confirm the importance of HIF-1 inhibition 24 h

postirradiation, we performed the same kind of experiments with a
different regimen (Figure 6). YC-1 was administered 18 h before
irradiation (Figure 6A) with the expectation that the maximum
HIF-1-inhibiting effect of YC-1 would come 6 h postirradiation,
at which time radiation-induced reoxygenation minimised the
intratumoral HIF-1 activity through a VHL-dependent mechanism
(Figures 1 and 2). The optical imaging experiments confirmed
that the decrease in HIF-1 activity caused by YC-1 and by the
radiation overlapped each other at 6 h postirradiation, and YC-1
had no influence on the upregulation of HIF-1 activity at 24 h
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Figure 4 YC-1-mediated increase in tumour hypoxia suppresses the therapeutic effect of radiation. (A–D) The HeLa/5HREp-ODD-Luc xenografts were
surgically excised 120 h (5 days) after the administration of vehicle or YC-1, and subjected to immunohistochemical analysis with anti-CD31 mAb (A) or
anti-pimonidazole Ab (C). Bar¼ 50 mm. Microvessel density detected as CD31-positive cells in (A) and hypoxic cells detected as pimonidazole-positive cells
(right) in (C) were quantified in (B) and (D), respectively. Results are means for 10 fields in five xenografts±s.d. *Po0.05. (E) Treatment schedule of YC-1
and radiation therapy. The HeLa/5HREp-ODD-Luc tumour-bearing mice were administered with vehicle (Sham and RT groups) or YC-1 (YC-1 and Comb
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treatment described in (E). Relative tumour volumes are calculated as the ratio of the tumour volume on each day to the corresponding volume on day 0.
Results are the means for eight independent tumours±s.d.

Table 1 Statistical analysis of TGDT

Figure 4 (�5 days) Figure 5 (+1min) Figure 6 (�18h)

Sham 10.0±3.1 4.8±1.9 8.0±3.9
YC-1 12.2±3.6NS1 5.1±2.1NS1 9.3±3.4NS1

RT 41.4±6.8 26.5±5.4 27.7±6.4
Combination 33.8±5.4* 36.5±5.5* 30.8±5.5NS2

TGDT¼ tumour growth doubling time. NS1, not significant vs Sham group; NS2, not
significant vs RT group. TGDT was calculated as the mean of the days in which
relative tumour volume of each tumour reached two-fold of the volume on day 0.
Data were based on the results of the growth delay assays in Figures 4–6. Results are
the mean of the days after YC-1 treatment±s.d. (n¼ 8). *Po0.05 vs RT group.
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postirradiation with this regimen (Figure 6B and C). The
administration of YC-1 had almost no impact on the therapeutic
effect of radiation with this regimen (Figure 6D). Tumour growth
doubling times after ‘the IR treatment alone’ and ‘the combination
with �18 h interval’ were ‘27.7±6.4 days’ and ‘30.8±5.5 days’,
respectively (Table 1; no significant difference between the
combination and radiation alone). These results indicate that
YC-1 has a radiosensitising effect only when administered to
suppress the radiation-induced activation of HIF-1.

YC-1 enhances the vascular-disrupting effect of radiation
in optimal treatment regimen

It has been reported that HIF-1 becomes active in response to
radiation-induced alteration of tumour microenvironment,
induces VEGF and consequently protects endothelial cells from
the cytotoxic effect of radiation (Gorski et al, 1999; Moeller et al,
2004; Zeng et al, 2008). On the basis of this information, we
hypothesised that YC-1 has a potential to enhance the vascular-
disrupting activity of radiation through the suppression of HIF-1
activity. To examine such a possibility in vitro, we cultured the
HeLa/5HREp-ODD-Luc cells under normoxic or hypoxic condi-
tions and obtained each conditional medium. The conditional
medium was given to pre-irradiated (2 Gy of X-ray) HUVEC, and
their apoptotic fraction was quantified as sub-G1 fraction with

FACS analysis (Figure 7). The hypoxic treatment for 24 h was
sufficient to induce HIF-1a expression (Figure 7A, upper lane 3)
and HIF-1 activity (Figure 7A, lower lane 3; Po0.01) in the HeLa/
5HREp-ODD-Luc cells. The hypoxic conditional medium con-
tained a higher concentration of a hypoxia-dependent gene
product secreted from the HeLa/5HREp-ODD-Luc cells (compare
Figure 7B lane 1 with 3; Po0.01) and significantly protected the
HUVEC from radiation-induced apoptosis compared with the
normoxic counterpart (compare Figure 7C lane 5 with 7; Po0.05).
The HIF-1a siRNA treatment suppressed the hypoxia-dependent
expression of HIF-1a (compare Figure 7A upper lane 5 with 6),
activation of HIF-1 (compare Figure 7A lower lane 5 with 6;
Po0.01) and secretion of VEGF (compare Figure 7B lane 5 with 6).
Consequently, the HIF-1a siRNA treatment suppressed the radio-
protective effect of the hypoxic conditional medium (compare
Figure 7C lane 9 with 10). YC-1 also suppressed the radioprotective
effect of hypoxic conditional medium through the decrease in HIF-
1a expression, HIF-1 activity and VEGF secretion (Figure 7).
To examine whether such an effect of YC-1 was responsible for

the best therapeutic benefit of our optimal treatment regimen in
Figure 5, we performed immunohistochemical analyses for
functional blood vessels and for tumour hypoxia (Figure 8) at
5 days after ionising radiation of each treatment regimen applied
in Figures 4–6 (Figure 8A). When we administered YC-1 at 1min
after radiation treatment and suppressed the postirradiation
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Figure 5 Suppression of postirradiation HIF-1 activation sensitises effect of radiation therapy. (A) Treatment schedule of radiation and YC-1. The HeLa/
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graphs are the profiles of the relative photon count at each time point after the treatment. Results are means±s.d., n¼ 8. **Po0.01.
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upregulation of HIF-1 activity, the number of functional micro-
vessel was significantly decreased (Figure 8Bd and C) and the
pimonidazole-positive fraction was significantly increased (Figure
8Bd and D) compared with those after the other two combination
regimens. These results suggest that, in the optimal treatment
regimen, YC-1 enhanced the therapeutic effect of radiation
through (1) suppressing radiation-induced HIF-1a expression
and HIF-1 activity, (2) suppressing HIF-1-dependent secretion of
radioprotective protein(s) such as VEGF, (3) increasing radio-
sensitivity of endothelial cells and (4) decreasing microvessel
density.

DISCUSSION

In this study, we performed optical imaging experiments and
revealed that ionising radiation induces dynamic changes in
intratumoral HIF-1 activity: a temporary decrease and a
subsequent increase. In addition, the imaging revealed that YC-1
treatment temporarily inhibits intratumoral HIF-1 activity, leading
to a decrease in tumour microvessel density and resultant increase
in the tumour hypoxic fraction. On the basis of these results, we set
treatment regimens combining radiation with YC-1, and compared
their therapeutic efficacy. Finally, we revealed that treatment
regimen determines whether an HIF-1 inhibitor enhances or
inhibits the therapeutic effect of radiation and that the suppression

of the postirradiation upregulation of HIF-1 activity is important
for the best therapeutic benefit.
The reason why such dynamics (especially the temporary

decrease) of HIF-1 activity after radiation had not been observed
before seemed to be differences in experimental strategy. To date,
HIF-1a expression in tumour xenografts has been mainly analysed
immunohistochemically. However, it is impossible to follow
changes in expression sequentially in individual living animals.
Moreover, an alternative strategy using conventional 5HREp-GFP
or 5HREp-luc genes was unsuitable for real-time imaging because
the stability of the reporter proteins made it difficult to reflect
rapid decreases in HIF-1 activity (Liu et al, 2005; Harada et al,
2007b). To overcome these problems, we applied here an HIF-1-
dependent reporter gene, 5HREp-ODD-luc (Harada et al, 2007b).
As the stability of the ODD-Luc fusion protein is regulated through
the same oxygen-dependent mechanism as that of HIF-1a protein,
the reporter gene enabled us to perform the imaging of absolute
HIF-1 activity in real time. Therefore, we could show here that
intratumoral HIF-1 activity initially decreases several hours after
irradiation and then increases thereafter. Applying the imaging
system to a VHL-deficient RCC4 cell line, we could identify the
PHD-VHL pathway as critical to the temporary decrease in HIF-1
activity after radiation.
Knockdown of HIF-1a protein almost completely inhibited the

expression of HIF-1a under hypoxic conditions (Figure 7A, upper
lane 6), resulting in about 90% suppression of the 5HREp-ODD-luc
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reporter gene activity (Figure 7A, lower lane 6). Moreover, YC-1
led to the same results as the HIF-1a knockdown (Figure 7A, lane
4). These results confirmed the specificity of the 5HREp-ODD-luc
reporter gene and YC-1 to HIF-1.
Immunohistochemical analysis using a marker of hypoxia

revealed that the radiation-induced reoxygenation continued until
at least 24 h postirradiation. In addition, we have confirmed that
radiation efficiently induced apoptosis of normoxic tumour cells
surrounding tumour blood vessels (data not shown). Moreover,
Bristow and Hill (2008) reported that there is an increase in
residual DNA double-strand breaks within normoxic tumour
regions (indicated by an increased 53BP1 nuclear foci). These
results are consistent with a well-known model underlying
postirradiation reoxygenation that radiation-induced damage of
tumour cells surrounding tumour blood vessels leads to the

decrease in oxygen consumption in these regions and an increase
in oxygen availability in hypoxic tumour cells.
Our optical imaging experiments and immunohistochemical

analyses revealed that HIF-1a protein accumulated even under
radiation-induced reoxygenated conditions. These results are
consistent with an earlier report that radiation-induced reoxygena-
tion leads to the formation of ROS and inhibits PHD activity,
resulting in the stabilisation and accumulation of HIF-1a protein
(Moeller et al, 2004). In addition, we recently identified glucose-
and Akt/mTOR-dependent translation of HIF-1a protein as an
additional crucial mechanism in the upregulation (Harada et al,
2009). The relationship between the ROS-related stabilisation and
the glucose- and Akt/mTOR-related translation of HIF-1a had not
yet been elucidated; however, we recently reported that the ROS-
mediated stabilisation of HIF-1a protein alone could not be fully
responsible for the activation of HIF-1 without newly translated
HIF-1a, and both the mechanisms function coordinately in the
induction of HIF-1 activity after irradiation in vivo.
Our optical imaging experiments visualised the target specificity

of an HIF-1 inhibitor, YC-1: treatment with YC-1 led to a decrease
in microvessel density in solid tumours. Such an activity resulted
in an increase in tumour hypoxia 5 days after the administration of
YC-1 in our experimental setting. The YC-1-mediated increase in
tumour hypoxia had a negative impact on the effect of radiation
therapy and accelerated tumour growth after the therapy, when it
was administered 5 days before the radiation. This result is
reasonable in terms of the ‘oxygen effect theory’ (Brown and
Wilson, 2004), although HIF-1 targeting has been believed to be a
promising strategy for enhancing the effect of radiation. In
addition to the theory, suppression of ATP metabolism, prolifera-
tion and p53 activation by the inactivation of HIF-1 in this time
course might have been responsible for the negative impact of
YC-1 on the effect of radiation therapy, as has been reported earlier
(Moeller et al, 2005). On the other hand, when administered at a
time suitable to suppress the postirradiation upregulation of HIF-1
activity, YC-1 dramatically enhanced the therapeutic effect of
radiation and significantly delayed tumour growth compared with
radiation therapy alone. Our in vitro and in vivo experiments
revealed the mechanism responsible for the radioenhancing effect
of an HIF-1 inhibitor through the suppression of radiation-
induced HIF-1a expression and HIF-1 activity, decrease in HIF-1-
dependent secretion of radioprotective protein(s) such as VEGF,
increase in radiosensitivity of endothelial cells and decrease in
microvessel density. This interpretation is well consistent with the
earlier reports (Gorski et al, 1999; Moeller et al, 2004; Zeng et al,
2008).
Although we have shown here the importance of suppressing

intratumoral HIF-1 activity after radiation therapy, we should
pay attention to the other possibility. It was reported earlier that
YC-1 suppresses HIF-1a accumulation through the inhibition of
various signalling pathways, including PI3K/Akt/mTOR/4E-BP
and NF-kappaB (Sun et al, 2007). In addition, YC-1 is known to
have an interesting property arresting cell cycle at S phase and
inducing apoptosis in hypoxic cells (Yeo et al, 2006). The
difference in the therapeutic effect of three treatment regimens
therefore may depend on such YC-1 properties as well as on the
‘oxygen effect theory’.
Considering the vascular-disrupting effect of radiation therapy,

we hypothesised that recurrent tumour may be hypoxic and HIF-1
active. If it is true, postirradiation YC-1 treatment should enhance
the therapeutic effect of radiation. However, in our experimental
setting, there was no significant difference in the intratumoral
HIF-1 activity between ‘irradiated group’ and ‘non-irradiated
group’ in the latter time points (48, 72, 96 and 120h postirradiation),
although HIF-1 activity was upregulated at 24h postirradiation
(data not shown). Moreover, YC-1 treatment at 48 h post-
irradiation had no radioenhancing effect (data not shown). These
results are not consistent with the above-mentioned speculations;
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Figure 7 YC-1 diminishes the radioprotective effect of hypoxic
conditional medium on endothelial cells in vitro. HeLa/5HREp-ODD-Luc
cells were treated with HIF-1a-siRNA or Scramble (Scr)-siRNA or without
both of them (�), and cultured under normoxic (N) or hypoxic (H)
conditions in the presence (þ ) or absence (�) of YC-1. (A) The HeLa/
5HREp-ODD-Luc lysates were subjected to western blotting for HIF-1a
(upper) or b-actin (middle) and to luciferase assay (lower). (B) The
conditional mediums of the HeLa/5HREp-ODD-Luc cells were subjected
to ELISA for VEGF level. The VEGF level after each treatment was
compared with that after normoxic, YC-1 (�) and siRNA (�) conditions.
(C) HUVEC was X-ray irradiated (2Gy) and cultured in the above
conditional mediums for 48 h. The apoptotic fraction was quantified as
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however, they support our opinion that the suppression of
postirradiation upregulation of HIF-1 activity is most important
for the best therapeutic benefit.
This study raises the important possibility that other strategies

that lead to an increase in tumour hypoxia might have the same
negative influence on the therapeutic effect of radiation as YC-1.
This might be true of anti-angiogenic agents and anti-vascular
agents as well as other HIF-1-targeting therapeutics. Although it
has been confirmed that anti-angiogenic agents enhance the effect
of radiation therapy in various basic and clinical studies, the
benefit might further be increased by optimising the regimen using
an HIF-1 imaging strategy. As HIF-1 activity is not fully dependent
on hypoxia, HIF-1-positive cells do not necessarily overlap with
absolute hypoxic regions. From this point of view, it is necessary to

develop a strategy to assess intratumoral HIF-1 activity in real
time, in addition to the development of methods to assess absolute
hypoxia.
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33342 (blue fluorescence). Hoechst 33342 was administrated i.v. at 1min before each tumour excision. Bar¼ 200 mm. (C and D) The number of functional
blood vessels (C) and fractions of pimonidazole-positive cells (D) in (B) were quantified. Results are means for 10 fields in five xenografts±s.d. *Po0.05.
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