Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of genetic polymorphisms determining leukocyte/neutrophil count on chemotherapy toxicity

Abstract

Neutropenia and infection are major dose-limiting side effects of chemotherapy. The risk of initial infection and subsequent complications are directly related to the depth and duration of neutropenia. Recent genome-wide association studies identified variants in DARC and CXCL2 genes, and in ORMDL3-GSDMA-CSF3 locus on chromosome 17q21 that influence white blood cell and neutrophil counts in healthy individuals. To investigate whether polymorphisms in these loci in conjunction with chemotherapy may modulate risk of treatment complications, we analyzed 21 SNPs across these genes for an association with chemotherapy-related neutropenia and infection in 286 Caucasian children with acute lymphoblastic leukemia. After correction for multiple testing, DARC polymorphism rs3027012 in 5′-UTR was associated with higher risk of low absolute phagocyte count (APC<500 and <1000 cells per microliter, P=0.001 and P<0.0005, respectively) and hospitalization due to febrile neutropenia (P=0.002). Protective effect was instead seen for DARC rs12075 A to G substitution (P=0.004). The SNP rs3859192 in the GSDMA were associated with hospitalization due to infection (P=0.004); infection was also modulated in the additive manner by the CXCL2 rs16850408 (P=0.002). This study shows for the first time that the variations in DARC, GSDMA and CXCL2 genes may play a role in the onset of chemotherapy complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Pui CH, Mullighan CG, Evans WE, Relling MV . Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012; 120: 1165–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Connor D, Bate J, Wade R, Clack R, Dhir S, Hough R et al. Infection-related mortality in children with acute lymphoblastic leukemia: an analysis of infectious deaths on UKALL2003. Blood 2014; 124: 1056–1061.

    Article  PubMed  Google Scholar 

  3. Merryman R, Stevenson KE, Gostic WJ, Neuberg D, O'Brien J, Sallan SE et al. Asparaginase associated myelosuppression and effects on dosing of other chemotherapeutic agents in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2012; 59: 925–927.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lyman GH . Impact of chemotherapy dose intensity on cancer patient outcomes. J Natl Compr Canc Netw 2009; 7: 99–108.

    Article  PubMed  Google Scholar 

  5. Palazzi DL . The use of antimicrobial agents in children with fever during chemotherapy-induced neutropenia: the importance of risk stratification. Pediatr Infect Dis J 2011; 30: 887–890.

    Article  PubMed  Google Scholar 

  6. Rippey JJ . Leucopenia in West Indians and Africans. Lancet 1967; 290: 44.

    Article  Google Scholar 

  7. Haddy TB, Rana SR, Castro O . Benign ethnic neutropenia: what is a normal absolute neutrophil count? J Lab Clin Med 1999; 133: 15–22.

    Article  CAS  PubMed  Google Scholar 

  8. Kourtis AP, Bramson B, Van Der Horst C, Kazembe P, Ahmed Y, Chasela C et al. Low absolute neutrophil counts in African infants. J Int Assoc Physicians AIDS Care 2005; 4: 73–76.

    Article  Google Scholar 

  9. Denic S, Showqi S, Klein C, Takala M, Nagelkerke N, Agarwal MM . Prevalence, phenotype and inheritance of benign neutropenia in Arabs. BMC Hematol 2009; 9: 3.

    Article  Google Scholar 

  10. Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, Huntsman S et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am J Hum Genet 2008; 82: 81–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, Austin MA et al. Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genet 2011; 7: e1002108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crosslin DR, McDavid A, Weston N, Nelson SC, Zheng X, Hart E et al. Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network. Hum Genet 2012; 13: 639–652.

    Article  Google Scholar 

  13. Paz Z, Nalls M, Ziv E . The genetics of benign neutropenia. IMAJ 2011; 13: 625–629.

    PubMed  Google Scholar 

  14. Pruenster M, Mudde L, Bombosi P, Dimitrova S, Zsak M, Middleton J et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 2009; 10: 223.

    Article  CAS  Google Scholar 

  15. Kangelaris KN, Sapru A, Calfee CS, Liu KD, Pawlikowska L, Witte JS et al. The association between a Darc gene polymorphism and clinical outcomes in African American patients with acute lung injury. Chest J 2012; 141: 1160–1169.

    Article  CAS  Google Scholar 

  16. Soranzo N, Spector TD, Mangino M, Kühnel B, Rendon A, Teumer A et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 2009; 41: 1182–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nalls MA, Couper DJ, Tanaka T, Van Rooij FJ, Chen MH, Smith AV et al. Multiple loci are associated with white blood cell phenotypes. PLoS Genet 2011; 7: e1002113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ceppi F, Langlois-Pelletier C, Gagné V, Rousseau J, Ciolino C, De Lorenzo S et al. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. Pharmacogenomics 2014; 15: 1105–1116.

    Article  CAS  PubMed  Google Scholar 

  19. Tanfous MB, Sharif-Askari B, Ceppi F, Laaribi H, Gagné V, Rousseau J et al. Polymorphisms of asparaginase pathway and asparaginase-related complications in children with acute lymphoblastic leukemia. Clin Cancer Res 2015; 21: 329–334.

    Article  PubMed  Google Scholar 

  20. Silverman LB, Stevenson KE, O'Brien JE, Asselin BL, Barr RD, Clavell L et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000). Leukemia 2010; 24: 320–334.

    Article  CAS  PubMed  Google Scholar 

  21. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA . Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 2004; 74: 106–120.

    Article  CAS  PubMed  Google Scholar 

  22. Labuda D, Krajinovic M, Richer C, Skoll A, Sinnett H, Yotova V et al. Rapid detection of CYP1A1, CYP2D6, and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem 1999; 275: 84–92.

    Article  CAS  PubMed  Google Scholar 

  23. Storey JD, Taylor JR, Sigmund D . Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc, Series B 2004; 66: 187–205.

    Article  Google Scholar 

  24. Schnabel RB, Baumert J, Barbalic M, Dupuis J, Ellinor PT, Durda P et al. Duffy antigen receptor for chemokines (Darc) polymorphism regulates circulating concentrations of monocyte chemoattractant protein-1 and other inflammatory mediators. Blood 2010; 115: 5289–5299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang C, Yu KD, Xu WH, Chen AX, Fan L, Ou ZL et al. Effect of genetic variants in two chemokine decoy receptor genes, DARC and CCBP2, on metastatic potential of breast cancer. PloS ONE 2013; 8: e78901.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu KD, Wang X, Yang C, Zeng XH, Shao ZM . Host genotype and tumor phenotype of chemokine decoy receptors integrally affect breast cancer relapse. Oncotarget 2015; 6: 26519.

    PubMed  PubMed Central  Google Scholar 

  27. Velasquez IM, Kumar J, Björkbacka H, Nilsson J, Silveira A, Leander K et al. Duffy antigen receptor genetic variant and the association with Interleukin 8 levels. Cytokine 2015; 72: 178–184.

    Article  Google Scholar 

  28. Voruganti VS, Laston S, Haack K, Mehta NR, Smith CW, Cole SA et al. Comuzzie AG. Genome-wide association replicates the association of Duffy antigen receptor for chemokines (DARC) polymorphisms with serum monocyte chemoattractant protein-1 (MCP-1) levels in Hispanic children. Cytokine 2012; 60: 634–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PloS ONE 2012; 7: e51954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller MF, Cohen ED, Baggs JE, Hogenesch JB, Morrisey EE . High throughput genomic screen identifies multiple factors that promote cooperative Wnt signaling. PloS ONE 2013; 8: e55782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jung YS, Lee HY, Kim SD, Park JS, Kim JK, Suh PG et al. Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils. Exp Mol Med 2013; 45: e27.

    Article  PubMed  Google Scholar 

  32. Kulkarni H, Marconi VC, He W, Landrum ML, Okulicz JF, Delmar J et al. The Duffy-null state is associated with a survival advantage in leukopenic HIV-infected persons of African ancestry. Blood 2009; 114: 2783–2792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramsuran V, Kulkarni H, He W, Mlisana K, Wright EJ, Werner L et al. Duffy-Null–associated low neutrophil counts influence HIV-1 susceptibility in high-risk South African black women. Clin Infect Dis 2011; 52: 1248–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vergara C, Tsai YJ, Grant AV, Rafaels N, Gao L, Hand T et al. Gene encoding Duffy antigen/receptor for chemokines is associated with asthma and IgE in three populations. Am J Respiratory Crit Care Med 2008; 178: 1017–1022.

    Article  CAS  Google Scholar 

  35. Okada Y, Kamatani Y, Takahashi A, Matsuda K, Hosono N, Ohmiya H et al. Common variations in PSMD3–CSF3 and PLCB4 are associated with neutrophilcount. Hum Mol Genet 2010; 19: 2079–2085.

    Article  CAS  PubMed  Google Scholar 

  36. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 2010; 363: 1211–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40: 955–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41: 703–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lluis A, Schedel M, Liu J, Illi S, Depner M, von Mutius E et al. Asthma-associated polymorphisms in 17q21 influence cord blood ORMDL3 and GSDMA gene expression and IL-17 secretion. J Allergy Clin Immunol 2011; 127: 1587–1594.

    Article  CAS  PubMed  Google Scholar 

  40. Christopher MJ, Link DC . Regulation of neutrophil homeostasis. Curr Opin Hematol 2007; 14: 3–8.

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen-Jackson H, Panopoulos AD, Zhang H, Li HS, Watowich SS . STAT3 controls the neutrophil migratory response to CXCR2 ligands by direct activation of G-CSF–induced CXCR2 expression and via modulation of CXCR2 signal transduction. Blood 2010; 115: 3354–3363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flores C, Maca-Meyer N, Perez-Mendez L, Sangüesa R, Espinosa E, Muriel A et al. A CXCL2 tandem repeat promoter polymorphism is associated with susceptibility to severe sepsis in the Spanish population. Genes Immun 2006; 7: 141–149.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients and their parents who consented to participate in genetics studies related to leukemia. Coast to Coast against Cancer Foundation, Leukemia Lymphoma Society of Canada, Canadian Institutes of Health Research and Charles Bruneau Foundation, supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Krajinovic.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glisovic, S., Pastore, Y., Gagne, V. et al. Impact of genetic polymorphisms determining leukocyte/neutrophil count on chemotherapy toxicity. Pharmacogenomics J 18, 270–274 (2018). https://doi.org/10.1038/tpj.2017.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2017.16

This article is cited by

Search

Quick links