Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systems genetics analysis of pharmacogenomics variation during antidepressant treatment

Abstract

Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants, but the efficacy of the treatment varies significantly among individuals. It is believed that complex genetic mechanisms play a part in this variation. We have used a network based approach to unravel the involved genetic components. Moreover, we investigated the potential difference in the genetic interaction networks underlying SSRI treatment response over time. We found four hub genes (ASCC3, PPARGC1B, SCHIP1 and TMTC2) with different connectivity in the initial SSRI treatment period (baseline to week 4) compared with the subsequent period (4–8 weeks after initiation), suggesting that different genetic networks are important at different times during SSRI treatment. The strongest interactions in the initial SSRI treatment period involved genes encoding transcriptional factors, and in the subsequent period genes involved in calcium homeostasis. In conclusion, we suggest a difference in genetic interaction networks between initial and subsequent SSRI response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Alonso J, Angermeyer MC, Bernert S, Bruffaerts R, Brugha TS, Bryson H et al. Prevalence of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand Suppl 2004; 420: 21–27.

    Google Scholar 

  2. Fabbri C, Di Girolamo G, Serretti A . Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet Part B Neuropsychiatr Genet 2013; 162B: 487–520.

    Article  Google Scholar 

  3. Kadarmideen HN, von Rohr P, Janss LLG . From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm Genome 2006; 17: 548–564.

    Article  CAS  Google Scholar 

  4. Civelek M, Lusis AJ . Systems genetics approaches to understand complex traits. Nat Rev Genet 2014; 15: 34–48.

    Article  CAS  Google Scholar 

  5. Kooperberg C, Leblanc M . Increasing the power of identifying gene × gene interactions in genome-wide association studies. Genet Epidemiol 2008; 32: 255–263.

    Article  Google Scholar 

  6. Kogelman LJ, Kadarmideen HN . Weighted Interaction SNP Hub (WISH) network method for building genetic networks for complex diseases and traits using whole genome genotype data. BMC Syst Biol 2014; 8: S5.

    Article  Google Scholar 

  7. Ji Y, Biernacka JM, Hebbring S, Chai Y, Jenkins GD, Batzler A et al. Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: genome-wide associations and functional genomics. Pharmacogenomics J 2013; 13: 456–463.

    Article  CAS  Google Scholar 

  8. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD et al. A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry 2010; 67: 133–138.

    Article  CAS  Google Scholar 

  9. Ising M, Lucae S, Binder EB, Bettecken T, Uhr M, Ripke S et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry 2009; 66: 966–975.

    Article  CAS  Google Scholar 

  10. Laje G, McMahon FJ . Genome-wide association studies of antidepressant outcome: a brief review. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 1553–1557.

    Article  CAS  Google Scholar 

  11. Uher R, Perroud N, Ng MYM, Hauser J, Henigsberg N, Maier W et al. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry 2010; 167: 555–564.

    Article  Google Scholar 

  12. GENDEP Investigators, MARS Investigators, STAR*D Investigators. Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. Am J Psychiatry 2013; 170: 207–217.

    Article  Google Scholar 

  13. Ji Y, Hebbring S, Zhu H, Jenkins GD, Biernacka J, Snyder K et al. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther 2011; 89: 97–104.

    Article  CAS  Google Scholar 

  14. Tryka KA, Hao L, Sturcke A, Jin Y, Wang ZY, Ziyabari L et al. NCBI’s database of genotypes and phenotypes: dbGaP. Nucleic Acids Res 2014; 42: D975–D979.

    Article  CAS  Google Scholar 

  15. Uher R, Mors O, Rietschel M, Rajewska-Rager A, Petrovic A, Zobel A et al. Early and delayed onset of response to antidepressants in individual trajectories of change during treatment of major depression: a secondary analysis of data from the Genome-Based Therapeutic Drugs for Depression (GENDEP) study. J Clin Psychiatry 2011; 72: 1478–1484.

    Article  Google Scholar 

  16. Jakubovski E, Varigonda AL, Freemantle N, Taylor MJ, Bloch MH . Systematic review and meta-analysis: dose–response relationship of selective serotonin reuptake inhibitors in major depressive disorder. Am J Psychiatry 2016; 173: 174–183.

    Article  Google Scholar 

  17. Hyttel J, Bøgesø KP, Perregaard J, Sánchez C . The pharmacological effect of citalopram residues in the (S)-(+)-enantiomer. J Neural Transm Gen Sect 1992; 88: 157–160.

    Article  CAS  Google Scholar 

  18. Sánchez C, Bergqvist PBF, Brennum LT, Gupta S, Hogg S, Larsen A et al. Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology 2003; 167: 353–362.

    Article  Google Scholar 

  19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  20. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM . GenABEL: an R library for genome-wide association analysis. Bioinforma Oxf Engl 2007; 23: 1294–1296.

    Article  CAS  Google Scholar 

  21. Kogelman LJA, Pant SD, Fredholm M, Kadarmideen HN . Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses. Front Genet 2014; 5: 214.

    Article  Google Scholar 

  22. Gilmour AR, Gogel BJ, Cullis BR, Thompson R. ASReml User Guide Release 3.0. VSN Int Ltd.: Hemel Hempstead, UK, 2009.

  23. Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559.

    Article  Google Scholar 

  24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498–2504.

    Article  CAS  Google Scholar 

  25. Pers TH, Karjalainen JM, Chan Y, Westra H-J, Wood AR, Yang J et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun 2015; 6: 5890.

    Article  CAS  Google Scholar 

  26. Varigonda AL, Jakubovski E, Taylor MJ, Freemantle N, Coughlin C, Bloch MH . Systematic review and meta-analysis: early treatment responses of selective serotonin reuptake inhibitors in pediatric major depressive disorder. J Am Acad Child Adolesc Psychiatry 2015; 54: 557–564.

    Article  Google Scholar 

  27. Dango S, Mosammaparast N, Sowa ME, Xiong L-J, Wu F, Park K et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell 2011; 44: 373–384.

    Article  CAS  Google Scholar 

  28. Jung D-J, Sung H-S, Goo Y-W, Lee HM, Park OK, Jung S-Y et al. Novel transcription coactivator complex containing activating signal cointegrator 1. Mol Cell Biol 2002; 22: 5203–5211.

    Article  CAS  Google Scholar 

  29. Kressler D, Schreiber SN, Knutti D, Kralli A . The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 2002; 277: 13918–13925.

    Article  CAS  Google Scholar 

  30. Sunryd JC, Cheon B, Graham JB, Giorda KM, Fissore RA, Hebert DN . TMTC1 and TMTC2 are novel endoplasmic reticulum tetratricopeptide repeat-containing adapter proteins involved in calcium homeostasis. J Biol Chem 2014; 289: 16085–16099.

    Article  CAS  Google Scholar 

  31. Bishop JR, Chae SS, Patel S, Moline J, Ellingrod VL . Pharmacogenetics of glutamate system genes and SSRI-associated sexual dysfunction. Psychiatry Res 2012; 199: 74–76.

    Article  CAS  Google Scholar 

  32. Kremerskothen J, Plaas C, Büther K, Finger I, Veltel S, Matanis T et al. Characterization of KIBRA, a novel WW domain-containing protein. Biochem Biophys Res Commun 2003; 300: 862–867.

    Article  CAS  Google Scholar 

  33. Makuch L, Volk L, Anggono V, Johnson RC, Yu Y, Duning K et al. Regulation of AMPA receptor function by the human memory-associated gene KIBRA. Neuron 2011; 71: 1022–1029.

    Article  CAS  Google Scholar 

  34. Brown GR, Hem V, Katz KS, Ovetsky M, Wallin C, Ermolaeva O et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res 2015; 43: D36–D42.

    Article  CAS  Google Scholar 

  35. Alloza I, Otaegui D, de Lapuente AL, Antigüedad A, Varadé J, Núñez C et al. ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes Immun 2012; 13: 253–257.

    Article  CAS  Google Scholar 

  36. Harder MN, Ribel-Madsen R, Justesen JM, Sparsø T, Andersson EA, Grarup N et al. Type 2 diabetes risk alleles near BCAR1 and in ANK1 associate with decreased β-cell function whereas risk alleles near ANKRD55 and GRB14 associate with decreased insulin sensitivity in the Danish Inter99 cohort. J Clin Endocrinol Metab 2013; 98: E801–E806.

    Article  CAS  Google Scholar 

  37. Dharmadhikari AV, Kang S-HL, Szafranski P, Person RE, Sampath S, Prakash SK et al. Small rare recurrent deletions and reciprocal duplications in 2q21.1, including brain-specific ARHGEF4 and GPR148. Hum Mol Genet 2012; 21: 3345–3355.

    Article  CAS  Google Scholar 

  38. Kumaran D, Balagopal K, Tharmaraj RGA, Aaron S, George K, Muliyil J et al. Genetic characterization of Spinocerebellar ataxia 1 in a South Indian cohort. BMC Med Genet 2014; 15: 114.

    Article  Google Scholar 

  39. Smoller JW . The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology 2015; 41: 297–319.

    Article  Google Scholar 

  40. Noor A, Windpassinger C, Patel M, Stachowiak B, Mikhailov A, Azam M et al. CC2D2A, encoding a coiled-coil and C2 domain protein, causes autosomal-recessive mental retardation with retinitis pigmentosa. Am J Hum Genet 2008; 82: 1011–1018.

    Article  CAS  Google Scholar 

  41. Li YJ, Deng J, Mayhew GM, Grimsley JW, Huo X, Vance JM . Investigation of the PARK10 gene in Parkinson disease. Ann Hum Genet 2007; 71: 639–647.

    Article  CAS  Google Scholar 

  42. Koiliari E, Roussos P, Pasparakis E, Lencz T, Malhotra A, Siever LJ et al. The CSMD1 genome-wide associated schizophrenia risk variant rs10503253 affects general cognitive ability and executive function in healthy males. Schizophr Res 2014; 154: 42–47.

    Article  Google Scholar 

  43. Rose EJ, Morris DW, Hargreaves A, Fahey C, Greene C, Garavan H et al. Neural effects of the CSMD1 genome-wide associated schizophrenia risk variant rs10503253. Am J Med Genet Part B Neuropsychiatr Genet 2013; 162B: 530–537.

    Article  Google Scholar 

  44. Anzulovich A, Mir A, Brewer M, Ferreyra G, Vinson C, Baler R . Elovl3: a model gene to dissect homeostatic links between the circadian clock and nutritional status. J Lipid Res 2006; 47: 2690–2700.

    Article  CAS  Google Scholar 

  45. Nishimoto K, Ikari K, Kaneko H, Tsukahara S, Kochi Y, Yamamoto K et al. Association of EMCN with susceptibility to rheumatoid arthritis in a Japanese population. J Rheumatol 2011; 38: 221–228.

    Article  CAS  Google Scholar 

  46. de Vega S, Iwamoto T, Nakamura T, Hozumi K, McKnight DA, Fisher LW et al. TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem 2007; 282: 30878–30888.

    Article  CAS  Google Scholar 

  47. Zhu M, Tao Y, He Q, Gao H, Song F, Sun Y-M et al. Common GSAP promoter variant contributes to Alzheimer’s disease liability. Neurobiol Aging 2014; 35: e1–e7.

    Article  Google Scholar 

  48. Djurovic S, Gustafsson O, Mattingsdal M, Athanasiu L, Bjella T, Tesli M et al. A genome-wide association study of bipolar disorder in Norwegian individuals, followed by replication in Icelandic sample. J Affect Disord 2010; 126: 312–316.

    Article  Google Scholar 

  49. Moey C, Hinze SJ, Brueton L, Morton J, McMullan DJ, Kamien B et al. Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders. Eur J Hum Genet EJHG 2015; 24: 373–380.

    Article  Google Scholar 

  50. Terstappen GC, Pellacani A, Aldegheri L, Graziani F, Carignani C, Pula G et al. The antidepressant fluoxetine blocks the human small conductance calcium-activated potassium channels SK1, SK2 and SK3. Neurosci Lett 2003; 346: 85–88.

    Article  CAS  Google Scholar 

  51. Jones RM, Cadby G, Blangero J, Abraham LJ, Whitehouse AJO, Moses EK . MACROD2 gene associated with autistic-like traits in a general population sample. Psychiatr Genet 2014; 24: 241–248.

    Article  CAS  Google Scholar 

  52. Lee Y, Mattai A, Long R, Rapoport JL, Gogtay N, Addington AM . Microduplications disrupting the MYT1L gene (2p25.3) are associated with schizophrenia. Psychiatr Genet 2012; 22: 206–209.

    Article  CAS  Google Scholar 

  53. Stevens SJC, van Ravenswaaij-Arts CMA, Janssen JWH, Klein Wassink-Ruiter JS, van Essen AJ, Dijkhuizen T et al. MYT1L is a candidate gene for intellectual disability in patients with 2p25.3 (2pter) deletions. Am J Med Genet A 2011; 155A: 2739–2745.

    Article  Google Scholar 

  54. Huybrechts SJ, Van Veldhoven PP, Hoffman I, Zeevaert R, de Vos R, Demaerel P et al. Identification of a novel PEX14 mutation in Zellweger syndrome. J Med Genet 2008; 45: 376–383.

    Article  CAS  Google Scholar 

  55. Strubin M, Newell JW, Matthias P . OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 1995; 80: 497–506.

    Article  CAS  Google Scholar 

  56. Bill BR, Lowe JK, Dybuncio CT, Fogel BL . Orchestration of neurodevelopmental programs by RBFOX1: implications for autism spectrum disorder. Int Rev Neurobiol 2013; 113: 251–267.

    Article  CAS  Google Scholar 

  57. Orlandi C, Xie K, Masuho I, Fajardo-Serrano A, Lujan R, Martemyanov KA . Orphan receptor GPR158 Is an allosteric modulator of RGS7 catalytic activity with an essential role in dictating its expression and localization in the brain. J Biol Chem 2015; 290: 13622–13639.

    Article  CAS  Google Scholar 

  58. Fabbri C, Souery D, Calati R, Crisafulli C, Chierchia A, Albani D et al. Genetics of psychotropic medication induced side effects in two independent samples of bipolar patients. J Neural Transm 2015; 122: 43–58.

    Article  CAS  Google Scholar 

  59. Klingler E, Martin P-M, Garcia M, Moreau-Fauvarque C, Falk J, Chareyre F et al. The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development. Dev Camb Engl 2015; 142: 2026–2036.

    CAS  Google Scholar 

  60. Andermatt I, Wilson NH, Bergmann T, Mauti O, Gesemann M, Sockanathan S et al. Semaphorin 6B acts as a receptor in post-crossing commissural axon guidance. Development 2014; 141: 3709–3720.

    Article  CAS  Google Scholar 

  61. Himes BE, Jiang X, Hu R, Wu AC, Lasky-Su JA, Klanderman BJ et al. Genome-wide association analysis in asthma subjects identifies SPATS2L as a novel bronchodilator response gene. PLoS Genet 2012; 8: e1002824.

    Article  CAS  Google Scholar 

  62. Waltereit R, Leimer U, von Bohlen Und Halbach O, Panke J, Hölter SM, Garrett L et al. Srgap3/ mice present a neurodevelopmental disorder with schizophrenia-related intermediate phenotypes. FASEB J 2012; 26: 4418–4428.

    Article  CAS  Google Scholar 

  63. Heraud-Farlow JE, Sharangdhar T, Li X, Pfeifer P, Tauber S, Orozco D et al. Staufen2 regulates neuronal target RNAs. Cell Rep 2013; 5: 1511–1518.

    Article  CAS  Google Scholar 

  64. Temtamy SA, Aglan MS, Valencia M, Cocchi G, Pacheco M, Ashour AM et al. Long interspersed nuclear element-1 (LINE1)-mediated deletion of EVC, EVC2, C4orf6, and STK32B in Ellis-van Creveld syndrome with borderline intelligence. Hum Mutat 2008; 29: 931–938.

    Article  CAS  Google Scholar 

  65. Greninger AL, Knudsen GM, Betegon M, Burlingame AL, DeRisi JL . ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding. mBio 2013; 4: e00098–13.

    Article  Google Scholar 

  66. Liu W, Han F, Jiang X, Chen H, Zhao H, Liu Y et al. TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer. Oncotarget 2015; 6: 21225–21239.

    PubMed  PubMed Central  Google Scholar 

  67. Huang L-Z, Li Y-J, Xie X-F, Zhang J-J, Cheng C-Y, Yamashiro K et al. Whole-exome sequencing implicates UBE3D in age-related macular degeneration in East Asian populations. Nat Commun 2015; 6: 6687.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Mayo Clinic for allowing us access to the PGRN-SSRI Pharmacogenomics trail DNA samples through dbGaP. This study was funded by a postdoctoral grant from the Mental Health Services of the Capital Region of Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H B Rasmussen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madsen, M., Kogelman, L., Kadarmideen, H. et al. Systems genetics analysis of pharmacogenomics variation during antidepressant treatment. Pharmacogenomics J 18, 144–152 (2018). https://doi.org/10.1038/tpj.2016.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.68

This article is cited by

Search

Quick links