Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients

Abstract

The immunosuppressant tacrolimus (TAC) is metabolized by both cytochrome P450 3A4 (CYP3A4) and CYP3A5 enzymes. It is common for European Americans (EA) to carry two CYP3A5 loss-of-function (LoF) variants that profoundly reduces TAC metabolism. Despite having two LoF alleles, there is still considerable variability in TAC troughs and identifying additional variants in genes outside of the CYP3A5 gene could provide insight into this variability. We analyzed TAC trough concentrations in 1345 adult EA recipients with two CYP3A5 LoF alleles in a genome-wide association study. Only CYP3A4*22 was identified and no additional variants were genome-wide significant. Additional high allele frequency genetic variants with strong genetic effects associated with TAC trough variability are unlikely to be associated with TAC variation in the EA population. These data suggest that low allele frequency variants, identified by DNA sequencing, should be evaluated and may identify additional variants that contribute to TAC pharmacokinetic variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Iwasaki K . Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet 2007; 22: 328–335.

    Article  CAS  PubMed  Google Scholar 

  2. Daly AK . Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006; 45: 13–31.

    Article  CAS  PubMed  Google Scholar 

  3. Kamden LK, Streit F, Zanger UM, Oellerich M, Armstrong VW, Wojnowski L . Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem 2005; 51: 1374–1381.

    Article  Google Scholar 

  4. Dai Y, Hebert MF, Isoherrannen N, Davis CL, Marsh C, Shen DD et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34: 836–847.

    Article  CAS  PubMed  Google Scholar 

  5. Li JL, Liu S, Fu Q, Zhang Y, Wang XD, Liu XM et al. Interactive effects of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients. Pharmacogenomics 2015; 16: 1355–1365.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang JJ, Liu SB, Xue L, Ding XL, Zhang H, Miao LY . The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Int J Clin Pharmacol Ther 2015; 53: 728–736.

    Article  CAS  PubMed  Google Scholar 

  7. Pulk RA, Schladt DS, Oetting WS, Guan W, Israni AK, Matas AJ et al. Multigene predictors of tacrolimus exposure in kidney transplant recipients. Pharmacogenomics 2015; 16: 841–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oetting WS, Schladt DP, Guan W, Miller MB, Remmel RP, Dorr C et al. Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles. Am J Transplant 2016; 16: 574–582.

    Article  CAS  PubMed  Google Scholar 

  9. Schuetz EG, Relling MV, Kishi S, Yang W, Das S, Chen P et al. PharmGKB update: II. CYP3A5, cytochrome P450, family 3, subfamily A, polypeptide 5. Pharmacol Rev 2004; 56: 159.

    Article  CAS  PubMed  Google Scholar 

  10. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.

    Article  CAS  PubMed  Google Scholar 

  11. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–779.

    Article  CAS  PubMed  Google Scholar 

  12. Neylan JF . Effect of race and immunosuppression in renal transplantation: three-year survival results from a US multicenter, randomized trial. FK506 Kidney Transplant Study Group. Transplant Proc 1998; 30: 1355–1358.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation 2011; 91: 300–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Israni AK, Riad SM, Leduc R, Oetting WS, Guan W, Schladt D et al. Tacrolimus trough levels after month 3 as a predictor of acute rejection following kidney transplantation: a lesson learned from DeKAF Genomics. Transplant Int 2013; 26: 982–989.

    Article  CAS  Google Scholar 

  15. Arreola-Guerra JM, Serrano M, Morales-Buenrostro LE, Vilatobá M, Alberú J . Tacrolimus trough levels as a risk factor for acute rejection in renal transplant patients. Ann Transplant 2016; 21: 105–114.

    Article  CAS  PubMed  Google Scholar 

  16. Li YR, van Setten J, Verma SS, Lu Y, Holmes MV, Gao H et al. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies. Genome Med 2015; 7: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Israni A, Leduc R, Holmes J, Jacobson PA, Lamba V, Guan W et al. Single-nucleotide polymorphisms, acute rejection, and severity of tubulitis in kidney transplantation, accounting for center-to-center variation. Transplantation 2010; 90: 1401–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation 2011; 91: 300–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delaneau O, Howie B, Cox AJ, Zagury JF, Marchini J . Haplotype estimation using sequencing reads. Am J Hum Genet 2013; 93: 687–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Howie B, Marchini J, Stephens M . Genotype imputation with thousands of genomes. G3 (Bethesda) 2011; 1: 457–470.

    Article  Google Scholar 

  22. Jacobson PA, Schladt D, Oetting WS, Leduc R, Guan W, Matas AJ et al. Genetic determinants of mycophenolate-related anemia and leukopenia after transplantation. Transplantation 2011; 91: 309–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobson PA, Schladt D, Oetting WS, Leduc R, Guan W, Matas AJ et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am J Transplant 2012; 12: 3326–3336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 2011; 57: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  25. Lloberas N, Elens L, Llaudó I, Padullés A, van Gelder T, Hesselink DA et al. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation. Pharmacogenet Genomics 2017; 27: 313–322.

    Article  CAS  PubMed  Google Scholar 

  26. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T . The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet 2014; 53: 123–139.

    Article  CAS  PubMed  Google Scholar 

  27. de Jonge H, Elens L, de Loor H, van Schaik RH, Kuypers DR . The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients. Pharmacogenomics J 2015; 15: 144–152.

    Article  CAS  PubMed  Google Scholar 

  28. Pallet N, Jannot AS, El Bahri M, Etienne I, Buchler M, De Ligny BH et al. Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. Am J Transplant 2015; 15: 800–805.

    Article  CAS  PubMed  Google Scholar 

  29. Damon C, Luck M, Toullec L, Etienne I, Buchler M, Hurault de Ligny B et al. Predictive modeling of tacrolimus dose requirement based on high-throughput genetic screening. Am J Transplant 2017; 17: 1008–1019.

    Article  CAS  PubMed  Google Scholar 

  30. Naito T, Mino Y, Aoki Y, Hirano K, Shimoyama K, Ogawa N et al. ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affect renal function in patients with rheumatoid arthritis. Clin Chim Acta 2015; 445: 79–84.

    Article  CAS  PubMed  Google Scholar 

  31. Knops N, van den Heuvel LP, Masereeuw R, Bongaers I, De Loor H, Levtchenko E et al. The functional implications of common genetic variation in CYP3A5 and ABCB1 in human proximal tubule cells. Mol Pharm 2015; 12: 758–768.

    Article  CAS  PubMed  Google Scholar 

  32. Lesche D, Sigurdardottir V, Setoud R, Oberhänsli M, Carrel T, Fiedler GM et al. CYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipients. Ther Drug Monit 2014; 36: 710–715.

    Article  CAS  PubMed  Google Scholar 

  33. Elens L, Hesselink DA, Bouamar R, Budde K, de Fijter JW, De Meyer M et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit 2014; 36: 71–79.

    CAS  PubMed  Google Scholar 

  34. Jannot AS, Vuillemin X, Etienne I, Buchler M, Hurault de Ligny B, Choukroun G et al. A lack of significant effect of POR*28 allelic variant on tacrolimus exposure in kidney transplant recipients. Ther Drug Monit 2016; 38: 223–229.

    Article  CAS  PubMed  Google Scholar 

  35. Khaled SK, Palmer JM, Herzog J, Stiller T, Tsai NC, Senitzer D et al. Influence of absorption, distribution, metabolism, and excretion genomic variants on tacrolimus/sirolimus blood levels and graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2016; 22: 268–276.

    Article  CAS  PubMed  Google Scholar 

  36. Bosó V, Herrero MJ, Bea S, Galiana M, Marrero P, Marqués MR et al. Increased hospital stay and allograft dysfunction in renal transplant recipients with Cyp2c19 AA variant in SNP rs4244285. Drug Metab Dispos 2013; 41: 480–487.

    Article  PubMed  Google Scholar 

  37. Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 2014; 70: 685–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bruckmueller H, Werk AN, Renders L, Feldkamp T, Tepel M, Borst C et al. Which genetic determinants should be considered for tacrolimus dose optimization in kidney transplantation? A combined analysis of genes affecting the CYP3A locus. Ther Drug Monit 2015; 37: 288–295.

    Article  CAS  PubMed  Google Scholar 

  39. Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62: 162–172.

    Article  CAS  PubMed  Google Scholar 

  40. Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong XB et al. Interindividual variability in cytochrome P450-mediated drug metabolism. Drug Metab Dispos 2016; 44: 343–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Passey C, Birnbaum AK, Brundage RC, Oetting WS, Israni AK, Jacobson PA . Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol 2011; 72: 948–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Passey C, Birnbaum AK, Brundage RC, Schladt DP, Oetting WS, Leduc RE et al. Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics 2012; 13: 1141–1147.

    Article  CAS  PubMed  Google Scholar 

  43. Sanghavi K, Brundage RC, Miller MB, Schladt DP, Israni AK, Guan W et al. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. Pharmacogenomics J 2017; 17: 61–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the research subjects for their participation in this study. We acknowledge the dedication and hard work of our coordinators at each of the DeKAF Genomics clinical sites: University of Alberta, Nicoleta Bobocea, Tina Wong, Adrian Geambasu and Alyssa Sader; University of Manitoba, Myrna Ross and Kathy Peters; University of Minnesota, Mandi DeGrote, Monica Meyers and Danielle Berglund; Hennepin County Medical Center, Lisa Berndt; Mayo Clinic, Tom DeLeeuw; University of Iowa, Wendy Wallace and Tammy Lowe; University of Alabama, Jacquelin Vaughn, Valencia Stephens and Tena Hilario. We also acknowledge the dedicated work of our research scientists Marcia Brott and Amutha Muthusamy. This study was supported in part by the NIH/NIAID Grants 5U19-AI070119 and 5U01-AI058013.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to W S Oetting.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oetting, W., Wu, B., Schladt, D. et al. Genome-wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients. Pharmacogenomics J 18, 501–505 (2018). https://doi.org/10.1038/tpj.2017.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2017.49

This article is cited by

Search

Quick links