Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic background influences susceptibility to chemotherapy-induced hematotoxicity

Abstract

Hematotoxicity is a life-threatening side effect of many chemotherapy regimens. Although clinical factors influence patient responses, genetic factors may also play an important role. We sought to identify genomic loci that influence chemotherapy-induced hematotoxicity by dosing Diversity Outbred mice with one of three chemotherapy drugs; doxorubicin, cyclophosphamide or docetaxel. We observed that each drug had a distinct effect on both the changes in blood cell subpopulations and the underlying genetic architecture of hematotoxicity. For doxorubicin, we mapped the change in cell counts before and after dosing and found that alleles of ATP-binding cassette B1B (Abcb1b) on chromosome 5 influence all cell populations. For cyclophosphamide and docetaxel, we found that each cell population was influenced by distinct loci, none of which overlapped between drugs. These results suggest that susceptibility to chemotherapy-induced hematotoxicity is influenced by different genes for different chemotherapy drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Smallwood TL, Gatti DM, Quizon P, Weinstock GM, Jung KC, Zhao L et al. High-resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis. G3 (Bethesda) 2014; 4: 2353–2363.

    Article  Google Scholar 

  2. Callens C, Debled M, Delord M, Turbiez-Stalain I, Veyret C, Bieche I et al. High-throughput pharmacogenetics identifies SLCO1A2 polymorphisms as candidates to elucidate the risk of febrile neutropenia in the breast cancer RAPP-01 trial. Breast Cancer Res Treat 2015; 153: 383–389.

    Article  CAS  PubMed  Google Scholar 

  3. van der Slot AJ, Zuurmond AM, Bardoel AF, Wijmenga C, Pruijs HE, Sillence DO et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem 2003; 278: 40967–40972.

    Article  CAS  PubMed  Google Scholar 

  4. Venkatareddy M, Wang S, Yang Y, Patel S, Wickman L, Nishizono R et al. Estimating podocyte number and density using a single histologic section. J Am Soc Nephrol 2014; 25: 1118–1129.

    Article  PubMed  Google Scholar 

  5. Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA 1997; 94: 4028–4033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Low SK, Chung S, Takahashi A, Zembutsu H, Mushiroda T, Kubo M et al. Genome-wide association study of chemotherapeutic agent-induced severe neutropenia/leucopenia for patients in Biobank Japan. Cancer Sci 2013; 104: 1074–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frick A, Suzuki OT, Benton C, Parks B, Fedoriw Y, Richards KL et al. Identifying genes that mediate anthracyline toxicity in immune cells. Front Pharmacol 2015; 6: 62.

    Article  PubMed  PubMed Central  Google Scholar 

  8. King EG, Kislukhin G, Walters KN, Long AD . Using Drosophila melanogaster to identify chemotherapy toxicity genes. Genetics 2014; 198: 31–43.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gatti DM, Svenson KL, Shabalin A, Wu LY, Valdar W, Simecek P et al. Quantitative trait locus mapping methods for diversity outbred mice. G3 (Bethesda) 2014; 4: 1623–1633.

    Article  Google Scholar 

  10. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ et al. High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 2012; 190: 437–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. French JE, Gatti DM, Morgan DL, Kissling GE, Shockley KR, Knudsen GA et al. Diversity outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity. Environ Health Perspect 2015; 123: 237–245.

    Article  CAS  PubMed  Google Scholar 

  12. Hornett T, Haynes A . Comparison of carbon dioxide/air mixture and nitrogen/air mixture for the euthanasia of rodents: design of a system for inhalation euthanasia. Anim Technol 1984; 35: 93–99.

    Google Scholar 

  13. Ackert-Bicknell CL, Anderson LC, Sheehan S, Hill WG, Chang B, Churchill GA et al. Aging Research Using Mouse Models. Curr Protoc Mouse Biol 2015; 5: 95–133.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hofland KF, Thougaard AV, Sehested M, Jensen PB . Dexrazoxane protects against myelosuppression from the DNA cleavage-enhancing drugs etoposide and daunorubicin but not doxorubicin. Clin Cancer Res 2005; 11: 3915–3924.

    Article  CAS  PubMed  Google Scholar 

  15. Watters JW, Kloss EF, Link DC, Graubert TA, McLeod HL . A mouse-based strategy for cyclophosphamide pharmacogenomic discovery. J Appl Physiol (1985) 2003; 95: 1352–1360.

    Article  CAS  Google Scholar 

  16. Collaborative Cross Consortium. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 2012; 190: 389–401.

    Article  PubMed Central  Google Scholar 

  17. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 2011; 477: 289–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X et al. Sequence-based characterization of structural variation in the mouse genome. Nature 2011; 477: 326–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Churchill GA, Doerge RW . Empirical threshold values for quantitative trait mapping. Genetics 1994; 138: 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. White MA, Ikeda A, Payseur BA . A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice. Mamm Genome 2012; 23: 454–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Low SK, Chung S, Takahashi A, Zembutsu H, Mushiroda T, Kubo M et al. Genome-wide association study of chemotherapeutic agent-induced severe neutropenia/leucopenia for patients in Biobank Japan. Cancer Sci 2013; 104: 1074–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng W, Mast N, Saadane A, Pikuleva IA . Pathways of cholesterol homeostasis in mouse retina responsive to dietary and pharmacologic treatments. J Lipid Res 2015; 56: 81–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hertz DL, Owzar K, Lessans S, Wing C, Jiang C, Kelly WK et al. Pharmacogenetic discovery in CALGB (Alliance) 90401 and mechanistic validation of a VAC14 polymorphism that increases risk of docetaxel-induced neuropathy. Clin Cancer Res 2016; 22: 4890–4900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF . Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984; 226: 466–468.

    Article  CAS  PubMed  Google Scholar 

  25. Povirk LF, Shuker DE . DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994; 318: 205–226.

    Article  CAS  PubMed  Google Scholar 

  26. Ringel I, Horwitz SB . Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J Natl Cancer Inst 1991; 83: 288–291.

    Article  CAS  PubMed  Google Scholar 

  27. Schiff PB, Fant J, Horwitz SB . Promotion of microtubule assembly in vitro by taxol. Nature 1979; 277: 665–667.

    Article  CAS  PubMed  Google Scholar 

  28. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L . Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004; 56: 185–229.

    Article  CAS  PubMed  Google Scholar 

  29. Colvin OM . An overview of cyclophosphamide development and clinical applications. Curr Pharm Des 1999; 5: 555–560.

    CAS  PubMed  Google Scholar 

  30. Murgo AJ, Weinberger BB . Pharmacological bone marrow purging in autologous transplantation: focus on the cyclophosphamide derivatives. Crit Rev Oncol Hematol 1993; 14: 41–60.

    Article  CAS  PubMed  Google Scholar 

  31. Chanat C, Delbaldo C, Denis J, Bocaccio F, Cojean-Zelek I, Le Guyader N . Dose intensity and toxicity associated with Taxotere formulation: a retrospective study in a population of breast cancer patients treated with docetaxel as an adjuvant or neoadjuvant chemotherapy. Anticancer Drugs 2015; 26: 984–989.

    Article  CAS  PubMed  Google Scholar 

  32. Bear HD, Anderson S, Smith RE, Geyer CE Jr., Mamounas EP, Fisher B et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer:National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 2006; 24: 2019–2027.

    Article  CAS  PubMed  Google Scholar 

  33. Crawford J, Dale DC, Lyman GH . Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer 2004; 100: 228–237.

    Article  PubMed  Google Scholar 

  34. Kvaloy K, Kulle B, Romundstad P, Holmen TL . Sex-specific effects of weight-affecting gene variants in a life course perspective—The HUNT Study, Norway. Int J Obes 2013; 37: 1221–1229.

    Article  CAS  Google Scholar 

  35. Zuluaga AF, Salazar BE, Rodriguez CA, Zapata AX, Agudelo M, Vesga O . Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infect Dis 2006; 6: 55.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lorusso V, Manzione L, Silvestris N . Role of liposomal anthracyclines in breast cancer. Ann Oncol 2007; 18 (Suppl 6): vi70–vi73.

    PubMed  Google Scholar 

  37. Yang BB, Kido A . Pharmacokinetics and pharmacodynamics of pegfilgrastim. Clin Pharmacokinet 2011; 50: 295–306.

    Article  CAS  PubMed  Google Scholar 

  38. Ballot J, McDonnell D, Crown J . Successful treatment of thrombocytopenia due to marrow metastases of breast cancer with weekly docetaxel. J Natl Cancer Inst 2003; 95: 831–832.

    Article  PubMed  Google Scholar 

  39. Cho MS, Bottsford-Miller J, Vasquez HG, Stone R, Zand B, Kroll MH et al. Platelets increase the proliferation of ovarian cancer cells. Blood 2012; 120: 4869–4872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang JR, de Villena FP, McMillan L . Comparative analysis and visualization of multiple collinear genomes. BMC Bioinformatics 2012; 13 (Suppl 3): S13.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature 2016; 534: 500–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL et al. The Comparative Toxicogenomics Database's 10th year anniversary: update 2015. Nucleic Acids Res 2015; 43 (Database issue): D914–D920.

    Article  CAS  PubMed  Google Scholar 

  43. Colotti G, Poser E, Fiorillo A, Genovese I, Chiarini V, Ilari A . Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells. Molecules 2014; 19: 13976–13989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu Y, Cheng X, Li S, Zhou Y, Wang J, Cheng T et al. Inhibition of sorcin reverses multidrug resistance of K562/A02 cells and MCF-7/A02 cells via regulating apoptosis-related proteins. Cancer Chemother Pharmacol 2013; 72: 789–798.

    Article  CAS  PubMed  Google Scholar 

  45. Qinghong S, Shen G, Lina S, Yueming Z, Xiaoou L, Jianlin W et al. Comparative proteomics analysis of differential proteins in respond to doxorubicin resistance in myelogenous leukemia cell lines. Proteome Sci 2015; 13: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Barraud L, Merle P, Soma E, Lefrancois L, Guerret S, Chevallier M et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol 2005; 42: 736–743.

    Article  CAS  PubMed  Google Scholar 

  47. Gottesman MM . Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53: 615–627.

    Article  CAS  PubMed  Google Scholar 

  48. Mercier C, Masseguin C, Roux F, Gabrion J, Scherrmann JM . Expression of P-glycoprotein (ABCB1) and Mrp1 (ABCC1) in adult rat brain: focus on astrocytes. Brain Res 2004; 1021: 32–40.

    Article  CAS  PubMed  Google Scholar 

  49. Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993; 75: 451–462.

    Article  CAS  PubMed  Google Scholar 

  50. Heng TS, Painter MW Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 2008; 9: 1091–1094.

    Article  CAS  PubMed  Google Scholar 

  51. Seita J, Sahoo D, Rossi DJ, Bhattacharya D, Serwold T, Inlay MA et al. Gene Expression Commons: an open platform for absolute gene expression profiling. PLoS ONE 2012; 7: e40321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Batrakova EV, Kelly DL, Li S, Li Y, Yang Z, Xiao L et al. Alteration of genomic responses to doxorubicin and prevention of MDR in breast cancer cells by a polymer excipient: pluronic P85. Mol Pharm 2006; 3: 113–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turton NJ, Judah DJ, Riley J, Davies R, Lipson D, Styles JA et al. Gene expression and amplification in breast carcinoma cells with intrinsic and acquired doxorubicin resistance. Oncogene 2001; 20: 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  54. Fischer S, Kluver N, Burkhardt-Medicke K, Pietsch M, Schmidt AM, Wellner P et al. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. BMC Biol 2013; 11: 69.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sottani C, Rinaldi P, Leoni E, Poggi G, Teragni C, Delmonte A et al. Simultaneous determination of cyclophosphamide, ifosfamide, doxorubicin, epirubicin and daunorubicin in human urine using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry: bioanalytical method validation. Rapid Commun Mass Spectrom 2008; 22: 2645–2659.

    Article  CAS  PubMed  Google Scholar 

  56. Lachatre F, Marquet P, Ragot S, Gaulier JM, Cardot P, Dupuy JL . Simultaneous determination of four anthracyclines and three metabolites in human serum by liquid chromatography-electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl 2000; 738: 281–291.

    Article  CAS  PubMed  Google Scholar 

  57. Ikeda M, Tsuji D, Yamamoto K, Kim YI, Daimon T, Iwabe Y et al. Relationship between ABCB1 gene polymorphisms and severe neutropenia in patients with breast cancer treated with doxorubicin/cyclophosphamide chemotherapy. Drug Metab Pharmacokinet 2015; 30: 149–153.

    Article  CAS  PubMed  Google Scholar 

  58. Fischer S, Kluver N, Burkhardt-Medicke K, Pietsch M, Schmidt AM, Wellner P et al. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. BMC Biol 2013; 11: 69.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dube MP, Al-Saloos H et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol 2012; 30: 1422–1428.

    Article  PubMed  Google Scholar 

  60. Gao R, Schellenberg MJ, Huang SY, Abdelmalak M, Marchand C, Nitiss KC et al. Proteolytic degradation of topoisomerase II (Top2) enables the processing of Top2.DNA and Top2.RNA covalent complexes by tyrosyl-DNA-phosphodiesterase 2 (TDP2). J Biol Chem 2014; 289: 17960–17969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pommier Y, Huang SY, Gao R, Das BB, Murai J, Marchand C . Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair 2014; 19: 114–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nitiss JL . Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009; 9: 338–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levine AJ, Oren M . The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9: 749–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tripathi DN, Jena GB . Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38 and phase-II enzymes. Mutat Res 2010; 696: 69–80.

    Article  CAS  PubMed  Google Scholar 

  65. Boehme K, Dietz Y, Hewitt P, Mueller SO . Activation of P53 in HepG2 cells as surrogate to detect mutagens and promutagens in vitro. Toxicol Lett 2010; 198: 272–281.

    Article  CAS  PubMed  Google Scholar 

  66. Steele-Perkins G, Fang W, Yang XH, Van Gele M, Carling T, Gu J et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev 2001; 15: 2250–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nachat R, Cipolat S, Sevilla LM, Chhatriwala M, Groot KR, Watt FM . KazrinE is a desmosome-associated liprin that colocalises with acetylated microtubules. J Cell Sci 2009; 122 (Pt 22): 4035–4041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu EP, McLellan M, Ding L, Fulton R, Mardis ER, Wilson RK et al. Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice. Blood 2014; 124: 3887–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dandekar DS, Lopez M, Carey RI, Lokeshwar BL . Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer 2005; 115: 484–492.

    Article  CAS  PubMed  Google Scholar 

  70. Drerup CM, Lusk S, Nechiporuk A . Kif1B interacts with KBP to promote axon elongation by localizing a microtubule regulator to growth cones. J Neurosci 2016; 36: 7014–7026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gregers J, Green H, Christensen IJ, Dalhoff K, Schroeder H, Carlsen N et al. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J 2015; 15: 372–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yao S, Sucheston LE, Zhao H, Barlow WE, Zirpoli G, Liu S et al. Germline genetic variants in ABCB1, ABCC1 and ALDH1A1, and risk of hematological and gastrointestinal toxicities in a SWOG Phase III trial S0221 for breast cancer. Pharmacogenomics J 2014; 14: 241–247.

    Article  CAS  PubMed  Google Scholar 

  73. Ho MY, Mackey JR . Presentation and management of docetaxel-related adverse effects in patients with breast cancer. Cancer Manag Res 2014; 6: 253–259.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I . Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001; 125: 279–284.

    Article  CAS  PubMed  Google Scholar 

  75. Pinto N, Ludeman SM, Dolan ME . Drug focus: pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 2009; 10: 1897–1903.

    Article  CAS  PubMed  Google Scholar 

  76. Cai Y, Wu MH, Ludeman SM, Grdina DJ, Dolan ME . Role of O6-alkylguanine-DNA alkyltransferase in protecting against cyclophosphamide-induced toxicity and mutagenicity. Cancer Res 1999; 59: 3059–3063.

    CAS  PubMed  Google Scholar 

  77. Oshiro C, Marsh S, McLeod H, Carrillo MW, Klein T, Altman R . Taxane pathway. Pharmacogenet Genomics 2009; 19: 979–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 2011; 21: 440–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012; 92: 414–417.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Cancer Institute grant number RC1 CA14550402. We thank Annika Bohner for her excellent technical assistance and Sara Cassidy for technical editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G A Churchill.

Ethics declarations

Competing interests

DMG and GAC are employed by The Jackson Laboratory, which sells Diversity Outbred mice.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatti, D., Weber, S., Goodwin, N. et al. Genetic background influences susceptibility to chemotherapy-induced hematotoxicity. Pharmacogenomics J 18, 319–330 (2018). https://doi.org/10.1038/tpj.2017.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2017.23

This article is cited by

Search

Quick links